# RECURSIVE SOLUTICNS TO INDIRECT SENSING MEASUREMENT FRROBLEMS By A generalized INNOVATIONS APPFOACH 

Edoardo Mosca
Facoltà di Ingegneria Universita di Firenze 50139 Firenze, Italy

## ABSTPACT

For a wide class of applications referred to as indirect-sensing experiments, a systematic, approach yielding solutions in recursive form is established. Indirectsensing experiments include problems of estimation, filtering, system identification, and interpolation and smoothing by splines. Dur approach is based on the novel notion of a discrete-time generalized (not necessarily stochastic) innovations process. The discrete-time linear least-squeres filtering problem is used to relate the new concept to the familiar one of a stochastic imovations process. An application to the problem of identifying recursively impulse responses and system parameters by using pseudo random binary sequences as probing inputs is considered. Further, the problem of interpolation and smoothing by splines is approached by the method developed.

## 1 - FORMLLATION OF THE PROBLEM

In order to cast many different applications in a single mathematical framework and stress their essential features, we consider an abstract version of a problem that often occurs in experimental work, for istance, in estimation, filtering, system identification, etc. Let $H$ be a real Hilbert space of functions defined on a set $\Omega$ of points $\omega$. The inner product of $H$ is denoted by $\langle\cdot$,$\rangle , and the corresponding$ norm by $\|\cdot\|$. Let $H^{P}$ be the P-fold Cartesian product of $H$ and $A^{P \times M}$ the space of all real-valued PXM matrices. We define an indirect-sensing linear measurement, or simply a measurement, on an element $W \in H^{P}$ to be the values $m \in A^{P \times M}$ taken on by an ordered set of $M$ continuous linear functionals

$$
\begin{align*}
& m=\{\langle w, \rho\rangle\} \triangleq\left[\begin{array}{cccc}
\left\langle w^{1}, \rho^{1}\right\rangle & \cdots & \left\langle w^{4}, \rho^{M}\right. \\
\left\langle w^{i},\right. \\
\left\langle\rho^{i}\right\rangle & \cdots & \left\langle w^{p}, \rho^{M}\right\rangle
\end{array}\right]  \tag{1}\\
& \rho^{\triangleq}\left[\rho^{4}, \cdots, \rho^{M}\right]^{\prime} \quad w \triangleq\left[w^{4}, \cdots, w^{\mathrm{P}}\right]^{\prime}
\end{align*}
$$

where, by the Riesz representation theorem [1], $\rho \in \mathcal{M}^{M}$ will be called the measurement representator. Notice that in (1) M stands for the number of distinct measurements executed on each of the $P$ components of $\mathcal{W}$.

It is assumed that a sequence of time-indexed measurements

$$
\begin{equation*}
m_{t}=\left\{\left\langle w, \rho_{t}\right\rangle\right\}, \quad t \in I \Delta\{1,2, \cdots\} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\{\rho_{t}^{m}, t \in I, m=1,2, \cdots, M\right\} \text { linearly independent } \tag{3}
\end{equation*}
$$

is available.
The set $\mathcal{E}_{t}$ made up of the first $t$ representators and correspanding measurements defined by

$$
\varepsilon_{t} \triangleq\left\{\rho_{\tau}, m_{\tau}, \tau=1,2, \cdots, t\right\}
$$

will be referred to as the experiment up to time $t$. Further,

$$
\varepsilon \triangleq\left\{\rho_{t}, m_{t}, t \in I\right\}
$$

will simply be called the experiment. The problem is then to find a recursive formula for

$$
\hat{w}_{\mid t} \triangleq\left[\hat{w}_{\mid t}^{1}, \cdots, \hat{w}_{\mid t}^{P}\right]^{\prime}
$$

where, for each $p=1,2, \ldots, P$,
$\hat{W}_{\mid t}^{P} \triangleq$ the minimum norm element in $H$ interpolating $\mathcal{E}_{t}$, or, in other words, the linear least-squares (1.1.s.) reconstruction of $W^{P}$ based on the experiment up to time $t$.

Example 1 (1.1.5. estimation) - Let $H \triangleq L_{2}(\Omega, \boldsymbol{a}, \mathbb{P})$, the Hilbert space of all second-order random variables (r.v.), viz. r.v'.s with finite second moments. Here the inner procluct of $u, v \in H$ is

$$
\langle\mu, v\rangle=E[\mu v] \triangleq \int_{\Omega} \mu(\omega) v(\omega) \mathbb{P}(d \omega)
$$

The experiment consists of acquiring the values of the covariance

$$
m_{t}=\left\{\left\langle w, \rho_{t}\right\rangle\right\}=E\left[w \rho_{t}^{\prime}\right]
$$

and observing the realization of a second-order M-dimensional time-series $\rho_{t}$. For the sake of simplicity, the time series $\rho_{t}$ and the P-dimensional r.v. W are assumed to have zero means. The problem is thus to obtain a recursive formula for $\hat{W}_{\mid t}$, the 1.1.s. estimate of $w$ based on the observations $u p$ to time $t$.

Example 2 (determination of system impulse-responses) - Consider a causal linear timeinvariant system with $Q$ inputs and $P$ outputs. Let $\left\{h_{p q}(\omega)\right\}, \omega \in[0, \infty)$, be its impulse-response matrix. Suppose that the given system is b.i.b.o. stable, then, for a sufficiently large $\omega_{1}>0, h_{p q}(\omega)=0, \forall \omega>\omega_{1}$. Thus, if $u_{q}$ denotes the system $q$-th input and $m_{t}^{P}$ the system $p-t h$ output at time $t$,

$$
\begin{equation*}
m_{t}^{p}=\sum_{q=1}^{Q} \int_{0}^{\omega_{1}} h_{p q}(\omega) u_{q}(t-\omega) d \omega \tag{4}
\end{equation*}
$$

Setting

$$
H \triangleq L_{2}(\Omega) \oplus L_{2}(\Omega) \oplus \ldots \oplus L_{2}(\Omega) \quad(Q \text { times }),
$$

the Hilbert space of all functions $v: \Omega \rightarrow R^{Q}$

$$
v(\omega) \triangleq\left[v_{1}(\omega), \cdots, v_{Q}(\omega)\right]
$$

such that

$$
\begin{equation*}
\|v\|^{2}=\langle v, v\rangle=\sum_{q=1}^{Q} \int_{\Omega}\left[v_{q}(\omega)\right]^{2} d \omega<\infty \tag{5}
\end{equation*}
$$

we can write (4) as
with

$$
\begin{equation*}
m_{t}=\left\{\left\langle w, \rho_{t}\right\rangle\right\} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& m_{t} \triangleq\left[m_{t}^{1}, \cdots, m_{t}^{P}\right]^{\prime} \in R^{P} \\
& w^{p} \triangleq\left[w^{1}, \cdots, w^{P}\right]^{\prime} \in H^{P} \\
& w^{p}(\omega) \triangleq\left[h_{p 1}(\omega), \cdots, h_{p Q}(\omega)\right]^{\prime}, \quad p=1, \cdots, P  \tag{7}\\
& \rho_{t}(\omega) \triangleq\left[\mu_{1}(t-\omega), \cdots, \mu_{Q}(t-\omega)\right] \tag{B}
\end{align*}
$$

with $t$ fixed in $I$ and $\omega \in\left[0, \omega_{1}\right]$.
Here the experiment consists of sending into the system the "inputs" or representators $\left\{\rho_{t}\right\}$ and recording the values of the corresponding outputs $\left\{m_{t}\right\}$. The problem is thus to obtain a recursive formula for $\hat{w}_{\mid t}$, the l.l.s. reconstruction of the system impulse-response matrix from input-output data up to time $t$.

Let $\phi_{t}$ be the linear manifold in $H$ spanned by the measurement representators up to $t$

$$
R_{t} \triangleq \operatorname{span}\left\{\rho_{\tau}, \forall \tau \leqslant t\right\} \triangleq \operatorname{span}\left\{\rho_{\tau}^{m}, m=1, \cdots, M, \forall \tau \leqslant t\right\}
$$

It is well-known that $\hat{w}_{\mid t}^{p}$ coincides with the orthogonal projection of the unknown $\omega^{P} \in H$ onto $Q_{t}$

$$
\hat{w}_{\mid t}^{p}=\Pi\left[w^{p} \mid k_{t}\right]
$$

Further, $\hat{w}_{\mid t}$ is uniquely specified by the two requirements:

$$
\begin{array}{ll}
\hat{w}_{\mid t}^{p} \in q_{t} & p=1, \cdots, p \\
\left\{\left\langle\tilde{w}_{1 t}, \rho_{t}\right\rangle\right\}=0, & \forall \tau \leq t \tag{9b}
\end{array}
$$

where

$$
\begin{equation*}
\tilde{w}_{\mid t} \triangleq w-\hat{w}_{1 t} \tag{10}
\end{equation*}
$$

is the error of the 1.1.5. reconstruction of $w$ based on $\xi_{t}$,
Requirements (9), together with the information supplied by the experiment $\mathcal{E}_{t}$, enable one to write down the somcalled normal equations [2]. In general, this set of equations yields the desired $\hat{W}_{l t}$ in a nonrecursive form in that, if $\hat{w}_{\mid t+1}$ is needed, an augmented system of normal equations has to be solved by performing the
same number of computations as if $\hat{\omega}$ /t were unknown.

## 2 - INNOVATIONS AS GRAM-SCHMIDT PROCESSES

As a preliminary step to the development of a systematic approach to the problem that has been posed, viz. recursive linear least-squares solution to the indirect-sensing problem, it is convenient to introduce the notion of causally equivalent experiments. We say that two experiments $\left\{\rho_{t}, m_{t}\right\}$ and $\left\{r_{t}, \mu_{t}\right\}$ are causally equivalent if

$$
\forall t \in I, \operatorname{Span}\left\{\rho_{\tau}, \forall \tau \leq t\right\}=\operatorname{Span}\left\{r_{\tau}, \forall \tau \leq t\right\}
$$

This is equivalent to requiring, perhaps in more suggestive terms, the existence of a causal and causally invertible linear transformation $\mathcal{L}: H^{P \times I} \rightarrow H^{P \times I}$ that converts the representators of the first into the representators of the second experiment in a causal way,

$$
\mathcal{L}\left[\left\{\rho_{\tau}, \tau \leq t\right\}\right]=\left\{r_{\tau}, \tau \leq t\right\} \quad, \forall t \in I
$$

An obvious consequence of the given definitions is

Proposition 1 - Let $\hat{w}_{\mid t}\left(\boldsymbol{\zeta}_{i}\right)$ be the l.1.s. reconstruction of $w \in H^{P}$ based on an experiment $\mathcal{E}_{i}, i=1,2$. Thus,

$$
\left.\begin{array}{l}
\hat{w}_{\mid t}\left(\varepsilon_{1}\right)=\hat{w}_{\mid t}\left(\varepsilon_{2}\right) \\
\forall t \in I, \forall w \in H^{p}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
\varepsilon_{1} \in \varepsilon_{2} \text { are } \\
\text { causally equivalent. }
\end{array}\right.
$$

Let us now construct from the representatars $\left\{\rho_{t}, t \in I\right\}$ of the given experiment (2) an orthonormal sequence $\left\{\gamma_{t}, t \in I\right\}$ of the elements in $H^{M}$ by the Gram-Schmidt procedure [1,2]. By orthonormality here we mean that

$$
\begin{array}{r}
\left\{\left\langle\nu_{t}, \nu_{\tau}\right\rangle\right\} \triangleq\left[\begin{array}{rrr}
\left\langle\nu_{t}^{1}, \nu_{\tau}^{1}\right\rangle & \cdots & \left\langle\nu_{t}^{1}, \nu_{\tau}^{M}\right\rangle \\
\vdots & & \\
\left\langle\nu_{t}^{M}, \nu_{\tau}^{1}\right\rangle & \cdots & \left\langle\nu_{t}^{M}, \nu_{\tau}^{M}\right\rangle
\end{array}\right] \\
=I_{M} \delta_{t, \tau}, \\
\forall t, \tau \in I .
\end{array}
$$

We get

$$
\begin{align*}
& e_{t} \triangleq \rho_{t}-\sum_{\tau=1}^{t-1}\left\{\left\langle\rho_{t}, \nu_{\tau}\right\rangle\right\} \psi_{\tau}, t=2,3, \cdots,  \tag{11a}\\
& e_{1} \triangleq \rho_{1}  \tag{11b}\\
& \gamma_{t} \triangleq G_{t}^{-1 / 2} e_{t}, \forall t \in I .  \tag{11c}\\
& \text { is the inverse of the positive square-root of the matrix }
\end{align*}
$$

where $G_{t}$

$$
G_{t} \leqq\left\{\left\langle e_{t}, e_{t}\right\rangle\right\} .
$$

The sequence $\left\{e_{t}, t \in I\right\}$ will be called the sequence of the innovations of the representators $\left\{\rho_{t}, t \in I\right\}$, and $\left\{\gamma_{t}, t \in I\right\}$ that of the normalized innovations,
By the way the Gram-Schmidt procedure works, the initial experiment turns out to be causally equivalent to the corresponding innovations experiment

$$
J \triangleq\left\{\nu_{t}, \mu_{t}, t \in I\right\}
$$

where the $i$ 's are defined by (11), and

$$
\begin{align*}
\mu_{t} & \triangleq\left\{\left\langle w, \psi_{t}\right\rangle\right\} \\
& =\left[m_{t}-\sum_{\tau=1}^{t-1} \mu_{\tau}\left\{\left\langle\nu_{\tau}, \rho_{t}\right\rangle\right\}\right] G_{t}^{-1 / 2}, \quad t=2,3, \cdots  \tag{12a}\\
\mu_{1} & \triangleq m_{1} G_{1}^{-1 / 2} \tag{12b}
\end{align*}
$$

By transforming the initial experiment $\mathcal{C}$ into the corresponding innovations experiment $\mathcal{J}$ we find immediately the desired $\hat{w}_{\mathrm{It}}$ in a recursive form

$$
\begin{align*}
& \hat{w}_{1 t}=\sum_{\tau=1}^{t} \mu_{\tau} \nu_{\tau}=\hat{w}_{\mid t-1}+\mu_{t} \nu_{t} \\
&=\hat{w}_{\mid t-1}+\mu_{t} G_{t}^{-1 / 2} e_{t}, t \in I  \tag{13a}\\
& \hat{w}_{10}=0 \tag{13b}
\end{align*}
$$

Theorem $1-$ Let $\varepsilon=\left\{\rho_{t}, m_{t}, t \in I\right\}$ be an indirect-sensing experiment, and $J \triangleq\left\{\gamma_{t}, \mu_{t}, t \in I\right\}$, with $\gamma_{t}$ and $\mu_{t}$ respectively defined by (11) and (12), be the corresponding innovations experiment. Then, $\mathcal{\xi}$ and $\mathcal{J}$ are causally equivalent, and a recursive formula for the 1.1.s. reconstruction of $w \in H^{P}$ based on $\boldsymbol{\varepsilon}_{t}$ is given by (12) and (13).

Let us apply (13) to get

$$
\begin{align*}
\hat{\rho}_{t \mid t-1}= & \text { the } 1.1 . s . \text { reconstruction of the representator at time } t \\
& \text { based on the experiment defined by }\{ \\
& \left\{m_{\tau}=\left\{\left\langle\rho_{t}, \rho_{\tau}\right\rangle\right\}, \tau=1, \cdots, t-1\right\} \tag{14}
\end{align*}
$$

We get

$$
\hat{\rho}_{t \mid t-1}=\sum_{\tau=1}^{t-1}\left\{\left\langle\rho_{t}, \nu_{\tau}\right\rangle\right\} \nu_{\tau}
$$

Comparing this with (11a), we arrive at justifing the term "innovations"

Corollary 1 - The sequence of the innovations of the representators of an experiment can be written in the form

$$
\begin{array}{ll}
e_{t}=\rho_{t}-\hat{\rho}_{t \mid t-1} \\
e_{1}=\rho_{1} \tag{15}
\end{array} \quad t=2,3, \cdots,
$$

Every term $e_{t}$ of the innovations sequence is therefore obtained by subtracting from the representator $\rho_{t}$ its 1.1.s. one-step prediction, i.e. its l.l.s. reconstruction based on the experiment (14) up to the immediate past.

Example 3 (Kalman-Bucy formulas) - Let the random vector $w$ of Example 1 be a t-depen dent random vector $x_{t}$. Eqs. (13) give at once

$$
\begin{align*}
\hat{x}_{t+1 \mid t} & =\hat{x}_{t+1 \mid t-1}+E\left[x_{t+1} \nu_{t}^{\prime}\right] \\
& =\hat{x}_{t+1 \mid t-1}+E\left[x_{t+1} e_{t}^{\prime}\right] G_{t}^{-1} e_{t} \tag{16}
\end{align*}
$$

Further, if $x_{t}$ is the solution of the stochastic difference state-equation

$$
\begin{aligned}
& x_{t+1}=\phi_{t} x_{t}+\xi_{t} \\
& E\left[x_{1}\right]=0 \quad E\left[x_{1} x_{1}^{\prime}\right]=\Pi
\end{aligned}
$$

and the observations $\rho_{t}$ are given by

$$
\rho_{t} \triangleq z_{t}=c_{t} x_{t}+\xi_{t}
$$

with $\xi_{t}$ and $\xi_{t}$ zero mean vectors for every $t \in I$ uncorrelated with $x_{1}$ and

$$
E\left[\xi_{t} \xi_{\tau}^{\prime}\right]=Q_{t} \delta_{t \tau} \quad E\left[\xi_{t} \xi_{\tau}^{\prime}\right]=R_{t} \delta_{t \tau} \quad E\left[\xi_{t} \xi_{\tau}^{\prime}\right]=\Gamma_{t} \delta_{t \tau}
$$

the discrete-time Kalman-Bucy formulas are quickly obtained

$$
\begin{align*}
& \hat{x}_{t+1 \mid t}=\phi_{t} \hat{x}_{t / t-1}+K_{t} e_{t}  \tag{18}\\
& K_{t} \triangleq\left(\phi_{t} P_{t} c_{t}^{\prime}+\Gamma_{t}\right)\left(c_{t} P_{t} c_{t}^{\prime}+R_{t}\right)^{-1} \\
& P_{t+1}=\phi_{t} P_{t} \phi_{t}^{\prime}-K_{t} G_{t} K_{t}^{\prime}+Q_{t}  \tag{19}\\
& \hat{x}_{1 \mid 0}=0 \quad P_{1}=T
\end{align*}
$$

Example 4 (recursive system identification by PFBS's) - Hereafter, the problem of determining impulse responses and system parameters is considered. To this end the setting of Example 2 will be used throughout. Dur first comment is that, though solution (13) is completely general and hence can immediately be applied to the problem posed in Example 2, the proposed algorithm becomes very complicated for large $t$ unless some special input is used. This is so because: first, the number of
computations required by (11) to get $e_{t}$ increases linearly with $t$; and second, an ever expanding Span $\left\{\rho_{\tau}, \forall \tau \leq t\right\}$ makes eventually the reconstructed impulse response extremely sensitive to measurement noise $[3,5]$. On the other hand, the given solution becomes particularly convenient if the system output is uniformly sampled every $\Delta$ sec. and a periodic input with period $L \Delta>\omega_{1}$ is used. In this way, if the measurements start at least $L \Delta$ sec. after the test input has been applied to the system, there are only $L$ lineraly independent representators to consider, and ideally, the experiment is completed in the next $L \Delta$ sec.
In the single-input single-output case, attractive input signals are the pseudorandom binary sequences (PRBS) [6]of length

$$
L=2^{i}-1, \quad i=2,3, \ldots
$$

and amplitude $+V$ and $-V$. They look attractive essentially because of the following property of their autacorrelation function

$$
\left\langle\rho_{t}, \rho_{\tau}\right\rangle=\left\{\begin{array}{cl}
\|\rho\|^{2} & t=\tau+m L \Delta \\
-\|\rho\|^{2} / L & \text { elsewhere }
\end{array}\right.
$$

where, for a system with an input excited by a P9BS of period $L \Delta,\|\rho\|^{2}=V^{2} L \Delta$. This feature greatly semplifies Eqs. (11) - (13). In fact, after some further manipu lations, we get the recursive l.l.s. reconstruction of the system impulse response according to the following steps:

$$
\begin{align*}
& e_{t}(\omega)=\rho_{t}(\omega)-\rho_{t-1}(\omega)+\alpha_{t} e_{t-1}(\omega) \\
& \epsilon_{t}=m_{t}-m_{t-1}+\alpha_{t} \epsilon_{t-1}  \tag{20}\\
& \hat{w}_{\mid t}(\omega)=\hat{w}_{\mid t-1}(\omega)+L(L+1)^{-1}\|\rho\|^{-2} \alpha_{t+1} \epsilon_{t} e_{t}(\omega)
\end{align*}
$$

where: $\alpha_{t} \triangleq(L-t+3)(L-t+2)^{-1} ; t=1,2, \ldots, L$; and the initial values are

$$
\begin{array}{lll}
\rho_{0}(\omega)=0 & e_{0}(\omega)=0 & \hat{w}_{10}(\omega)=0 \\
\epsilon_{0}=0 & m_{0}=0 &
\end{array}
$$

PRES's have been used for a long time as probing inputs for identifying systems [7,8]. However, all previous algorithms used in connection with the identification experiment of this section essentially relied on the PABS resemblance to white noise and were based on crosscorrelation-type arguments. Dur success in getting in a neat way the recursions (20) has been due to the systematic procedure developed in this paper and based on the notion of a generalized innovation process.

## 4 - RECURSIVE INTERPOLATION AND SMOOTHING

Let $k(t, \tau)$ be a real-valued nonnegative definite kernel defined for $t$ and on some interval $T$ of the real line. Hereafter, the Hilbert space $H$ of Sect. 2 will be identified with the reproducing kernel Hilbert space ( FKHS ) $H(K)$ with reproducing kernel (RK) $K(t, \tau)$. As for RKHS theory and applications, the reader is referred to [9] and [10]. The only property of $H(K)$ that will be repeatedly used in the sequel is the somcalled reproducing property, viz.

$$
y(t)=\langle y, K(\cdot, t)\rangle \quad \forall y \in H(K) .
$$

The interpolation problem we intend to pose can be formulated as follows. Given a sequence of numbers

$$
y_{i} \triangleq y\left(t_{i}\right)=\left\langle y, K\left(\cdot, t_{i}\right\rangle\right\rangle, \quad i \in I, t_{i} \in T
$$

find
$\widehat{y}_{n} \triangleq$ the minimum-norm element in $H(K)$ interpolating $y_{1}, y_{2}, \ldots, y_{n}$, in a recursive form. This problem is clearly a particular version of the indirectsensing measurement problem formulated in Sect. 2.
Taking into account the reproducing property of $H(K)$, from (11) $-(13)$ we get at once

$$
\begin{align*}
& e_{n}(\cdot)=k\left(\cdot, t_{n}\right)-\sum_{i=1}^{n-1} e_{i}\left(t_{n}\right)\left\|e_{i}\right\|^{-2} e_{i}(\cdot) \\
& \left\|e_{n}\right\|^{2}=k\left(t_{n} t_{n}\right)-\sum_{i=1}^{n-1}\left[e_{i}\left(t_{n}\right)\right]^{2}\left\|e_{i}\right\|^{-2} \\
& \mu_{n}=\left\|e_{n}\right\|^{-1}\left[y_{n}-\sum_{i=1}^{n-1} \mu_{i}\left\|e_{i}\right\|^{-1} e_{i}\left(t_{n}\right)\right]  \tag{21}\\
& \hat{y}_{n}(\cdot)=\hat{y}_{\mid n-1}^{(\cdot)}+\mu_{n}\left\|e_{n}\right\|^{-1} e_{n}(\cdot)
\end{align*}
$$

Example 5 (interpolation by splines) - Let $y$ be the output of a one-input one-output finite-dimensional linear system

$$
f:\left\{\begin{array}{l}
\dot{x}(t)=A(t) x(t)+b(t) u(t) \\
x\left(t_{0}\right)=0 \\
y(t)=c(t) x(t)
\end{array}\right.
$$

Thus, the set of all outputs $y$ on $T \triangleq\left[t_{0}, t_{f}\right]$ corresponding to all possible squareintegrable inputs $u$ on $T$, coincides [12 ]with the RKHS $H(K)$ with $A K$ given by

$$
\begin{equation*}
K(t, \tau)=\int_{t_{0}}^{t^{t} \tau} H(t, \sigma) H(\tau, \sigma) d \sigma \tag{22}
\end{equation*}
$$

where $A$ denotes minimum, $H(t, \sigma) \triangleq c(t) \phi\left(\frac{1}{t} \sigma\right) b(\sigma)$ and $\phi(t, \sigma)$ is the statetransition matrix of $\mathcal{J}$. Moreover, the transformation $J: u \rightarrow y$ from $L_{2}(T)$ onto

1) The results that follow can be generalized [11] to the case of unknown initial state $x\left(t_{0}\right)$
$H(K)$ is a congruence (isometric isomorphism), ie.

$$
\begin{equation*}
f u=y \quad \Longrightarrow \quad\|y\|^{2}=\int_{T} u^{2}(t) d t \tag{23}
\end{equation*}
$$

In particular, if

$$
S:\left\{\begin{array}{l}
{[L y](t)=\mu(t)} \\
x\left(t_{0}\right) \triangleq\left[y\left(t_{0}\right), y^{(1)}\left(t_{0}\right), \cdots, y^{(m-1)}\left(t_{0}\right)\right]^{\prime}=0
\end{array}\right.
$$

with $L$ a differential operator ( $D \hat{S}_{\mathrm{d}}^{\mathrm{d}} / \mathrm{dt}$ )

$$
L \triangleq D^{m}+a_{m-1} D^{m-1}+\cdots+a_{1} D+a_{0}
$$

(23) yields an explicit formula for the $H(K)$-norm of $y$, viz.

$$
\begin{equation*}
\|y\|^{2}=\int_{T}\left[L_{y}(t)\right]^{2} d t \tag{24}
\end{equation*}
$$

and ${ }^{2)} \hat{y}_{n n}$ is $[11,13]$ the L-spline interpolating $x\left(t_{0}\right), y_{1}, y_{2}, \ldots, y_{n}$. If $\Delta_{0} D^{m}$, $\hat{y}_{\mathrm{n}}$ is called the polynomial spline of order $m$ interpolating $x\left(t_{0}\right), y_{1}, y_{2}, \ldots, y_{n}$.

Strictly related to the above interpolation problem, we now consider the following smoothing_problem. Let $K(t, \tau)$ be again a nonnegative definite kernel, $H(K)$ the associated FKHS and $\|$.$\| the corresponding norm. Given a sequence of real numbers$
find

$$
\begin{align*}
& z_{i}, i \in I, \\
& \hat{y}_{n n} \triangleq \text { the element in } H(K) \text { minimizing } \\
& \qquad \sum_{i=1}^{n} \sigma_{i}^{-2}\left(z_{i}-y_{i}\right)^{2}+\|y\|^{2}  \tag{25}\\
& y_{i} \triangleq y\left(t_{i}\right), \quad t_{i} \in T,
\end{align*}
$$

in a recursive form. This is essentially a problem of smoothing by generalized splines. It has been shown[12]that (25) is equivalent to the following problem of statistical smoothing. Given the discrete-time observations

$$
\begin{equation*}
z_{i}=y_{i}+S_{i} \quad, \quad i \in I \tag{26}
\end{equation*}
$$

where $y_{i} \triangleq y\left(t_{i}\right)$ are samples from a stochastic process $y(t)$ with zero mean and covariance kernel

$$
K(t, \tau) \triangleq E[y(t) y(\tau)]
$$

and $\zeta_{i}$ r.v.'s uncorrelated with $y(t)$ with zero mean and covariance
2) The L-spline interpolating $y_{1}, y_{2}, \ldots, y_{n}$, is the function passing through $y_{1}, y_{2}$, $\ldots, y_{n}$ and minimizing (26).

$$
E\left[\zeta_{i} \zeta_{j}\right]=\sigma_{i}^{2} \delta_{i j}
$$

find the 1.1.s. smoothed estimate $\hat{y}_{n}(t)$ of $y(t)$, $t \in T$, based on $z_{1}, z_{2}, \ldots z_{n}$, in a recursive form. To solve this problem without resorting to a dynamic representation of the process $y$, we rephrase it in a suitable form. First, notice that by the reproducing property of $H(K)$ the unknown $y \in H(K)$ must be such that

$$
y_{i}=\left\langle y, K\left(\cdot, t_{i}\right)\right\rangle, \quad i \in I
$$

From (21a) on the other hand we get

$$
K\left(\cdot, t_{i}\right)=\sum_{j=1}^{i} \alpha_{i j} e_{j}(\cdot)
$$

where

$$
\alpha_{i j} \triangleq \begin{cases}\left\|e_{j}\right\|^{-2} e_{j}\left(t_{i}\right), & j<i \\ 1 & \end{cases}
$$

Therefore,

$$
y_{i}=\sum_{j=1}^{i} \alpha_{i j}\left\langle y, e_{j}\right\rangle
$$

Hence, setting

$$
\begin{aligned}
& \theta_{i}=\theta \triangleq\left[\left\langle y, e_{1}\right\rangle,\left\langle y, e_{2}\right\rangle, \cdots\right]^{\prime} \\
& c_{i} \triangleq\left[\alpha_{i 1}, \alpha_{i 2}, \cdots, \alpha_{i i}, 0,0, \cdots\right]^{\prime}
\end{aligned}
$$

we have

$$
\left\{\begin{array}{l}
\theta_{i+1}=\theta_{i}  \tag{27}\\
z_{i}=c_{i} \theta_{i}+S_{i}, \quad i \in I
\end{array}\right.
$$

from which the Kalman-Bucy formulas (18) and (19) give the 1.1.s. estimate $\hat{\theta}_{\mathrm{p}}$ of $\theta$ based on $z_{\eta}, z_{2}, \ldots, z_{n}$, viz.

$$
\begin{align*}
& \hat{\theta}_{\mid n}=\hat{\theta}_{\mid n-1}+F_{n}\left[z_{n}-c_{n} \hat{\theta}_{\mid n-1}\right] \\
& F_{n}=\left(c_{n} P_{n} c_{n}^{\prime}+\sigma_{n}^{2}\right)^{-1} P_{n} c_{n}^{\prime}  \tag{2B}\\
& P_{n+1}=P_{n}-\left(c_{n} P_{n} c_{n}^{\prime}+\sigma_{n}^{2}\right) F_{n} F_{n}^{\prime}
\end{align*}
$$

with $P_{1}$ equal to a symmetric nonnegative definite matrix, $e . g . P_{1}=\sigma_{0}^{2} I$ with a sufficiently large $\sigma_{0}^{2}$. Finally, we obtain the desired recursive formula for $\hat{y} n$,

$$
\begin{equation*}
\hat{y}_{\mid n}=G \hat{\theta}_{\mid n}=\hat{y}_{\mid n-1}+G F_{n}\left[z_{n}-C_{n} \hat{\theta}_{\mid n-1}\right] \tag{29}
\end{equation*}
$$

where

$$
G \triangleq\left[\left\|e_{1}\right\|^{-2} e_{1}(\cdot),\left\|e_{2}\right\|^{-2} e_{2}(\cdot), \cdots\right]
$$

## 5 - CONCLUSTONS

Indirect sensing experiments are defined and shown to encopass a large class of applications such as estimation, filtering, system identification, and interpolation and smoothing by splines. When a recursive solution to the indirectsensing experiment problem is desired, the notion of a discrete-time generalized innovations process, or innovations experiment, appear to be a natural and effective one to use. The problem of estimating the state of a finite-dimensional linear system from discrete-time noisy measurements appears to be but one of the possible applications of the theory developed. The problem of determining the impulse response of a Q-input P-output system is approached by the use of the notion of an innovations experiment. When PPBS's are used as probing inputs, attractive formulas of recursive type are obtained by the proposed method easily and in a direct way. Finally, it is shown that problems of interpolation and smoothing by splines can be approached by the theory developed.

## REFERENCES

1 A.W.Naylor and G.R.Sell, Linear Dperator Theory in Engineering and Science, New York Holt, Rinehart and Winston, 1971, pp. 345.

2 D.G.Luenberger, Dptimization by vector space methods, New York:Wiley, 1969, ch. G.
3 E.Mosca, "System identification by reproducing kernel Hilbert space methods", in Preprints 2nd Prague IFAC Symp. Identification and Pracess Parameter Estimation, Prague, Czechoslovakia:Academia, 1970, paper 1.1
4 E.Mosca, "A deterministic approach to a class of nonparametric system identification problems", TEEE Trans. Inform. Theory, vol. T-17, pp.686-596, Nov. 1971.

5 E. Mosca, "Determination of Volterra Kernels from input-output data", Int. J.Systems Sci., vol. 3, pp. 357-374, 1972.
6 D. Graupe, Identification of System, New York: Van nonstrand Reinhold, 1972, Ch. 4.
7 K.A.Godfrey, "The application of pseudo-random sequences to industrial processes and nuclear power plant", in Preprints 2nd Prague IFAC Symp. Identification and Process Parameter Estimation, Prague, Czechoslovakia: Academia, 1970, paper 7.1.
8 P.N.Nikiforku, M.M* Gupta and R.Hoffman, "Identification of linear discrete systems in the presence of drift using pseudorandom sequences", in Preprints 2nd Prague IFAC Symp. Identification and Process Parameter Estimation, Prague, Czechoslovakia: Academia, 1970, paper 7.
9 N.Aronszajn, "Theory of reproducing kernels", Trans.Amer.Math.Soc., vol.68, pp. 337404, 1950.
10 E. Parzen, Times Series Analysis Papers, San Francisco:Holden-Day, 1971.
11 H.L.Weinert, "A reproducing kernel Hilbert space approach to spline problems with applications in estimation and control", Info. System Lab. Stanford

Univ., Tech.Rept.7001-6, May 1972.
12 E.Mosca, "Stochastic extension and functional restrictions of illmposed estimation problems", Lecture Notes in Computer Scien. :5th IFIP Conf.Optimiz. Techniques, vol. 3, New York:Springer-verlag, 1973, pp.57-68.
13 T.E.N.Greville, Theory and applications of spline functions, New York: Academic Press, 1969.

