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The problem of complex chemical system (CCS) optimization is 

considered. 

~lathematically the CCS optimization problem in many cases may 

be defined as follows: 
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where A~ , ~are input and output state variables and ~:~ are de- 

cision variables of the k-th block. Equations (I), (2) represent 

block models a~d a table of connections between input and output 

variables. It is assumed that in the k-th block the first s~ (g~) 

input (output) variables are CCS input (output) variaoAes:~ c i #. 

The block decision variables ~:':~and CCSi~put variables~(~are 

CCS decision variables. These variables must be determined to give 

F the maximum value. 

In this paper we shall consider the direct optimization approach 

using first derivatives of the criterion F. The solution algorithm in 
this case consists of three parts: the computation of criterion, the 
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computation of criterion derivatives and a searching strategy. 

The last part has been examined in many papers (see, for example, 

/I/), therefore the attention will be concentrated on the first two 

ones. 

Optimization Criterion Computation 

There exist two different criterion computation approaches. 

At first the fulfilment of conditions (5) is realized through 

the searching strategy algorithm and all CCS output variables are 

considered as free at the criterion computation stage. The search of 

the optimum solution is carried out in the CCS decision variable 

space: 

zzJ  - f  . (6) 
, 

The criterion computation is the CCS steady-state regime calculation, 

the values of variables (6) being fixed /2/. _ 

r-~/ZZf~J ~ f~i 
Let us introduce now the function r r r . i J which is 

obtained from F with the help of substitution --X# ~7, Yz -f~J as functions 

of CCS decision variables, and consider the second approach. In this 

case the fulfilment of conditions (5)is realized at the criterion 

computation stage, so there exist ~ =~ #k additional equations. On 

such a value the number of variables must be increased to fulfil CCS 

steady-state regime equations. Let us assume that in each block the 

first ~ input ~ariables are used to satisfy conditions (6) and 

designate ~= ~ s~ . Then k=! 
(7) 

The search of the optimal solution is carried out in the space of 

variables 

The criterion computation is the calculation of the CCS steady-state 

regime with additional conditions (5), the values of variables (8) 

being fixed. 

Criterion Derivative s Computation 

The usual method of criterion derivatives computation (with 
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the help of differences) has two defects: it is inaccurate and re- 

quires length~ calculations, the ~umber of decision variables is large. 

First let us consider the case when fulfilment of conditions (5) is 

realized through the searching strategy algorithm. 

The criterion derivatives with respect to decision variables 

may be expressed in the following form /2/: 

where Ar•> i '  

• (9) 
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ff~j satisfy the adjoint process equations: 
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= - ~ yff'~--'> , (12) 

(boundary conditions). (13) 

The number of equations (11)-(13) is equal to that of the unknown 
/t ok) ,, t ~) 

variables i , ] ~  " 

Let us consider now the case whem the fulfilment of conditions 

(5) is realized at the criterion computation stage. It may be shown 

that the expression of the criterion derivatives has now the form 

of equations (9) (10) with # =~k ÷~ ~k (in (10)) and the 

adSoint process is represented with the equations (11), (12), 

i + 1. ' - , g x  . (15)  
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It may be easily shown that the number of boundary conditions (14),(15) 

is equal to that of (13) of the first case. So there existsagain 

the equality between the number of unknown variables and that of 

equations. But the solution of the adjoint process equations in this 

case is a more difficult problem as the boundary conditions are con- 

nected both with the input and output adjoint process variables. 

In order to use the adjo~ut process method it is necessary to 

have formulae for matrices of partial derivatives 

9 :. :'~a '../ z 0 ~ : "~'J 

The programmer must obtain these formulae and the corresponding 

programs beforehand. In the case of complex block models this may 

require a lot of preparatory work. Of course the matrix (16) may be 

computed with the help of differences. The analysis has shown that 

this modification of the adjoint process method has a definite advanta- 

ge compared to the method of decision variables differences. But 

some defects of the last method still remain. 

In this connection the following algorithm has been proposed 

/3/. Let us assume that a sufficiently large set of simple compu- 

tation operations is available: addition, subtraction, multipli- 

cation, sin(x), exp(x) etc (so-called conditionally elementary 

operations- CEO). Then an arbitrary nonlinear system of equations 

may be considered as a complex computational system with CEO as 

blocks of such a system: 

• " :.~e.., = / :.::,, ( ,r :,~e.: :,~e.,) 
, ~ (17) 

where k is the number of CCS block and ~ is that of subblock cor- 

responding to some CEO. The computation of the matrix (16) is 

equivalent to that of partial derivatives output variables with 

respect to input variables for the system (17), (18). So the adjolnt 

process method may be used: 

= ~ ~ i  ~2cj . :~E) ~ (~9) : ~  l=l 

p :,:t2 :/:O /= ",", "~:~e , := :'" z~ 
,: = A p  . 
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In order to compute the matrix (16) it is necessary n times to com- 

pute the adjoint process (19), elements of the i-th column of the 

unit matrix being taken as input adjoint variables at the i-th compu- 

tation. So in the proposed algorithm the system of equations (I) is 

replaced by the system of blocks described with simple equations. 

The CE0 and partial derivatives Q/z/~X/~C~rogramsP' -- sad the organi- 

zation program (which make it possible on the basis of the structure 

of the equations (17), (18) to create the program both for the com- 

putation of complex CEO system (17), (18) and for that of correspon- 

ding adjoint process system (19) for each block of the original CCS) 

may be made beforehand. In this case the programmer must only des- 

cribe the structure of the equations (17), (18). Some defect of 

the method consists in necessity to compute n times the adjoint pro- 

cess system (19) for calculation of partial derivatives (16). It is 

possible however to avoid this defect. Let the computation system 

(f17), (18) be written for each block of the system (1), (2). Each 

system (1) being replaced by the corresponding system (17), (18), 

one gets a new two-level system, CEO being the elements of the first 

level, sad blocks of the original system-those of the second. The ad- 

joint process for the new system includes N adjoint systems (~9). 

Mathematically the new two-level system and its adjoint process are 

equivalent to the original ones. So in this case it is necessary to 

compute only once (as before) the two-level adjoint process. That 

mesas that the adjoint process corresponding to each block of the CCS 

must be computed only once. 
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