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ABSTRACT 

For a wide class of applications referred to as indirect-sensing experiments, 

a systematic approach yielding solutions in recurslve form is established. Indirect- 

sensing experiments include problems of estimation, filtering, system identification, 

and interpolation and smoothing by splines. Our approach is based on the novel notion 

of a dlscrete-tlme generalized (not necessarily stochastic) innovations process. The 

discrete-time linear least-squares filtering problem is used to relate the new concept 

to the familiar one of a stochastic innovations process. An application to the problem 

of identifying recursively impulse responses and system parameters by using pseudo- 

random binary sequences ms probing inputs is considered. Further, the problem of 

interpolation and smoothing by splines is approached by the method developed. 

I - FORMULATION OF THE PROBLS~ 

In order to cast many different applications in a single mathematical 

framework and stress their essential features, we consider an abstract version of a 

problem that often occurs in experimental work, for istanoe, in estimation, filtering, 

system identification, etc.. Let H be a real Hilbert space of functions defined on a 

set l I of points ~. The inner product of H is denoted by <./> , and the corresponding 

norm by ~'II . Let H P be the P-fold Cartesian product of H and R PxM the space of all 

real-valued PxM matrices. We define an indirect-senslng linear measurement, or simply 

a measurement, on an element ~g H P to be the values m ~ R Px~ taken on by an ordered 

set  of M continuous linear functionals 

s'b 
(i) 

• . E " + ,  " " ,  

where, by the Riesz representation theorem [I], f E ~ will be caned the measurement 

representator. Notice that in (I) M stands for the number of distinct measurements 

executed on each of the P components of t~. 
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It is assumed that a sequence of time-indexed measurements 

with 
linearly independent (S) I¢, , 

is available. 

The set S t made up of the first t representators and corresponding 

measurements defined by 

will be referred to as the experiment up to time t. Further, 

will simply be called the experiment. The problem is then to find a recursive formula 

for 

= [ 

where, for each p=l,2,...,P, 
A p ~, 
~it = the minimum norm element in H interpolating ~t' or, in other words, 

i 

the linear least-squares (l.l.s.] reconstruction of Id -p based on the 

experiment up to time t. 

Example I (1.1.s. estimation] - Let H ~= L 2 (~I, dJ, P), the Hilbert space of all 

second-order random variables (r.v.), viz. r.v'.s with finite second moments. Here 

the inner product of u,v E H is 

.0. 

The experiment consists of acquiring the values of the covariance 

t ' 

and observing the realization of a second-order M-dimensional time-series ~t" For 

the sake of simplicity, the time series ~t and the P-dimensional r.v. ~ are assumed 
i% 

to have zero ,leans. The problem is thus to obtain a recursive formula for ~it, the 

1.1.s. estimate of %7 based on the observations up to time t. 

Example 2 (determination of szstem impulse-responses ) - Consider a causal linear time- 

invariant system with Q inputs and P outputs. Let {hpq((~)} , 60 E [0,~), be its 

impulse-response matrix. Suppose that the given system is b.i.b.o, stable, then, for 

a sufficiently large 64 1 > O, hpq(60) = O, ~60 >641" Thus, if Uq denotes the system 

q-th input and mt P the system p-th output at time t, 

Setting 
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H { L 2 ( n )  e L 2 ( n ) e  . . .  e L  2 ( ~ )  (Q t imes), 

the H i l b e r t  space of a l l  func t ions  v : ~ L ~ R  Q 

such tha t  

we can write (4) aS 

with 

ll~r~ ~ :  <~',~'> -- Z ]  ('-')]~de < ,~ 

~(~) :~ [~(e.~) , . . .  :e(~-~)] 
wi th  t f i x e d  in  I and 66~[0,  6JI]. 

'm,{, ~ [ ' m . ~ , ' " ,  ~t ] ~ 

[s) 

(6) 

@= ~ , . - - ,  f f  (?) 

(s)  

Here the experiment consists of sending into the system the "inputs" or representators 

{ %t} and recording the values of the corresponding outputs Imtl . The problem is 
.& 

thus to obtain a recursive formula for IJIt , the 1.1.s. reconstruction of the system 

impulse-response matrix from input-output date up to time t. 

Let ~t be the linear manifold in H spanned by the measurement representators 

up to t 
~t / 

~p  
It is well-known that t~it coincides with the orthogonal projection of the unknown 

t~PE H onto ~t 
^~ 

A 
Further, ~t iS uniquely specified by the two requirements: 

~ v' "c --: "t (gb] 

where ~ ^ 

i s  the e r ro r  o f  the 1 . l . s .  recons t ruc t ion  of  ~ based an ~ t "  

Requirements (9), together  wi th  the in fo rmat ion  suppl ied by the experiment 

~ t '  enable one to  w r i t e  down the so-ca l led  normal equations [21. Tn general,  t h i s  set  

of  equat ions y i e l d s  the desired ~ t  i n  a nonrecursive form in  tha t ,  i f  ~O-it+1 i s  

needed, an augmented system of  normal equations has to  be solved by performing the 



89 

same number of computations as if ~t were unknown. 

2 - I~OVATIONS AS GRAM-SC~IDT PROCE&SES 

As a preliminary step to the development of a systematic approach to the 

problem that has been posed, viz. recursive linear least-squares solution to the 

indirect-sensing problem, it is convenient to introduce the notion of causally 

equivalent experiments. We say that two experiments {~t, mt~ and {rt, ~t~are causally 

equivalent if 

This is equivalent to requiring, perhaps in more suggestive terms, the existence of a 

causal aqd causally invertible linear transformation ~[ H PxI .'-H PxI that converts 

the representators of the first into the representators of the second experiment in 

a causal way, 

An obvious consequence o f  the  g iven  d e f i n i t i o n s  i s  

A 
Proposition, I - Let ~It (~i) be the l.l.s, reconstruction of IJe H P based on an 

experiment ~i' i = 1,2. Thus, 

5~(~ ) ~ ~1~(~) ~ ~ ~a~e 
Vb e I, Y~{ H # causally equivalent. 

Let us now construct from the representators {~t' t~!} of the given experiment (2) 

an orthonoi~aal sequence {'~t, tEI~ of the elements in H M by the Grem-Schmidt procedure 

[ I, 2 ] . By orthonormality here we mean that 

> . . .  

M" ~ M [<~ ,~,.>. <,~',% > 

We ge t  { - {  

A e~-- f~ 

2 
where G t i s  'the i n v e r s e  o f  the p o s i t i v e  squa re - roo t  o f  the m a t r i x  

• ~ = {Z/~5,  . . .  (11~I 

(11b) 

(~1c) 
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The sequence {e t i  t ~ I } w i l l  be cal led the sequence of the innovat ions of the repre- 

sentators { ~ t i t 6 I {  , and { ~ , t ~ I  t that  of the normalized innovat ions, 

By the way the Gram-Sehmidt procedure works, the i n i t i a l  experiment turns out to be 

causal ly equivalent to the corresponding innovations exReriment 

7"- 

where the ~ s  are defined by (11), and 

: ' / '  {-,,,,..-, 

By transforming the i n i t i a l  experiment ~ in to  the corresponding innovations experiment 

we find immediately the desired kTlt in a recursive form 

t A 

A 

~Io : o (~3b) 

~: £., . ~ z • indirect-sensing experiment, and 

~: [~'t' ~t 't £ II ' with 12 t and~t respectively defined by (11) and (12), be 

the corresponding innovations experiment. Then, ~ and~are causally equivalent, and 

a reeursive formula for the 1.1.s. reconstruction of %TE H p based on ~t is given by 

(1~) and (13). 

Let us apply (13] to get 

~tlt_1 = the l.l.s, reconstruction of the representator at time t 

based on the experiment defined by I 

We get /~ { - I  

Gomparing this with (11a), we arrive at justifing the term "innovations". 

Oorollery I - The sequence of the innovations of the representators of an experiment 

can be written in the form 



91 

A 

% : £ -  £ 1 t - {  

£'1 = f l  

"~: 2 , 3 ;  . "  

Every term e t of the innovations sequence is therefore obtained by substraoting from 

the representator ~t its 1.1.s. one-step prediction, i.e. its 1.1.s. reconstruction 

based on the experiment (14)up to the immediate past. 

Exampl,e,,,3 [Kelman-Bucy formulas ]  - Let  the random vec to r  ~ of  Example I be a t -depen 

dent random vec to r  x t .  Eqs. (13) g ive  a t  once 

Further, if x t is the solution of the stochastic difference state-equation 

and the observat ions ~ t  are given by 

with ~t and ~ zero mean vectors for every t g I uncorrelated with x I and 

(iv) 

the discrete-time Kalman-Bucy formulas are quickly obtained 

A 
z { i  ° o o : 

(t9) 

Example 4 (recursive system identification by PRBB's~ - Hereafter, the problem of 

determining impulse responses and system parameters is considered. To this end the 

setting of Example 2 will be used throughout. Our first comment is that, though 

solution (13) is completely general and hence can immediately be applied to the 

problem posed in Example 2, the proposed algorithm becomes very complicated for large 

t unless some special input is used. This is so because: first, the number of 
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computations required by (11) to get e t increases linearly with t; and second, an 

ever expending Span . ~ ~ ) V ~" ~ t}-makes eventually the reconstructed impulse 

response extremely sensitive to measurement noise[3,5]. On the other hand, the given 

solution becomes particularly convenient if the system output is uniformly sampled 

everyA sec. and a periodic input with period L Z& ~6J I is used. In this way, if the 

measurements start at least L A sec. after the test input has been applied to the 

system, there are only L lineraly independent representators to consider, and ideally, 

the experiment is completed in the next LAsec. 

In the single-input single-output case, attractive input signals are the pseudorandom 

binary sequences (PRBS) [6]of length 

L = 2 i - I, i = 2,3,... 

and amplitude +V and -V. They look attractive essentially because of the following 

property of their autocorrelation function 

f tt~11 z t :  ~+ ~L~ 
< • '  £>  = - Ilfll2/L elsewhere 

where, f o r  a system w i th  an i n p u t  exc i t ed  by a PRBS of  per iod  L A , 11 ~ }I2=V2L A • 

This f ea tu re  g r e a t l y  semp i i f i es  Eqs. (11) - (13).  In f ac t ,  a f t e r  some f u r t h e r  manip2 

i a t i o n s ,  we get  the recu rs i ve  1 .1 .s .  r econs t ruc t i on  of  the system impulse response 

according to the following steps: 

e t ( e )  ~t ( e )  - "~- I  

E~ = ~-~Lt_4 + ~ ~-4 (20) 

: + L(L,0" JI , - '  % ,  % 

where: ~ t  &-- (L - t+3)  ( L - t+2 ) -1 ;  t = 1,2 . . . . .  L; and the i n i t i a l  values are 

A 
~o(~) = 0 ¢ o ( ~ )  = 0 ~r lo(~)  = O 

6 o = O ~'~'o = O 

PRBS's have been used for a long time as probing inputs for identifying systems 

[7,8]. However, all previous algorithms used in connection with the identification 

experiment of this section essentially relied on the PRBS resemblance to white noise 

and were based on crosscorrelatlon-type arguments. Our success in getting in a neat 

way the recursions (20) has been due to the systematic procedure developed in this 

paper and based on the notion of a generalized innovation process. 
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4 - RECURSIVE ~TERPOLATION AND SN~DOTHING 

Let K(t, 11 ) be e real-valued nonnegative definite kernel defined for t and 

on some interval T of the real line. Hereafter, the Hilbert space H of Sect, 2 will 

be identified with the reproducing kernel Hilbert space (RKHS] H(K] with reproducing 

kernel [RK] K(t, ~ ]. As for RKHS theory and applications, the reader is referred to 

r9] and E1o]. Tile only property of H(K] that will be repeatedly used in the sequel is 

the so-celled reproducing property, viz. 

The i n t e r p o l a t i o n  Rroblem we in tendo to  pose can be fo rmula ted as f o l l o w s .  Given a 

sequence of numbers 

f i n d  
A zk 
~n = the minimum-norm element i n  H(K) i n t e r p o l a t i n g  Yt '  Y2' " ' " '  Yn' 
| 

i n  a recurs ive  form. This problem i s  c l e a r l y  a p a r t i c u l a r  vers ion  of  the i n d i r e c t -  

sensing measurement problem formula ted in  Sect.  2. 

Taking i n t o  account the reproduc ing p roper ty  of  H{K], from (11) - (13 ]  we get  a t  once 

¢~(.1 = K ( . , t ~ )  - # ei(t~)lle611-2 ~(-) 

A A 
) :  ÷ %() 

Example 5 (interpolation by splines) - Let y be the output of a one-input one-output 

finite-dimensional linear system 

"S : o 

Thus, the se t  of  a l l  outputs y on T ~ Eto , t f ]  corresponding to a l l  poss ib le  square- 

i n t e g r a b l e  inpu ts  u on T, co inc ides  [121with the RKHS H(K) w i th  RK given by 
K(e,,~) ft̂ ~ 

= H(e,r )  t-1 (-flo") d~ (2~) 
±e 

where ^ denotes minimum, H(t ,  6 ~)  ~ C(~) ~ ( ~ 4  b ( ~  and ~ ( t ,  6") i s  the s t a t e -  

t r a n s i t i o n  matrix of ~ .  ~oreover, the transformation ~ :  u ~ y  from ~ ( T )  onto 

'1"]''The r e s u l t s  t ha t ' " f o l l ow  can be genera l i zed  I l l ] t o  the case of unknown i n i t i a l  
state X(to] 
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H(K) i s  a congruence ( i somet r i c  isomorphism], i . e .  

In particular, if 

(eo)= I: o 

with L a differential operator (D{d/dt] 

L ~ D ~  * ( a " ~  D ~ ' t ÷  " " ÷  o,., :I::) + o.,, o 

(23) yields an explicit formula for the H(K)-norm of y, viz. 

II ~ II 2 = ~ [L~(~)]~ae (2~I 
T 

and 2) A [11 13] the L-spline interpolating X(to) , yl,Y2, 'Yn" If L~D m, ~n is ~ n is ) ... A 

called the polynomial spline of order m interpolating X(to),yl,y2,...,y n. 

Strictly related to the above interpolation problem, we now consider the following 

smoothing problem. Let K(t, T ) be again a nonnegative definite kernel, H(K) the 

associated RKHS and If. If the corresponding norm. Given a sequence of real numbers 

zi, i ~ I, 

find ~ ~n = the element in H(K) minimizing 

~ $(¢~), t~ T, 

in a recursive form. This is essentially a problem of smoothin 9 by generalized splines. 

It has been shown ~2]that (25) is equivalent to the following problem of statistical 

smoothing. Given the discrete-time observations 

where Yi ~ Y(ti) are samples from a stochastic process y(t) with zero mean and 

covariance kernel 

and ~i r.v.'s uncorrelated with y(t] with zero mean and covariance 

2) The L-spline interpolating yl,Y2,...,yn, is the function passing through yl)Y2, 
.... Yn and minimizing (26). 
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find the l.l.s, smoothed estimate ~n(t] of y(t], t~T, based on Zl,Z 2 .... Zn, in a 

recursive form. To solve this problem without resorting to a dynamic representation 

of the process y, we rephrase it in a suitable form. First, notice that by the 

reproducing property of H(K) the unknown y &H(K] must be such that 

From (21a) on the other hand we get 

<(.,t 0 = ~ ~q eic') 
where 

,~ ~'lle.ill "~ e{C~) j {~6 

Therefore, 

4, : ~ i  <~'~i > 
Hence, sett ing ~ ,  : ~" ~ [<I~ 8.~> , < ~ , 6 & > ,  " ' ] '  

• • • . 7  ! -  

C6 ~ [~i,~ .~i.a' "'. ~ : 4 , ' ° ' ° )  

we have 

A 
from which the l<~Iman-Bucy formulas (18) and (19) give the l.l.s, estimate ~'ln of 
~" b a s e d  on Z l , Z 2 , . . . , z  n,  ViZo 

^ A A 

I 

/ F .  / p ( c ~ < ~ + %  ~) ,,r',,: P, II.+ 4 

(2B) 

with P1 equal to a symmetric nonnegetive definite matrix, e.g.P1 = ~21 with a 

sufficiently large . Finally , we obtain the desired recursive formula for )~n' 

A C~, I,,,,-, ] (29) 
= = ~1,~-1 + 

where 
~ [I,%r2%<.), 11%,-2£+),...]. 
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S-CONCLUSIONS 

Ind i rec t  sensing experiments are defined and shown to encopass a large 

class of appl icat ions such as estimation, f i l t e r i n g ,  system iden t i f i ca t i on ,  and 

in te rpo la t ion  and smoothing by spl ines. When a recursive so lut ion to the i nd i rec t -  

sensing experiment problem is  desired, the notion o£ a discrete-t ime generalized 

innovations process, or innovations experiment, appear to be a natural and effective 

one to use. The problem of estimating the state of a finite-dimensional linear system 

from discrete-time noisy measurements appears to be but one of the possible applica- 

tions of the theory developed. The problem of determining the impulse response of a 

Q-input P-output system is approached by the use of the notion of an innovations 

experiment. When PRBS's are used as probing inputs, attractive formulas of recursive 

type are obtained by the proposed method easily and in a direct way. Finally, it is 

shown that problems of interpolation and smoothing by splines can be approached by 

the theory developed. 
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