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An approach to determine necessary optimum conditions (n.o.c.)
for generalized solutions {(g.s.) of mathematical programming problem
based on penalty function method is considered. The results are used
to derive generalized maximum principle {(g.m.p.) for optimal control
problen with ordinary differential equations and bounded state vari-
ables. For linear state varisables problems g.m.p.has also turned out
$0 be sufficient optimal condition and in this case generalized dua-~
1ity theorem (g.d.th.) takes place.

1. Mathematical Programming Problem

Let us consider the following problem

[(Z// — sup {1.1)
Uue CBa; (1.2)
F(U) €K <Bg (1.3)

(B,, B, are Banach spaces, K is a convex closed cone) and assume
that J(2)<C< ©© when A€V .
Let 2¢ be a set of sequences u ™
for which: {l({”} ¢ % il ) {kjff“"OJ K — OO :>
{‘Z?m} ¢ W Designate with % the subset of all {Z((k{}( W
satisfying the condition: # ( Flu /k})} -0, b — co , where
Rix)=cinflix-ygi? (Y€EK) (VX may ve called the g.s. set of
the system of conditions (1.2), (1.3)). Let IfU™})=Cm (e '*),
T = ' (K} " (K k—>co
I‘SUPI({Z{ }/ ({Z{ }F%) A sequence {Z(fk’:(E@'(
will be called g.s. of the problem (1.1)-(1.3) if
bem I(u™) =1, k—oo.
Let us assume further n.o.c. of g.s. to be known for every'gr(u)
from a sufficiently wide class of functionals in +the following
asymptotical form
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Py (U™) =0, koo, (1.4)
where Py /Z(j is a functional. In papers /1-5/ an approach based on
penalty function method and diagonal transference procedure has been
developed. This approach makes it possible for a wide class of opti-
mization problemsto pass from condition (1.4) to n.o.c. of problems
with additional restrictions. Generalizing the method of these papers
it is possz.ble to obtain the following resulbts.

Let {Z( }be g.5. of the problem (1.1)-(1. 5) and
K
Liug (U)=1/2%)-xR(F(U)) -5 //?/’g)(" I£ﬁ>oj (1.5)
Let us consider the set of problems (1. 5), (1.2). Let Ikxﬁ é[ 7]
Then for a g.s. {Z(ka(ﬁ} of the problem —kdﬂ (U] —+sup, (1.2)

the n.o.c. is realized:
/m} _ /m)
fp (U, %) = (Ug ) >0, m — 2o, (1.6

Let us presume further that the following inequality takes place
Fep (U<)=P (U=)| <AR (VK <) (P=F,). D

Theorem_’l_. If f?///]ls a g.8s 0f (1.1)=~(1:3) then there exist
sequences [ u" } {a[k,} (o€ —> 00, k—>c0) for which

PI# %), 1T -2 ™, az,(/?/f/z///—»a e

Proof (sketch). Let f,@; SUup Ly (%) [(U€ U/ and
&k~ +0. For B>o there ave [y}, Iy} for wh:Lch a{k-» g,
ol RUF(U D)) >0, k00, [T p ( Us™) = Twup 1 # 1 Bog (%01
Z(ﬂ"*’ Z{f "'ﬁ’ . As T, P >C, (C,:.s some constant) :\.t
follows: ol K (F/Z{ m)} *B) 2, k1 g(/kl// > 0. Now with the
help of diagomal transference procedure with respect to B it is
possible to show the validity of (1.8).

2. Optimal Control Problem

Let us consider now the following optimal control problem

7‘/¢:{/1} = ¢, /"/795“/3 /-/f_l/é/j/
oit Lo t) (¢eT=(to,t,3), ¥(t)=X] (2.1)

u() e U (2.2)
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Yy(x)=0, g(xH,¢t) <0. (2.3)
u,£9, g are vectors with dimensions /, /7,7, ¢4, S. Functions
f ’3 J & 9 are supposed to be continuous on £ 7 U

is assumedto be restricted. With respect to t  these :ﬁ'u.nc'b:.ons are
assumed to be measurable and uniformly restricted.

Let a set of «(-) with values in bounded set V/ and demse with
respect to measure in the set of all measurable «(7) [U/(t) ¢ V)
be the set of admissible controls. SBuppose also that Lipschitz con-
dition for the function J( with respect to X is fulfilled wmiformly
with respect to «¢l, T €T.

The problem (2.1)-(2.3) may be considered as a special case of
(1.1)=(1.3) if, for example, we put U=Ul), B =L (F7] T),

RVxLy (RET), K= {ger? 2014, (RST): 420, 2(t)20, £€T .

In this case A(y, 2()) = | YII°+ fnz ()%l t , Where
2(), Z2(t)})>0
/t) [ o, Z-/z‘:) <0, Let conditions (2.3) correspond to the
restmctlon (1.3) andW be the set of such sequences [L{ /k//'}}
() 1is measurable, U ”"/é) ceV,ter ) that the cor-
respondlng x™ ¢ ) in C(R” T) converges to some X[}

XMy xt).  § M3 e = (2.3) for x().
Let {(,( ’k’()j be g.s. of the problem (2.1)~-(2.3). Designate
T (401) =G5 (£7) =0 (NG Lx )2+ o)
S Jty, E)Pdt )~ fufe)-u ™t alt.
T

The n.o.c. in the problem (2.4), (2.,1-1I), (2.2) has the form (1.6)
if

Fap (U= S (Heg (5, 9,8) ~Hg (1.4, 8)) ot (25)

wnere Mg (4, Uy t) =Y L (U, )~ B u~uYt)y?
Hep (44, 8) =SUp Hug (£, ¢, e, E) (delV  and 5"// sa=

tisfies the equations

d 19{

2 <
gL+ 124320, o lt) < 2 (2.6)

2y F

#

designates transposition. This n.o.c. will be called g.m.p.
For the problem (2.4), (2.1-I1) g.m.p. has been proved in /2/.
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The fulfilment of (1.7) follows from the boundedness of V .
Now the following theorem is a simple consequence of theorem 1.

K
Theorem 2(g.m.p. of the problem (2.1)-(2.3)). Let {a‘ ,(1}
be g.s. of (2.1)-(2.3). Then there exist sequences { 7 (<) /)}

{A{-K}}J{/alk}/l)} (M/k/()éu /,/K/éﬁt{,
/«{M/‘)é‘ C(}F"’. 7-}' for which

f//// (k) "'/k’/tj /// N’k/ "’/’”"/’Ué))c/f O, @.7)

~ (Kl

S0 - u Ceiddt —o. 2.0

[(AY) g8 “1t) +7:f(/{/”’j6¢/ YL )t —0 (2.9

if A —= OC and W /k}/ ), // ! [ ‘) satisfy the equations

6%95/: “;1//9)‘/, L W)= /9% + 427 (2.10)

/a &
(k/ KT

(with transpos:Ltions/&(/k}/v/J /k} }1/ ’), u [k//) X //)

77} o |
M/f)ZOJ N (t)=0 ¢f %//M/Q t) <0, (2

In .7) Hix, g u,tj=¢"frt « ), (2.12)
: «)
A /f} ﬂ ‘ / - being normed,the following theorem immediately fol-

lows from theorem 2.

Theorem 3. Let {é{ (k}/')} be g.s. of the problem (2.1)-(2.3)
and x ()= X/j . Then there exist /fgJ //) At) (Ao =
A 6/? v Mg (¢ = } is a nonnegabtive measure concentrated on
the set J¥ . L€ T Fe (¥(¢,t)=0% ) for which

SO ey = Hew g Pat ) elt o, @i

Ay + WA + on//é/‘/éj>o (2.14)

T ¢
(.7}
where (/ /k//'j satisfies (2.10-I) (with transposition 788 ‘), x())
and

p 2
(f ) = //o/‘:7 Jo + A f/a-}g’ . (2.15)
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The theorem similar to theorem 3 has been proved in /6/
(analogous theorem with the replacement of asymptotical equality
(2.13) by the precise one is valid for classical solutions of the
problem (2.1)~(2.3) /7/ and for stationary g.s., the last assertion
being a simple corollary of theorem 3).

Let us emphasize that n.o.c. of theorem 3 are wesaker than
those of theorem 2 (see the example given below).

%, Linear state variable problem

FX, Ut)=alt) i+ t), 9tet)=cit) ard(?),
Y (x)=p; k+9,;, £=0,9 . 3.1

In this case g.m.p. gives also sufficient optimal condition.

Theorem 4. Suppose {Ulkl{ )3, {/f””f {/(‘W( ) § satisfying (2.7)-
(2.12) exist for a given {a /)f Then c(”",} is the g.s. of the
problem (2.1)=(2.3),

Proof (sketch). Let §i/ /)} be a g.s. of (2.1-II), (2.2), (2.3).
Without decresasing the generality of the results it is possible to
assume that

Com (101)'9(7 “U1+ Nz ) g™ e)dt) 0, (3.2)
As 4, g and 9’6 are linear with respect to X it is valid (see /2,%)
that 7 (K1 gy (14 /é/[ //// 7 A 4 04 (k) / m[k/)/ =

//o' /k

(3.3)
S P EG T ) - i Py ¢))dt
wnere T (U)) =@y (X7)*A q{/’/—/_f//g/,{; ) oAt (3.4

From (2.9), (3.2)=(3.4)  follows the assertion of the theorem.

fxemple. //2}—4*5«,0 U (tergel), #o)=-0,5;

/C(f—-/ é[['/i’ 't)-//——f/l/(éa (3.5)
Here ‘/ =(7-C) e, HA, ¢, i, E) = o and (2.13),(2.14)

are valid for every ((-)satisfying the condition A(¥) =0 (with //o
A=o0, #(t)=d(¢-7)). But g.m.p. is valid only for the opti-

mal () .
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4. Generalized Duallty Theorem

Different results concerning g.d.th. for mathematical program-
ming problem have been obtained by Golstein /8/. However it is inte~
resting to show that for the problem (2.1)=(2.3), (3.1) g.d.th. is
& very simple corollary of gem«p.

Theorem 4. Let £, g+ 9 satisfy (5.1) and (see (3.4))

J(A, S]] =SLp Ly u (utl). (4.1)
wmen I =7 (fu1f)=cnf Tid, )T @2

where /if'A’%/z//»/FC//?ST/ M (L) =200c=73),

Broof. 1 u4 ({a/’"/)}p T(fu™)}). so J =T,
Let {/l”"}) {,«‘k’/)} f& )i be those given in
theorem 2. From (3.3) (for am arbitrary & ““rje U ), (2.7) and
(2.9) f/Af(k//””d/// 7'/,//&;/” kr (& ")) — o,

Lyt o (A /l/“f/ &) —+o, K = 0. So
J//l/kj/u”"///-*i’ kK-> and J =7

Theorem 4 makes it possible to get solution algorithms for
the problem (2.1)=(2.3), (3+1)s

The suthor is grateful to A.V.Finkelstein for some useful re-
marks concerning parts 2 and 3 of this work.
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