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I - INTRODUCTION 

The control of distributed parameter systems presents a great many 

theoretical problems and has already given rise, over the last few years, to some 

fundamental research. However, the results obtained so far do not, in general, 

enable one to get round the difficulties which arise when the proposed control laws 

are applied. For this reason, a number of research teams have turned their atten- 

tion to the use of new concepts such as that of classical decomposition-coordination 

in hierarchical control. This idea has been introduced either from a somewhat ma- 

thematical point of view [ I, 2]or from more of a "control" angle [3 to ~] In the 

latter case, techniques of dynamic and static hierarchical control (two level) are 

used to control a collection of interconnected subsystems. This collection is obtai- 

ned by discretising the initial partial differential problem in space, or in time and 

space. It would seem at present that research in this direction should be limited to 

the field of applications. It is concerned at any rate with the resolution of an overall 

problem, whilst at the present time there is good reason for considering a more 

important problem, numerous cases of which are to be found in the economic sec- 

tor, that of the optimal control of a group of interconnected sub-systems the beha- 

viour of each of which is defined by partial differential equations. 

The use of hierarchical control techniques to solve such a problem is 

being examined at the present time at the Laboratoire d'Automatique et d'Analyse 

des Systemes in Toulouse as a joint project, undertaken by two groups : "Hierar- 

chical Control" and "Distributed Parameter Processes". 

The aim of this paper is to show" how the problem has been tackled, and 

to present some of the results which have already been obtained. In the first part, 
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we show how, for a certain class of distributed parameter systems, it is possible 

to decompose the overall problem into sub-problems, whilst at the same time re- 

taining their "distributed parameter" nature ; in this part, the coordination task 

necessary to reach the overall solution is defined. The second part is devoted to 

the study of the sub-system and its controllability particularly as regards the coor- 

dination problems ; the implementation of the actuators is in fact the second es- 

sential aspect of this study. 

II - OPTIMISATION OF INTERCONNECTED SYSTEMS 

II- 1 - Brief survey o_f_the principles_of de_cpmposi_t_io_n_-_%oord_~a_tion_ [ 4 ] 

As a result of the problems presented by the control of complex sys- 

tems composed of interconnected sub-systems, (when the overall approach is too 

costly) or because of theoretical considerations (difficulties of convergence of the 

algorithms for large scale problems) to introduce new methods, particularly the 

decomposition-coordination methods which are found in hierarchical control. 

These techniques use multi-level and multi-objective pyramid shaped control struc- 

tures, and are able to employ different types of decomposition (or division) of 

work : 

- horizontal division based on the complexity of the process and its 

"interconnected sub-systems" aspect ; 

- vertical division based on the complexity of the control with the levels : 

regulation, optimisation, self-adaptation, self-organisation ; 

- functional division according to the situations which the process will 

come up against. 

The principle o§ hierarchical control therefore consists of decomposing 

an overall problem into a certain number of sub-problems Pi (~') with parameters 

related to ~ ("intervention vector" or "coordination parameter") in such a way as 

to satisfy : 

Sol P1 (~') "'" Pi (~) .... PN (~) ~ ,x Sol P (overallproblem) 

The entire coordination problem consists, on the higher level, of for- 

cing ~ to approach a value ~* which will lead to the solution of the overall pro- 

blern. For the optimisation problem with which we are concerned, only the hori- 

zontal division can be used in, for example, a two level control structure. Each 



136 

sub-problem is then defined by a group of two functions, essentially : the mathema- 

tical model of the process and the criterion which is associated with it. There are 

three possible types of coordination : 

- manipulation of the criterion function (~- = ~, Lagrangian parameters 

associated with the interconnexion constraint ; modification of the criterion func- 

tion by the coupling terms) ; 

= between sub-systems ; - action on the model ( ~- X, coupling variables 

- simultaneous action on the two functions (~ =[~X ]) 

It can be shown that the choice of the coordination variables leads to a 

separable form, the additive H = ~-'i Hi for the Hamiltonian associated with the op- 

timisation problem (H i = Hamiltonian i, bringing in only index i variables, except 

for the coordination variable). The examination of H i enables the sub-problems to 

be formulated in optimisation terms. 

II-2 - Formulation of the overall problem 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Consider an overall system composed of N linear invariant, interconnec- 

ted sub-systems defined by the following equations : 

I "~Y. (x, t) 
i - M. [Y (x, t)] +X i (x, t) + B i (x) U i (x, t) "~t i i 

initial conditions : Yi (x, 0) = Yi0 (x) i = 1 ..... N (I) 

boundary conditions : L. [Y. (x', t)] = 0 
1 1 

where Y. (x, t) is the state variable of the ith sub-system 
1 

x e.O. CF m ; x'~.0-; t• [0, TJ 
Mi, L.l are matrix differential Operators bringing in only derivatives related to the 

space variables x 

B. (x) are matrices which are functions of x only. 
1 

The interconnexion between these N sub-systems is represented by a 

linear coupling : 

N 
X. = 7 -  C . .  Y. i= 1 ... N (2) 
I j=l 1] .~ 

where C.. are interconnexion matrices. 
lj 

Several types of control are possiHe ; this study will be limited to the 

following types : 

- distributed controls on the domain .~ : U i (x, t), x ~.f~ 
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- pointwise control defined on a finite number of points of the space 

domain : 
P 

U i (xk,  t ) ,  k = 1, 2 . . . .  p o r  U i (x,  t )  = 
k = l  

u k (t).  ~ (x -  x k) 

The objective function of the overall system is assumed to be given in 

a separable additive quadratic form : 

N N T 
(3) 

The overall problem is to minimise J subject to the constraints (I) and 

(2). 

II-3 - Decomposition of the problem 
. . . . . . . . . . . . . . .  ? . . . . . . . . . . .  

Define the Hamiltonian H of the optimisation problem as 

N N 

- :  Y -   i[Yi (x, t), ix, t)j + K i ix, 
i=l i=l N N 

+Bi(x) Ui(x, t)} + >-- ~i (x, t) [Xi (x, t)-~'- C..Y.(x, t)] (4) 
i=l j=l I] j 

The conditions of optimality are obtained using the Maximum Principle 

applied to systems governed by partial differential equations. 

Since the coupling between the sub-systems is a state variable one, the 

decomposition method chosen -in fact, the only one possible- is the infeasible me- 

thod of coordination using the criterion function [4 ] . In this method, the coupling 

equations are treated on the coordination level which fixes the ~i (x, t) for the 

first level sub-problems. In order to avoid the singular problems which could 

arise (X i appearing linearly in Hi) Yi (x, t) is replaced in F i by its expression in 

terms of the X. (x, t). The sub-problems which must be solved can be written as 
1 

follows : 
T 

minimisethecriteri°n J"=l /ffz{Fi[Xi (x' 

.. ~--N ~jT (x, t) CjiYi (x, t) 1 dx dt 
j = l  

subject to the constraints ~ Y. 
l 

and the initial and boundary conditions ~0 t 

t), Ui(x,t)]+ T ~i (x, t) X i (x, t) 

(5) 

-Mi[Yi]+Xi+B. U. 
1 1 

On the coordination level there is the possibility of using different algo- 

rithms to determine the ~ i (x, t). The gradient algorithm has been chosen here 
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because of its ease of application 

n 
n (x, t ) :Pi  (x, t ) - %  [ 

" ~ i ( X ,  t) ] 

where  n is the i t e r a t i o n  index  on the coo rd ina t i on  l eve l  

and K is the iteration constant. 
c 

I I - 4  - Reso lu t ion  of the  s u b - p r o b l e m s  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(6) 

Discretisation of the sub-system equations with respect to the space va- 

riables (or with respect to the space and time variables) enables one to arrive at 

dynamic (or static) interconnected sub-systems, and to obtain optimum control of 

these ; or rather, it enables one to define interconnected dynamic (or static) sub- 

problems which are solved by classical hierarchical control techniques [3, 5, 6]. 

Here, the sub-problem will be solved by the application of the Maximum 

Principle [ 7 ]. The conditions of optimality are written as E 8 ] : 

~Y. ~H 1 
= Mi|Y i]._ +X. + B: U. 

~ 0 ~  = - "O Y---~ - (- z ~-~-xt ( [~xi ~ "~ 

"~H -- = 0 "~U. i 

~bH 
- 0  

~X. 
i 

(7) 

with the initial and boundary conditions on Y as defined earlier those relative to 
i 

-- ~i (x, t) : 

* .  (x, T ) :  0 ; z  ~ (  ~ H . = 0 ( 8 )  

T h e s e  d i s t r i b u t e d  p a r a m e t e r  a r e  so lved  by the e igenfunc t ions  me thod  by 

s eek ing  a so lu t ion  in the  f o r m  : 

(x, t) = ~ Uin (t) Ti n (x) U i 
n (9) 

Y. (x, t) = ~---~'-Yin (t) ~ i n  (x) 1 
n 

It wi l l  be supposed  that  such E igenfune t ions  ex i s t .  Thus  the p r o b l e m  

amoun t s  to the  r e s o l u t i o n  of o r d i n a r y  d i f f e r e n t i a l  s y s t e m s  in Uin(t) and Yin (t). 

S e v e r a l  t ypes  of coo rd ina t i on  could then be c o n s i d e r e d  : 
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- the decomposition of the ~ i (x, t) in terms of the ? in (x) : 

~ i  (x. t) =K ~in (t)~in (x) (i0) 
n 

In this case, the coordination is carried out by the ~ in (t) which consi- 

derably reduces the transfer of information between levels 

- coordination by the functions ~ i (Xk,t~t)' defined as a certain number 

of points in the space domain. In this case, the ~i can be considered as "pseudo- 

controls" for sub-system i. This type of coordination presents the problem of fin- 

ding optimal actuating points x k and this problem is tackled in the second part of 

the paper. 

II- 5 - Example 

In this section, the results obtained on an example made up of two sub- 

systems defined on the domain ~'~ = ] O, I[" with : 

'~2 iO i = j  
=[ 2 + i] ; B. = I • = if 

Ivli ki "~ x - 1 i ~ j i ' Cij 

T 

Li = ~x ; Ji = [ +k 3 U 2 ] dxdt 
i = 1 i 

The conditions of optimality are written as : 

+Y.-X. +U. 
1 1 1 

2 
~Y. -~Y. 

i -k i 
~t i --~x 2 

~t - -k.-- - i .Dx 2 

with the boundary conditions : 

h [ -L  ] "  0 

v (x, O) (x) ; i = Yio 

2 

~ ' i -  j~l': c j i  ~j 

I 2 k 3 U i +?i = 0 

-?i +~i+2Xi :0 

L . E * . ] :  o 
1 1 

? i  (x, T) = 0 

i = l ,  2 

The following criterion is to be minimised : 

0JT  J' : [ Y  2 +ks  U2 + ~ X i - K ~j C j i Y i ] d x d t  
i i i i j=l 

The resolution of the sub-problems by decomposition into Eingenfunctions 

and the use of the coordinator [10J gave the results shown in figure I. 
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_1 

- 2  

U 1 , U2,Y1,Y 2, EvotuHon des var iab les  d '~a~ e[ de 
c o m m a n d e  en Fonc[ion du temps 

Ul U2 

Yz ~ ~ - \ ' .  ~ - - -  

0,2 0/+ 0~6 0,8 

Figure 1 

X 

III - STUDY OF THE SUB-SYSTEM 

In order to apply control to a distributed parameter system it is neces- 

sary to study a certain number of problems such as the observability of the sys- 

tem in relation to the choice of the type and number of sensors, and its control- 

lability, depending on the control action chosen. 

Here, the ease in which the sub-systems (1)are controlled at a certain 

number of points situated ih the interior of the space domain is considered : 

P 
~Y 

(x , t )  = M [ Y  (x, t ) 3 + X  (x, t) + ~ U (t) o ~ (x - x. )  
" ~ t  j = l  J " J (11)  

L EY (x',  t ) ]  =O ; Y (x, o) = Yo (x) 

Using the hypothesis of the separability of the criterion formulated in 

the previous paragraph, the criterion : 

T j- 

J(u)= j U(t))d dt (12) 
0 

-'.1 J. 

with U = E U I ..... U ] T 
P 
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is associated with equations (Ii). 

The problem is one of minimising J (u) subject to the constraint (II), 

with respect to U and to x. (j = 1 . . . p). In what follows, the problem of obtaining 
J 

the control law is decoupled from that of determining the optimal positions of the 

actuating points. The former can be tackled in different ways [ 9 I , for example : 

(i) by minimising the criterion J (Uopt) with respect to x. (j=l... p) ; 
] 

in this case, in general, the solution depends on the state of the system (cf. Ill-l). 

(it) by extremalising a characteristic function which depends on the sys- 

tem only and sometimes on the type of criterion considered (cf. III-2). 

The state mode is obtained from the transformation defined in the pre- 

ceding paragraph ; it is in the form : 

o 

y (t) = A y (t) + B u (t)+ C ~ (t) 

where ~* 

A = 

0 

0 
% 

%.\  

B = 

m m 

I I 
J I 

i ' I 

(13) 

m 

are the Eigenfunctions of the adjoint operator M :~. 

Certain intrinsic properties of the system can be studied from this mo- 

del. Indeed, whatever the approach adopted, it is necessary to study the control- 

lability of the system so as to define the collection of admissible positions for 

the actuating points ; more precisely, the hypothesis of the controllability of the 

system is linked to the property [I0 ] : 

Lh°-" (Xl) ' " ±  ~ ) i  (Xp) ] = 1 i = 1, 2 . . .  (14) r o w  

In practice, the application of such a property gives results which are 

unusable. Because of this, a modal reduction of the system is considered and in 

particular the influence of this reduction on the optimal position of the actuating 

points is studied. 

III-I - Minimisation of the criterion J (Uop t) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Two types of criteria are considered : 
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III- l-a - Quadratic criterion 

with 

J (U) = (x, t) Q Y  (x, t) dx + U T E/ U (t) .~ dt (15) 7 
0 

The  use  of the  t r a n s f o r m a t i o n  (9) l e a d s  to the e q u i v a l e n t  c r i t e r i o n  : 

j(u) = /~yT (t)Q'y(t)+ u T (t)R u (t)] dt (16) 

0 

Q'  = J_o~ T (x) Q'--~ (x) dx 

The optimal control, minimising the criterion J (U) with respect to U 

i s  g iven  by the  f o r m u l a  [Ii] : 

= _ R  -1 B T Uop t (Xl, x 2 . . . . .  Xp) K (x 1, x 2 . . . . .  Xp) y (t) 

w h e r e  K is  the  m a t r i x  so lu t i on  of t he  a l g e b r a i c  R i c c a t i  equa t ion .  

(17) 

The optimal 

m i n  J o p t  (Xl . . . . .  x ) = 
P (x 1 . . . . .  Xp) 

distribution, if it exists, is the solution of 

m i n  [ 21---- yT(0)  K (Xl . . . . .  Xp)y(0)] (18) 
x I .... ,Xp 

I I I -  1-b  - E n e r g y  c r i t e r i o n  

f T  u T  a (U) = (t) U (t) dt 
0 

(19) 

The minimisation of the criterion with respect to U leads to the formula- 

tion of the control law [12"] - 

U o p t ( x l , . : . ,  Xp, t) = B:t:(Xl . . . . .  Xp) l ~ T - t )  

T (201 
[fo ~ (T-T) B B ~ ( T - ~ ) d ~ ] - I  yd 

where B ~ represents the adjoint matrix of B, ~ i  the adjoint matrix of the state 

transition matrix ~ and yd the desired state. 

A s s u m e  tha i  : 

Uop t (x 1 . . . . .  Xp, t) ~ M (x 1 . . . . .  Xp, t) y d (21) 

The optimal distribution is the solution of : 

rain II Uopt (xl ..... Xp. 
(x I . . . . .  Xp) 

t) II (22) 
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111-2 - Extremalisation of a characteristic function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

To each type of criterion defined above it is possible to associate a cha- 

racteristic function, and this makes it possible to obtain an optimal distribution of 

the actuating points independently of the state of the system. 

I I I - 2 - a  - Quadratic criterion 

Since the matrix K is positive definite and symmetric : 

J (Uopt) 1 II K II (23) 04 T ~4 ----~- 
y (0)y (0) 

where II K II = (~ ~. kij2)l/2 

i j 

The problem of the minimisation of the criterion J (Uopt) with respect 

to (x 1 ..... x ) is therefore transformed into that of minimising its upper limit : 
P 

m i n  II K . ,  x [I (2 4) 
x 1 . . . . .  Xp (Xl '  * " p 

I I I - 2 - b -  Ene_r_g_y c_ri_~_e_rion_ 

In the same way the upper limit on the norm of the control U on (O, T) 

is minimised : 

rain IIM (x 1 . . . . .  x ,  t) 11 
Xl, . . . . .  Xp 

In-2-o - C_~_iTe_~_~on_ o7_~_ontzol_~bi_~_~t7_ [10] 

I f  W r e p r e s e n t s  t h e  u p p e r  l i m i t  o f  IIU (t)  [[ , t h e  c o l l e c t i o n  of  s t a t e s  o b -  

t a i n a b l e  from this control is defined by : 

T p - 1  
y {t) (x 1 . . . . .  Xp) y (t) ( ~ W  (26)  

w h e r e  P i s  a s q u a r e  m a t r i x  t h e  g e n e r a l  t e r m  of  w h i c h  i s  g i v e n  b y  : 

P ~, T ()~i+)~ )(T-M) 
Pij = 7-- (~i (Xk) ~* (Xk) f e " J d ~7 (27) 

k = l  J 0 

This collection forms a hyper-ellipsoid the square of whose volume is 

proportional to the determinant of the matrix P. The optimal distribution of the ac- 

tuating points can be linked to the maximisation with respect to (x I ..... Xp) of 
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the volume of the attainable domain, therefore to that of the determinant P : 

m a x  [ d e t  P (x 1 . . . . .  Xp) ] 
x I ..... Xp 

(28) 

III- 3 - Example 

From a practical point of view, these methods can be applied to distri- 

bute~d systems whose model is reduced to the order ~) . In particular, the influen- 

ce of this order on the dislribution of the actuating points can be studied. Consider 

the example (with only one actuating point ) : 

"Dr .Ox  2 

Y (0, t) = Y (1, t) = 0 ; x, x l E  ] 0 ,  1 [  ; t LoT] 

The optimal distribution of the actuating points in relation to the diffe- 

rent criteria considered above is shown in figures 2 and 3. 

0 0,2 0,4 0,6 0,8 1 

Figure 2 - Crit~res lll-l-b 
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10 --~ 

~o 

6~ ..... 

4~ 

! 
........ r I 

0 0,2 0,4 

Figure 3 - Crit~res 

oo max 4~t P 

Q~ 

O,fi 0,8 

III-2-b et III-2-c 

× 

IV - CONCLUSION 

In this paper, we have shown how the problem of the optimal control 

of interconnected distributed parameter systems using hierarchical control tech- 

niques can be tackled. The techniques given here enable one to obtain a collection 

of control sub-problems which retain their "distributed parameter" nature. 

In this decomposition, it is necessary to choose a set of coordination 

variables which lead to an additive separable form for the Hamiltonian. Each of 

the sub-problems can be solved using the Maximum Principle. On the level of 

each sub-system, different types of criteria have been defined and these enable 

an optimal distribution of a collection of actuating points to be determined. In 

addition, it was considered necessary to include the study of a sub-system (control, 

controllability, application of actuators, and the dual problem of observation, ob- 

servability and the implementation of sensors) taking into account the exchange of 

information between the different levels of the hierarchical structure . 
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