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ABSTRACT 

Growth functions of context dependent Lindenmayer systems are investigated. 

Bounds on the fastest and slowest growth in such systems are derived, and a method 

to obtain (P)DIL growth functions from (P)D2L growth functions is given. Closure of 

context dependent growth functions under several operations is studied with special 

emphasis on an application of the firing squad synchronization problem. It is shown 

that, although all growth functions of DILs using a one letter alphabet are DOL growth 

functions, there are growth functions of PDILs using a two letter alphabet which are 

not. Several open problems concerning the decidability of growth equivalence, growth 

type classification etc. of context dependent growth are shown to be undecidable. As 

a byproduct we obtain that the language equivalence of PDILs is undecidable and that 

a problem proposed by Varshavsky has a negative solution. 

I. INTRODUCTION 

Lindenmayer systems, L systems for short, are a class of parallel rewriting sys- 

tems. They were introduced by Lindenmayer [59,60] as a model for the developmental 

growth in filamentous organisms. These systems have been extensively studied, see 

e.g. Herman & Rozenberg [453, and, from the formal language point of view, form an 

alternative to the usual generative grammar approach. A particularly interesting top- 

ic in this field, both from the viewpoint of the biological origins and in its own 

right, is the study of the growth of the length of a filament as a function of time. 

An L system consists of an initial string of letters, symbolizing an initial one di- 

*) This paper is registered at the Mathematical Center as IW 19/74. 
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mensional array of cells (a filament), and the subsequent strings (stages of develop- 

ment) are obtained by rewriting all letters of a string simultaneously at each time 

step. When the rewriting of a letter may depend on the m letters to its left and the 

n letters to its right we talk about an (m,n)L system. When each letter can be rewrit- 

ten in exactly one way in each context of m letters to its left and n letters to its 

right we talk about a deterministic (mjn)L system. All L systems considered in this 

paper are deterministic (i.e. essentially monogenic rewriting systems) since this al- 

lows a cleaner theory of growth to be developed. However, most of the results concern- 

ing growth types and decidability we shall derive hold under appropriate interpreta- 

tion also for nondeterministic L systems. 

The general family of deterministic L systems is called the family of determin- 

istic context dependent L systems or DIL systems. The best investigated subfamily is 

that of the D(0,0)L (i.e. DOL) or deterministic context independent L systems. Growth 

of the length of strings in this latter class has been extensively studied, cf. sec- 

tion 2, and almost all questions posed have been proved to he decidable by algebraic 

means [111,75,983 and some by combinatorial arguments [116]. The study of the growth 

of length of strings in the general case of context dependent L systems has been more 

or less restricted to the observation that the corresponding problems here are still 

open, cf. [45, chapter 153, [753 and [1023. We shall investigate the gro%~h of length 

of strings in context dependent L systems and we shall solve some of the open prob- 

lems by quite elementary means. By a reduction to the printing problem for Turing 

machines we are able to show that e.g. the growth type of a context dependent L sys- 

tem is undecidable, even if no production is allowed to derive the empty word; that 

the growth equivalence problem for these systems is unsolvable; and that the corres- 

ponding questions for the growth ranges have similar answers. (As a byproduct we ob- 

tain the results that the language equivalence for PDILs is undecidable and that a 

problem proposed by Varshavsky has a negative solution. ) 

Furthermore, we derive bounds on the fastest and slowest growth in such systems; 

we give a method for obtaining growth functions of systems with a smaller context 

from systems with a larger context; it is shown that all bounded growth functions of 

context dependent L systems are within the realm of the context independent growth 

functions whereas for each type of unbounded context dependen t growth functions there 

are growth functions which are not; similarly, all growth functions of context depen- 

dent L systems using a one letter alphabet are growth functions of context indepen- 

dent L systems whereas this is not the case for growth functions of the simplest con- 

text dependent L systems using a two letter alphabet; we give sm. application of the 

firing squad synchronization problem, etc. 

The paper is divided in three parts. In section 2 we prepare the ground by giv- 

ing a cursory review of some results on growth functions of context independent L 

systems. In sections 3.1-3.3 we develop outlines for a theory of context dependent 

growth functions and give some theorems and illuminating examples. In section 3.4 
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we prove the undecidability of several open problems in this area. 

2. GROWTH FUNCTIONS OF CONTEXT INDEPENDENT L SYSTEMS 

We assume that the usual terminology of formal language theory is familiar. Ex- 

cept where defined otherwise we shall customarily use, with or without indices, i,j, 

k,m,n,p,r,t to range over the set of natural numbers IN = {0,1,2,...}; a,b,c,d,e to 

W* range over an alphabet W; v,w,z to range over i.e. the set of all words over W 

including the empty word k. #Z denotes the c~dinality of a set Z; lg(z) the length 

of a word z and ig(k) = O. 

An L system is called deterministic context independent (DOL system) if the re- 

writing rules are deterministic and the rewriting of a letter is independent of the 

context in which it occurs. With each DOL system G we can associate a growth function 

' fGi(t ) fG %~here is the length of the generated string at time t. Growth functions of 

DOL systems were studied first by Szilard [111], later by Doucet [15], Paz & Salomaa 

[75], Salomaa [98] and Vitgauyi [116,115]. 

A se~ DOL system (semi DOL) is an ordered pair S = <W,6> where W is a finite 

nonempty alphabet and 6 is a total mapping from W into W* called the set of produc- 

tion rules. A pair (a,~(a)) is also written as a ÷ 6(a). We extend 6 to a homomor- 

W* )of S(as)~(a2)...S(an) , n > O. S i is phism on by defining ~(h = k and ~(ala2...an) = 

the composition of i copies ~ and is inductively defined by ~O(v) -- v and 6i(v) -- 

-- 6(~i-1(v)) for i > 0. A DOL system (DOL) is a triple G : <W,6,w> where W and ~ are 

WW* as above and w c is the ~om. The DOL language generated by G is L(G) = 

= {6i(w) I i -> 0}. The growth function of G is defined by fro(t) = ig(~t(w)). Clearly, 

for each DOL O = <W,6,w>, if m = max{Ig(6(a)) I a E W} then fG(t) -< lg(w) m t. Hence 

the fastest growth possible is exponentially hounded. We classify the growth of DOLs 

as follows [116]: 

A growth function fG is exponential (type 3) if lira fG(t)/xt -> I for some X > I; 
t~ 

fG is polynomial (type 2) if lim fG(t)/p(t) > I and lim fG(t)/q(t) < I for some un- 
t+~ t+~ 

• I 
bounded polynomlals p and q; fG is limited (type 7) if 0 < fG(t) -< m for some con- 

stant m and all t; fG is terminating (type 0) if fG(t) = 0 hut for a finite number 

of initial arguments. 

By an application of the theory of homogeneous linear difference equations with 

constant coefficients, Salomaa [983 gave an algorithm to derive an explicit formula 

of the following form for the growth function of an arbitrary DOL G: 

n 
t 

(I) fG(t) : ~ pi(t)c±, 
i--I 

A function f(t) is said to be unbounded if for each n o 
f(t) > n o for all t > t o . 

there is a t O such that 
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where Pi is an r.-th degree polynomial with complex algebraic coefficients and c. a 
1 l 

n 
complex algebraic constant, ] ~ i ~ n, Zi=1(ri+]) = #W. From this it follows that the 

above classification is exhaustive in the DOL case; that the growth type of a D0L can 

be determined and that the growth equivalence for two DOLs is decidable (two DOLs G, 

G' are said to be growth equivalent iff fG(t) = fG,(t) for all t). 

The approach of [98] becomes too complicated for large alphabets and does not 

tell us anything about the 8truct~e of growth, viz. the local properties of produc- 

tion rules which are responsible for types of growth [1163. By considering DOLs with 

one letter axioms we car. talk about growth types of letters, and clearly the growth 

type of a DOL is the highest numbered growth type of the letters in its axiom. Given 

a semi DOL, different types of growth may result from different choices of the axioms; 

therefore the growth type of a semi D0L is a combination of the growth types possible 

for different choices of the axiom. (Written from left to right according to decreas- 

ing digits, e.g. 3210, 321, 21.) 

Example !" 

2 
O = <{a},{a+a },a> 

G = <{a,b},{a÷b,b+ab),a> 

G = <{a,b},{a+ab,b+b),a> 

2 
S = <(a,b,c,d},{a÷a b,b÷bc,c-*cd,d+l}> 

: growth type 3. 

fG(t) = -~-- + 2V~ -- : growth type 3. 

(fG(t) is the t-th term of the Fibonacci sequence) 

fG(t) = t+1 : growth type 2. 

: growth type32]O. 

The following theorem, [1163, tells us which combinations may occur in the D0L 

case. 

Theorem 1. Type 2 never occurs without type I. All other combinations are possible. 

(l.e. there are no semi DOLs of growth type 320, 32, 20 or 2). 

It is, however, easy to show that growth type 2 may occur without growth type I 

for the simplest context dependent L systems, i.e. the one letter alphabet PDILs. 

(cf. example 2, section 3). 

Furthermore, in the D0L case, necessary and sufficient conditions for the growth 

type of a letter a ~ W under a set of production rules are obtained from the empty- 

ness of the intersection of the set of letters, derivable from a, with three disjoint 

classes of recursive letters, where a letter b ~ W is recursive if 6i(b) = VlbV 2 for 

some i > 0 and some Vl,V 2 ¢ W*, [116]. 
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3. GROWTH FUNCTIONS OF CONTEXT DEPENDENT L SYSTEMS 

The general form of a context dependent L system was introduced by Rozenberg 

[86]. We define a deterministic (m,n)L system (D(m,n)L) as a triple G = <W,~,w>, where 

W is a finite nonempty alphabet, the set of production rules ~ is a total mapping from 

m n W* WW* W i × W x ~W j into and w e is the axiom. ~ induces a total mapping ~ from 
i=o j=0 

W* into W* as follows: ~(I) = k and ~(ala2...a k) = ~1~2...ak if for each i such that 

I ~ i ~ k we have 

6(a. a. +. ..a. ,a.,a. a. .. ei' l-m l-m ~" I-1 ! i+11+2 "ai+n) = 

where we take a. = I for j < I and j > k. The composition of i copies of ~ is induc- 
J ~i ~i-1(v 

tively defined by ~O(v) = v and (v) = ~( )), i > O. When no confusion can re- 

suit we shall write ~ for ~. The D(m,n)L l~guage generated by G is L(G) = 

= {6i(w) I i -> 0}, and the growth function of G is fG(t) = Ig(~t(w)). 

A semi D(m,n)L is a D(m,n)L without the axiom. A propagating D(m,n)L (PD(m,n)L) 

WW* is a D(m,n)L G = <W,~,w> such that ~(v) # h for all v ¢ . In the literature a 

D(O,O)L is usually called a DOL, a D(I,0)L or D(0,1)L is usually called a DIL, a 

D(I, I)L is usually called a D2L and a D(m,n)L (m,n->0) a DIL. The corresponding semi 

L systems are named accordingly. 

Example 2. S = <W,6> is a semi PD(0,1)L where W = {a} and ~(h,a,h) -- a 2 6(l,a,a) -- a. 
k 

It is easily verified that for every axiom a , k > 0, S yields the growth function 

f(t) = k+t. (At each time step the letter on the right end of the string generates aa 

while the remaining letters generate a. ) Therefore, even for PDILs using a one letter 

alphabet growth type 2 can occur without growth type I and all combinations of growth 

types 0,1,2,3 are possible. (Contrast this with the situation for DOLs in theorem I.) 

In section 2 we defined growth types 3,2,1,0 which were exhaustive for the DOL 

case. However, as will appear in the sequel, this is not so for DILs. Therefore we 

define two additional growth types to fill the gaps between types I and 2, and types 

2 and 3. We call the growth in a DIL G s~emponential (type 2@) iff the growth is not 

exponential and there is no unbounded polynomial p such that fG(t) g p(t) for all t; 

subpolynomial (type I@) iff fG is unbounded and for each unbounded polynomial p holds 

that lim fG(t)/p(t) = O. 
t~ 
For DOLs the following types of problems have been considered and solved effec- 

tively (cf. section 2 and the references contained therein). 

(i) Analysis problem. Given a DIL, describe its growth function in some fixed pre- 

determined formalism. 
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(ii) 

(iii) 

(iv) 

(v) 

S_znthesis problem. Given a function f in some fixed predetermined formalism and 

some restriction x on the family of DILs. Find a DIL which satisfies x and whose 

growth ftmction is f. Related to this is the problem of which growth functions 

can be growth functions of DILs satisfying restriction x. 

Growth equivalence proble m. Given two DILs, decide whether or not they have the 

same growth function. 

Classification problems. Given a DIL or a semi DIL, decide what is its growth 

type. 

Structural problems. What properties of production rules induce what types of 

growth? 

Furthermore we have the hierarchy problem. Is the set of DOL growth functions a 

proper subset of the DIL growth functions ~ud similar problems? 

In section 3.4 we shall show that even for PDILs the problems (i)-(v) are re- 

cursively unsolvable. 

3. I. Bounds on unbounded 6rowth 

Since it is difficult to derive explicit formulas for growth functions of the 

more involved examples of DiLs, and according to section 3.4 impossible in general, 

we avail ourselves of the following notational devices. 

[f(t)J is the lo~eP entier of f(t), i.e. for each t,[f(t)J is the largest integer not 

greater than f(t). 

f(t) ~ g(t): f(t) is ~y~tot~c to g(t), i.e. lim f(t)/g(t) = I. 

f(t) ~ g(t): f(t) sZ~des onto g(t) (terminology provided by G. Rozenberg) iff for 

each maximum argument interval [t' ,t"] on which g(t) has a constant value holds that 

f(t) = g(t) for all t and some t"' such that t' -< t"' -< t -< t". 

As in the D0L case, for each DIL G = <W,8,w> holds that fG(t) -< ig(w) m t where 

m = max{Ig(6(vl,a,v2)) I Vl,V 2 e W* and a e W}. Hence the fastest growth is exponen- 

tial, and for each DIL there is a DOL which grows faster. We shall now investigate 

what is the slowest unbounded growth which can occur. Remember that a function f is 

unbounded if for each n O there is a t O such that f(t) > n O for t > t O . 

Theorem 2. 

(i) For any PDIL G = <W,6,w> such that fG is unbounded holds: 

lim fG(t)/lOgr t ~ I 
t-~o 

where r = #W > ]. 

(ii) For say DIL G = <W,6,w> such that fG is unbounded holds: 

t t 
lim ~ f ( t ) /  X 
t÷~ i=O i=O 

[lOgr(<r-1)i+r)] ~ I where r = #W > I. 
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Proof. 

(i) Order all strings in W-W* according to increasing length. The number of strings 
k 

zk-1 i r -r 
of length less than k is given by t = i=I r , i = #W. Hence t = ~ and there- 

fore k = logr((r-1)t+r). If we define f(t) as the length of the t-th string in 

WW* then, clearly, f(t) = [logr((r-1)t+r) ] and lim f(t)/logrt = I. The most any 
t+~ 

PDIL system with an unbounded growth function can do is to generate all strings 

of WW ~ in order of increasing length and without repetitions. Therefore 

lim fG(t)/logrt > I. 
t-~ 

(ii) The most any DIL with an unbounded growth function can do is to generate all 

strings of WW * in some order and without repetitions. Therefore, 

lim Z t fG(t)l~t f(i) > I D 
i=O --0 - ' 

t-~ 

In the sequel of this section we shall show that theorem 2 is optimal. 

Example 3. Let G I = <W,6,w> be a PD(0,1)L such that W = {0,1,2,...,r-1,4,s} (r>1); 

~(~,¢,i) = 4 for 0 -< i -< r-l, ~(k,4,s) = 40, 6(~,i,k) = 6(k,i,s) = i+I for 

0 -< i < r-l, 8(k,s,k) -- I, 6(~,s,0) = 6(k,s,1) = O, 6(k,r-l,k) = 6(X,r-l,s) = s, 

8(k,i,j) = i for 0 -< i,j -< r-l; w = ~0. 

The starting sequence is: 40, 41, ...,4r-I, 4s, 401, ...,40r-I, 40s, 411, 

..., ~r-1...r-1, 4r-1...r-1 s, ~r-1...r-1 sl, ..., ~s00 .... 40000..., ... 

k k-1 x k-2 x 

Observe that G counts all strings over an alphabet of r letters. When an incre- 

ment of the length k is due on the left side it needs k extra steps. Furthermore, 

there is an additional letter ~ on the left. Therefore, 

fG1(t ) = klOgr((r-1)t+r - [lOgr((r-1)t/r+1)J) ] + I 

~[lOgr((r-1)t+r) j + I. 

Hence fG1(t) ~ logrt. Hence, with a PDII using r+2 letters we can reach the slowest 

unbounded growth of a PDIL using r letters. 

Some variations of Example 3 are the following: 

Example 4. Let G 2 be a PD(O,I)L defined as G I but with 6(k,@,s) = @I. Then, essen- 

tially, G 2 counts on a number base r and 

fG2(t) = 2, 0 -< t < r 

fG2(t ) = klogr(t-Llog r t/r])] + 2 

~>[log r tJ + 2, t -> r. 
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Example >. Let G 3 = <{0,I,2,...,r-I} × {0,@,s}, 63, (0,¢)> be such that the action 

is as in G I but with @ and s coded in the appropriate letters. Then, 

fG3(t) = [lOgr((r-1)t+r - [lOgr((r-1)t/r+1)J)j 

~>[logr((r-1)t+r) ] 

Example 6. Let G 4 be as G 2 with the modifications of G 3. Then 

fG4(t) = I, 0 ~ t < r 

fGh(t) = [logr(t-[log r t/r])J + I 

~>[log r tJ + I, t ~ r. 

Examples 3-6 all corroborate the fact that for any PDIL with an unbounded growth 

function there is a PDIL with an unbounded growth function which grows slower, al- 

though not slower than logarithmic. That theorem 2 (ii) cannot be improved upon fol- 

lows from the following lemma, implicit in van Dalen [12] and Herman [33]. 

2 
Lemma I. For a suitable standard formulation of Turing machines , e.g. the quintuple 

version, holds that for any deterministic Turing machine T with symbol set S and 

state set Q we can effectively construct a D2L G 5 = <W5,~5,w5 > which simulates it in 
t 

real time. I.e. the t-th instantaneous description of T is equal to 65(w5). There is 

a required G 5 with W 5 = S u Q and a required propagating G 5 with W 5 = Q u (S × Q). 

Since T can expand its tape with at most one tape square per move we see that 

fG5(t+1) g fG5(t)+1. 

It is well known that a Turing machine can compute every recursively enumerable 

set A = {I f(t) I f(t) is a 1:1 total recursive function}. We can do this in~ such a 

way that for each t when f(t) has been computed the Turing machine erases everything 

else on its tape. Subsequently, it recovers t from f(t) by f-1 adds I and computes 

f(t+]). In particular, the simulating D2L G 5 can, instead of replacing all symbols 

except the representation of f(t) by blank symbols, replace all the superfluous blank 

letters by the empty word ~. Suppose that A is nonrec~rsive. Then, clearly, it is not 

the case that for each n O we can find a t O such that fG5(t) > n O for t > to, although 

such a t O exists for each n O . Hence theorem 2 (ii) is optimal for D2Ls, and as will 

appear from the next lemma also for DILs. 

For results and terminology concerning these devices see e.g.M. Minsky, Computa- 
tion: finite and infinite machines. Prentice-Hall, London (1967). 
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Lemma 2. 

(i) Let G = <W,~,w> be any D2L. We can effectively find a DIL G' = <W',6',w'> such 

that for all t holds: 6'2t(w ') = @6t(w) for some @ ~ W. 

(ii) Let G = <W,6,w> be any PD2L. We can effectively find a PDIL G" = <W",~",w"> 

such that for all t holds: ~"2t(w") = @6t(w)$ t for some @,~ ~ W. 

Proof. 

(i) Let G = <W,~,~ be any D2L. Define a D(0,1)L G' = <W',6',w'> as follows: 

w' = w u (w × ( w u ( x } ) )  u { ~ } ,  

6 ' ( ~ , a , c )  = ( a , c ) ,  

6 ' ( ~ , ¢ , c )  = ~,  

6 ' ( ~ , ( a , b ) , ( h , c ) )  = 6 ( a , b , c ) ,  

@ @ W; w' = @w; 

6 ' ( ~ , ¢ , ( a , c ) )  = @ ~ ( ~ , a , c ) ,  

6 ' ( ~ , ( a , ~ ) , ~ )  = ~,  

for all a,b ~ W and all c E Wu(~}. (The arguments for which 6' is not defined, 

shall not occur in our operation of G'.) 

For all words v E WW*, v = ala2...ak, holds: 

~'2(¢%a2...%) = 6'(¢(a1,%)(a2,a3)...(%,~)) = 

= ~ 6 ( A , a l , a 2 ) 6 ( a l , a 2 , a 3 ) . . . ~ ( a k _ l , a k , ~  ) = 

= ~ 6 ( a l a 2 . . . % ) .  

Since, furthermore, 6'2(~) = ~ we have therefore 6'2t(w') = ~6t(w) for all t. 

(ii) Let G = <W,6,w> be any PD2L. Define a PDIL G" = <W",~",w"> as follows: 

w"= w u (w × (Wu{~})) u {@,~}, 

6"(~,a,e) = (a,c), 

6"(~,a,~) = (a,~), 

6"(~,¢,d) = ¢, 

¢,$ @ W; w" = @w; 

6"(~,(a,b),(h,c)) = 6(a,b,c), 

6"(~,¢,(a,c)) = ¢6(~,a,c), 

6"(x,(a,x),~) = 6"(~,(a,~),~ = ~, 

~"(~,~,~) = ~, 

for all a,b, E W, all c ~ Wu{l} and all d ~ Wu{l,$}. Analogous with the above 

we prove that if 6t(w) # ~ for all t then 6"2t(w '') = @6t(w)$ t. D 

Theorem 3. 

(i) If f(t) is a D2L growth function then g(t) = f([t/2J)+1 is a DIL growth func- 

tion. 

(ii) If f(t) is a PD2L growth function then g(t) = f([t/2J)+[t/2J+1 is a PDIL growth 

function. 

(iii) If f(t) is a PD2L growth function then g(t) = f([t/2J) is a DIL growth function. 

(iv) If f(t) is a PD2L growth function then g(t) = f([t/2J)+[t/2J is a PDIL growth 

function. 
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Proof. (i) and (ii) follow from lemma 2 and its proof. (iii) and (iv) follow from 

lemma 2 and its proof by the observation that we can encode the left end marker @ in 

the leftmost letter of a string and keep it there in the propagating case. D 

Note that by lemma 2 the transition in theorem 3 is effective, i.e. given a D2L 

G, of which f is the growth function, we can construct a required DIL G' such that 

fG' = g" 

3.2. Synthesis of ~rowth functions 

In the last section we saw that if f(t) is the growth function of a D2L G then 

g(t) = f([t/2J)+] is the growth function of a DIL G' and there is a uniform method 

to construct G' given G. In this sense we shall treat some methods for obtaining 

growth functions. We consider operations under which families of growth functions are 

closed. An important tool here is an application of the Firing Squad Synchronization 

Problem 3. Stated in the terminology of L systems it is the following. Let S = <Ws,~s> 

be a semi PD2L such that ig(~s(a,h,c)) = ] for all b e W s and all a,c ~ WSu{~} , and 

there is a letter m in W S such that 6s(m,m,h) = 6s(m,m,m ) = m. The problem is to de- 

sign an S satisfying the restrictions above such that 6k(n)(m n) = fn f e W8 ' for all 

natural numbers n and a minimal function k of n, while ~t(mn) e (Ws-{f}) n for all t~ 

0 ~ t < k(n). Balzer 4 proved that there is a minimal time solution k(n) = 2 n-2. In 

the PD2L case we can achieve a solution in e.g. k(n) = n-] by dropping the restric- 

tion 8s(m,m,~) = m and having both letters m on the ends of an initial string act 

like "soldiers receiving the firing command from a general" in the firing squad ter- 

minology. Assume that S = <Ws,6s > is such a semi PD2L simulating a firing squad with 

k(n) = n-1. Let G = <W,6,w> be any (P)D2L. We define the (P)D2L G' = <W',~',w'> as 

follows: 

W' = W × W S; 

w' = (al,m)(a2,m)...(ak,m) 
6'((a,a'),(b,b'),(c,c')) = (b,b") 

6'((a,f),(b,f),(c,f)) 

for w = ala2...ak, 
for 6s(a',b',c') = b" and 

a'b'c ~ ~ fff, 

= I (b1'm)(b2'm)'''(bh'm) for ~(a,b,c) = b]b2...bh, 

L h for 8(a,b,c) = h. 

W* We easily see that if 6(v) = v' for v,v' ~ then 

3 
See e.g. Minsky, Op. cir., 28-29. 

4 
Balzer, R., An 8 state minimal solution to the firing squad synchronization prob- 
lem, Inf. Contr. ]0 (]967), 22-42. 
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8,1g(v)((al ,m)(a2,m).. . (~,m)) = (bl,m)(h2,m)...(bh,m) 

where v = ala2...a k and v' = blb2...bh; and 6'ig(v)((al,m)(a2,m)...(ak,m)) = h for 

v' = ~. Therefore we have: 

Lemma 3. Let G be any (P)D2L. We can effectively find a (P)D2L G' such that 

(2) 

/ 
fG '(t) = ~ fG(0) for all t such that 0 S t < fG(0), 

L 
T ~+I 

fG(~+1) for all t such that [ fG(i) ~ t < ~ fG(i). 
i=O i=O 

Since we can simulate an arbitrary (but fixed) number of r firing squads in sequence 

plus a number j of production steps of G' for each production step of G, we can ef- 

fectively find a (P)D2L G' for each (P)D2L G such that: 

fG' ( t )  = i fG(O) 

fG(~+1) 

for all t such that 0 N t < r fG(O) + j 

for all t such that 
T 

r [ fG(i)+(T+1)j ~ t < 
i=O 
T+1 

r [ fG(i)+(T+2)j. 
i=O 

Let us call the operation to obtain a growth function fG' from fG as defined in (2) 

FSS. Then fG' = FSS(fG)" 

A cascade of r firing squads working inside each other, such that one production 

step of a (P)D2L G is simulated if the outermost squad fires, gives us a (P)D2L G' 

such that fG' = Fssr(fG)' i.e. 

(3) 
fG'(t) = I fG(0) for all t such that 0 g t < fG(0) r 

T+I 
fG(T+I) for all t such that ~ fG(i) r g t < ~ fG(i) r. 

i=O i=O 

Example 7, Suppose that fG is exponential, say fG(t) = 2 t. Then FSS(f G) = f where 

f(t) = S +I for ~T 2i zT+I 2i ' S+ I [Zog 2 t] i=0 ~ t < i= 0 Hence f(2T+1-1) = and f(t) = 2 , 

i.e. f(t) ~ t. 5 We can obtain analogous results for arbitrary exponential functions. 

f ~ g asserts that f is of the same order of magnitude as g, i.e. clg(t) < f(t) < 
< c2g(t) for all t and some constants c1,e 2. 
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Example 8. Suppose that fG is polynomial, e.g. fG(t) = p(t) where p(t) is a polyno- 
t + t 

mia! of degree r. Then FSS(f G) = f where f(Zi=0 p(i)) -- p(t I). Since Zi= 0 p(i) =q(t) 

where q(t) is a polynomial of degree r+1 we have f(t) ~ t r/r+1. By (3) we see that 

FSSJ(f G) = f where f(t) tr/(r+j) 

Hence we have: 

Theorem 4. For each rational number r, 0 < r <- I, we can effectively find a PD2L G 

such that fG(t) ~ t r. 

Proof. Since r -- r'/r" such that r",r' are natural numbers and r" >- r', and according 

to Szilard []11] we can, for every monotonic ultimately polynomial function g, find a 

PDOL G' such that fG' = g; by example 8 we can find a PD2L G such that fG(t)~ tr'/r'i 

Example 9. Let fG(t) = [log 2 tj. Then FSS(fG) = f, where f((t-1)2t+1+4) = t+], i.e. 

f(t) ~ log t. 

Hence we see that the relative slowing down gets less when the growth function 

is slower. 

By theorem 3 everything we have obtained for D2Ls holds for DILs if we substi- 

tute [t/2J for t in the expression for the growth function and add I. However, even 

for DILs we can achieve a greater slowing down. Let G be some D2L. We can construct 

a D]L G' which simulates G such that for each production step of G, G' does the fol- 

lowing. 

(a) G' counts all strings of length fG(t) over an r letter alphabet by the method of 

example 3. When an increase of length is due on e.g. the left side, 

(b) G' initializes a firing squad, making use of the simulation technique of lemma 2. 

When the firing squad fires, G' simulates one production step of G and subsequent- 

ly starts again at (a). 

Hence, if h(t) -< fG(t) -< g(t) for a D2L G and monotonic increasing functions h and 

zt r h(i)) < g(t+1) For in- g then we can effectively find a DIL G' such that fG'( i=0 

stance, if fG(t) = t then fG,(t) < log r t, t > I. 

We can combine processes like the above to obtain stranger and stranger, slower 

and slower growth functions. Similar to the above application of the Firing Squad 

Synchronization Problem we could apply the French FZag ProbZem (see e.g. [37]). 

The next theorem tells us under what operations the family of growth functions 

is closed. In particular, the subfamilies of (P)D2L, (P)DIL and (P)DOL growth func- 

tions are closed under (i)-(iii). 

Theorem 5. Growth functions are closed under (i) addition, (ii) multiplication with 

a natural number r > 0, (iii) entier division of the argument by a natural number 

r > 0, (iv) FSS. Growth functions are not closed under (v) subtraction, (vi) divi- 

sion, (vii) composition. 
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Proof. 

(i) Let G I = <Wi,61,w1> and G 2 = <W2,62,w2> be two DILs with disjoint alphabets. 

Define G 3 = <WiuW2,~3,WlW2>. Then it is easy to construct 63, given 61 and 82, 

such that fG3 = fG1 + fG2. 

(ii) Follows from (i). 

(iii) Let G S = <WI,61,w ~ be a DIL. Define G 2 = <W2,62,w2> such that fG2(t) = 

= fG1([t/r]). This is easily achieved by introducing a cycle of length r for 

each direct production of G I. 

(iv) By lemma 3. 

(v)-(vi) Trivial. 

(vii) 2 t is a growth function while 2 (2t) is not. D 

We conclude this section with some conjectures. The evidence in favor of in par- 

ticul~r conjecture I is overwhelming, but we have not been able to derive a formal 

proof. 

t+Llog 2 tJ 
Conjecture I. Growth functions are not closed under multiplication. (E.g. 2 

can hardly be a gro~h function.) 

Conjecture 2. Unbounded growth functions are closed under function inverse. (E.g. 

f(t) = r t is a growth function for r is a constant, g(t) ~ f-1(t) = log r t is a 

growth function too.) 

Conjecture 3. There are no PDIL growth functions f(t) ~ t r where r is not a natural 

number. (It is hard to see how a string can determine its length in the PDIL case.) 

3.3. Hierarchy 

The first PDIL growth function of growth type I~ was "Gabor's sloth" in [75, 

p.338]. Examples 3-6 and section 3.2. provide us with an ample supply of this growth 

type. A more difficult problem is to construct a DIL of growth type 2~. The first 

(and until now only) DIL of growth type 2~ is the PD2L of Karhum~ki [50] with growth 

function f where 2 V~ ~ f(t) ~ (2V~) V~. ~y lemma 2 we can construct a PDIL G such that 

2 ~[~/~ + [t/2] % fG(t) ~ (2V~) V~7~ + It/2]. From these results and theorem 5 (i) 

follows: 

Theorem 6. There are PDIL growth functions of growth types I~,2,2~,3 which are not 

DOL growth functions. 

Hence the family of (P)DOL growth functions is properly contained in the family 

of (P)DIL growth functions. However, if we restrict ourselves to the bounded growth 

functions the situation is different. 
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Theorem 7. Let G be any DIL such that fG is of (i) gro~h type O, or, (ii) growth 

type I. Then we can construct a DOL G' such that fG' = fG" 

Proof. 

(i) Let fG(t) > 0 for all t ~ t O for some t O and fG(t) = 0 otherwise. Then fG' = fG 

where G' = <W',G',w'> is a D0L constructed as follows: 

a0bfO (0)-] 
W' = {ao,a],...,at0,b}; w' = 

fo(i+1)-1 
~'(a i) = ai+1 b for all i, 0 ~ i < to, 

8 
~'(b) = 6'(ato) = k. 

(ii) If fG is of growth type I for some DIL G then fG is ultimately periodic, i.e. 

fG(t) = fG(t-u) for all t > t0+u for some t O and u. The construction of the ap- 

propriate D0L G' is similar to the construction in (i). 

Corollary 1. The family of bounded (P)DIL growth functions coincides with the family 

of bounded (P)DOL growth functions. 

Theorem 8. Let G = <W,6,w> be a un~j (i.e. #W = 1) DIL. Then there is a DOL G' such 

that fG' = fG" 

Proof. Suppose fG is bounded. By theorem 7 the theorem holds. Suppose fG is un- 

bounded, and let G he a D(m,n)L. Furthermore, let p = ig(6(am,a,an)), 

Z n-1 Ig(6(am,a,aJ)). Since fG is unbounded there is a t O = Em-1 ig(6(ai'a'an)) + j=0 
x i=0 

such that fG(t0) ~ 2(m+n)+x+]. For all t ~ t o the following equation holds: 

(4) fG(t+1) = p(fG(t)-m-n) + x. 

Case I. p = O. Then fG(t) ~ (m+n)y where y = max{!g(~(vl,a,v2)) I Vl,V 2 c W*}. 

Therefore fG is bounded: contradiction. 

Case 2. p = I. Then x-m-n > 0 since fG is bounded otherwise. It is easy to construct 

a DOL G' such that fG' = fG in this case. 

Case 3. p > I. Construct a DOL G" = <W",6",w"> as follows: 

W" = {a0,al,a2,a3} ; 6"(ao)=k, 6"(a I) = aoala3P-2 ~"(a2) = a2a3X+p-1 5 5 

fG(tO)-2 (m+n)- I 6 
P; w" )m+n 

~"(a3) = a 3 = (aoa I a2a 3 

It is easy to prove by induction on t that fG,,(t) = fG(t+to) for all t. By using 

8 
We define 8 for DOLs as in section 2. 
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theorem 7 we construct a DOL G' = <W',8',w'> such that W" c W' ~" c 6' 

t o 
~' (w') = w" and fG,(t) = fG(t) for 0 ~ t < t O . Then fG' = fG" 

It may be worthwhile to note that the solution to the difference equation (4) 

is given by: 

IfG(t0) + (x-m-n)(t't 0) for p = I, 

fG(t) 
t-t 0 

Ip t-tO !TP for p > I 
fG(tO) + (x-p(m+n)) 1-p 

for all t > t O . 

Therefore, the growth function of a unary DIL is either linear or purely ex- 

ponential, which by equation (I) gives us 

Corollary 2. The family of growth functions of unary DILs is properly contained in 

the family of growth functions of DOLs. 

Theorem 9" There is a b~n~ PDIL G = <W,~,w>, (i.e. #W = 2), with a one letter axiom 

such that there is no DOL G' such that fG' = fG" 

Proof. Let G = <W,~,w> be a PD(I,0)L where 

w = (a,h); w = a; ~(~,a,~) = h, ~(~,b,~) = aa, ~(a,a,~) = a, 

~(t,a,~) = b, ~(t,b,~) = t, ~(a,t,~) = aa. 

The initial sequence of produced strings is: 

a, b, aa, ha, aab, baaa, ~baa, ba3ba, a2ba4b, ba3ba 5, ~ba4ba ~, ha3baSba 3, 

a2ba~ha6ba 2, ha~aSha~ha, a2ha~ha6taSb, ha3baShaTba9 " ..... 

Every second time step one b is introduced on the left and starts moving along the 

string to the right. Every time step b moves one place to the right and leaves a 
2 

string a on the place it formerly occupied. When a letter b reaches the right end 

of the string it disappears in the next step leaving aa. Therefore, on the one hand, 

every second production step there enters a length increasing element in the string; 

on the other hand, with exponentially increasing time intervals one of these elements 

disappears. The strings where a b has just disappeared in the above sequence are: 

65(a) = taaa, ~9(a) = ha3ta 5, ~15(a) = ba3ba5ba?ha 9. 

Now introduce the notational convenience U x v(i) where v(i) is a function 
i=I 

from ~ into W*. E.g. if v(i) = aib 2i then U 3 v(i) = ab2a2b4a3b6. 
i=1 
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2x ba2i+l 2x+I 
Claim. ~t(x) a ~I ~ = H where t(x) = + 2x + 3. 

i=I 

Proof of claim. By induction on x. 

x = 0. ~5(a) = ba 3 . 

x > 0. Suppose the claim is true for all x ~ n. Then 

2 n 
~t(n)(a ) = ~ ba 2i+I = ...ba 2"2n+I. 

i=I 

This last occurence of b will just have disappeared at time t' = t(n) + 2.2 n + 2 = 

= t(n+1). The distance with the preceding occurence of b was 2.2n-I and therefore 

(5) 
6t(n+1)(a ) = ...ba 2"2n-I + 2(2.2n+2) _ 2(2n+I) = ...ba 2.2n+I+]. 

At time t(n) the total number of occurences of b in the string was 2n; at time t(n+S) 

this is 2n+2n+s-1 = 2 n+] and 

(6) ~t(n+1)(a) = ba3b .... 

ilbai2bv2 Since it is easy to see that for all t ~ 0 holds if ~t,a,( ~ = Vlba for some 

on+1 ^ 
Vl,V 2 then i 2 = ii+2 it fellows from (5) and (6) that 8t(n+1)(a) = U ~ b ~i+I 

' i=I a , 
which proves the claim. 

Hence, 

fG(t(x)) = 

2 x 

i=I 
2(i+I) = 2x(2x+3) = I/4(t(x)-2x-3)(t(x)-2x+3) 

= I/4 t(x)2-x t(x)+x 2 - 9/4. 

x+1+ 
Since t(x) = 2 2x+3 we have x~> [log 2 t(x)/2] and therefore: 

(7) fG(t(x))~>I/4 t(x) 2 - [log 2 t(x)/2Jt(x) + [log 2 t(x)/2J 2 - 9/4. 

From (7) and the general formula for a DOL growth ftuuction (I) it follows that fG 

cannot be a DOL growth function since 

fG(t) -I/4 t 2 ~ t log t. E] 

That context dependent L systems using a two letter alphabet cannot yield all 

DOL growth functions is ascertained by the couuterexample f(0) = f(1) = f(2) = I and 
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f(t) = t for t > 2, which is surely a (P)DOL growth function. 

Corollary 3. The family of binary (P)DIL growth functions has nonempty intersections 

with the family of (P)DOL growth functions and neither contains the other. 

An open problem in this area is: does the family of (P)DIL growth functions co- 

incide with the family of (P)D2L growth functions. A proof of conjecture 3 would 

show that the family of PDIL growth functions is properly contained in the family of 

PD2L growth functions. 

Using a similar technique as in lemma 2 we can, however, say the following. 

Theorem 10. 

(i) If f(t) is a PD2L growth function then f(t) is a D(2,0)L growth function. 

(ii) If f(t) is a D2L growth function then f(t)+1 is a D(2,0)L growth function. 

Proof. 

(i) Let G = <W,6,w> be a PD2L. Define a D(2,0)L G' = <W',6',w'> as follows. 

W' = W u W x {@} where @ ~ W; w' = ala2...an_1(an,@) for w = ala2...an; 

6'(ab,c,k) = 6(a,b,c), 6'(X,c,k) = k, 

6'(ab~,(c,@), ~) = 6(a,b,C)ala2.. .am_1(am,#) i f  ~ (h ,o , l )  = a la2. . .am, 

~ ' (~ , (c ,~ ) ,~ )  = a l a 2 . . . % _ 1 ( % , ~ )  i f  a(~,c,~) = %a2 . . .  ~ ,  

for all b,c ~ W and all a ~ Wu{l}. 

Then 6't(w ') = blb2...bm_1(bm,@) if 6t(w) = blb2...bm, and therefore fG' = fG" 

(ii) Let G = <W,8,w> be a D2L. Define a D(2,0)L G' = <W',6',w'> as follows. 

W' = WU{@} where @ ~ W; w' = w@; 

6'(ah,c,~) = 6(a,b,c), ~'(~,c,~) = ~, 

for all b,c c W and all a E WU{X}. 

Then 6't(w ') = 6t(w)@ and therefore fG,(t) = fG(t)+1. 

Rozenberg [86] proved that a D(m,n)L can be simulated in real time by a D(k,~) 

if k+£ = m+n and k,£,m,n > 0. Therefore, by using the same trick as above we have 

the following: 

Corollar 2 4. 

(i) If f(t) is a PD(m,n)L growth function then f(t) is a D(k,~) growth function 

where k+£ = m+n. 
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(ii) If f is a D(m,n)L growth function then f(t)+1 is a D(k,~) growth function where 

k+~ = m+n. 

In particular, (i) and (ii) hold for k = m+n and ~ = 0 and vice versa. 

3.4. De__cision prob!ems ' 

According to section 2 and the beginning of section 3 (and the references con- 

tained therein) the analysis, synthesis, growth equivalence, classification and 

structural problems all have a positive solution for context independent growth, i.e. 

there is an algorithm which gives the required answer or decides the issue. (This is 

not completely true for the synthesis problem, see theorem 33 in Paz & Sa!omaa [75].) 

The corresponding problems for the general case of DIL systems have been open. It 

will be shown here that for DiLs these problems all have a negative solution essen- 

tially because already PDILs can simulate any effective process. (Note that by theo- 

rems 8 and 9 the above problems have a positive solution if we restrict ourselves to 

unary DILs or to DILs with a bounded growth function.) Furthermore, we shall show 

that similar questions cohcerning growth ranges of DILs have similar answers. First 

we need the notion of a Tag system 7 . A Tag system is a 4 tuple T = <W,6,w,6> where W 

is a finite nonempty alph~]~et, 6 is a total mapping from W into W*, w c WW* is the 

initial string, and B is a positive integer called the deletion n~er. The operation 

of a Tag system is inductively defined as follows: the initial string w is generated 

by T in 0 steps. If w t = ala2...a n is the t-th string generated by T then wt+ I = 

= a a .an6(a I) is the (t+1)-th string generated by T. ~+1 6+2"" 

Lemma 4 (Minsky~). It is undecidable for an arbitrary Tag system T with S = 2 and a 

given positive integer k whether T derives a string of length less than or equal to 

k. In particular it is undecidable whether T derives the empty word. 

We shall now show that if it is decidable whether or not an arbitrary PDIL has 

a growth function of growth type I then it is decidable whether or not an arbitrary 

Tag system with deletion number 2 derives the empty word k. Therefore, by lemma 4 it 

is undecidable whether a PDIL has a growth function of type I. 

Let T = <WT,~T,WT,2> be any Tag system with deletion number 2. Define a PD(I,0)L 

G = <W,~,w> as follows: 8 

w = w T WT×W 

where W~ = {a I a e WT}, W~ n W T = ¢ and ¢,$ @ WTUWT, 

7 
Minsky, Op. cit. 

8 
The idea of simulating Tag systems with ILs occurs already in the first papers on 
L systems i.e. [333 and [123. 
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w = Wm¢~ 

~ ( ~ , a , ~ )  = ~ ( ~ , a , ~ )  = ~ ( ~ , ( a , b ) , ~ )  = ~ ,  

~(~,~,~) = a ( $ , ~ , ~ )  = ~ ( ~ , $ , ~ )  = a ( ~ , ~ , ~ )  = a ( $ , ~ , ~ )  = a ( ~ , ~ , ~ )  = ~, 

6(a,b,k)  = ~ (# , (b , c ) , k )  = ~ (a , (b , c ) , k )  = b,  

~ ( a , ~ , ~ )  = ¢, 

~(# ,e ,~ )  = ~ ( ( a , b ) , o , ~ )  = ( c , h ) ,  

~(~,¢,~) = ~((a,b),~,X) = ~T(b)¢, 

for all a,b,c E W T and all ~,~, c W~. 

A sample derivation is: 

T 

ala2a3a4a 5 

a3a4a56T(a I ) 

a58T(a1)6T(a3), etc. 

G 

ala2a3a4a5@ 

~1a2a3a4a5@ 

~(a2,al)a3a4a5@ 
~,~2(a3,al)a4a5~ 
~$a3(%,al)a5~ 
~3a4(a5,al)~ 

$$~(a4,a3)a58T(al)~ 

~$$a4(a5,a3)~T(al)@, etc. 

In the simulating PDIL G signals depart from the left, with distances of one 

letter in between, and travel to the right at an equal speed of one letter per time 

step. Therefore, the signals cannot clutter up. It is clear that if the Tag system T 

derives the empty word, then there is a time t O such that 6t0(w) = sk@ and ~t(w) = 

= $k+I for some k and for all t > t O . Conversely, the only way for G to be of growth 

type I is to generate a string of the form sk@. (If the string always contains letters 

other than ~ and @ then at each second production step there appears a new occurrence 

of $ and the string grows indefinitely long. ) Therefore, T derives the empty word iff 

G is of growth type I. Since it is undecidable whether or not an arbitrary Tag sys- 

tem with deletion number 2 derives the empty word it is undecidable whether or not a 

PDIL is of growth type I. 

Theorem 1 1. 

(i) It is undecidable whether or not an arbitrary PDIL is of growth type i, 

i ~ < I , 1 ~ , 2 , 2 ~ , 3 } .  

(ii) It is undecidable whether or not an arbitrary DIL is of growth t ype  i, 

i ~ {o,I,1-~,2,2~,3}. 
(iii) It is undecidable whether an arbitrary PDIL has an unbounded growth function. 
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Proof. 

(i) Let G I = <W1,61,w1 > be a PD(I,0)L simulating a Tag system T as discussed above. 

= I 2 21 ~ Let G 2 <~2,~2,w2 > be a PD(1,0)L of growth type i, i £ {1,15, , ~,jj such that 

W2oW I = @. Define G 3 = <W3,83,w3 > as follows: 

w 3 = W2u{$} ; w 3 = w2; 

= 62 u (~3($,$,~)=63(~,$,~)=$} u {63($,a,~)=62(~,a,~) f a 63 W2}. 

Clearly, fG3 = fG2. Now construct a PD(I,0)L G 4 = <W4,64,w4 > as follows: 

W 4 : W3uWI; w 4 = Wl; 

= 63 u (61-{~i(~,¢,~)=$}) u {64(~,¢,~) = 64 w3}. 

t O t O 
If there is a time t o such that 81 (w I) = @k¢ for some k then 64 (w4) = sk@ 

t+t0+1 ~ fG4(t+t0+l fG2 and ~4 (w4) = sk~ (w3) for all t, i.e. ) = (t)+k. If there is 

no such time t O then fG4(t) = fG1(t) for all t. In this latter case it is easy 

to see that fG1(t) ~ t, i.e. G 4 is of growth type 2. By the previous discussion 

it is ~ndecidahle whether such a time t O exists and therefore whether fG4 is of 

growth type i or 2. 

(ii) Follows by a similar argument if we talk about D(I,0)Ls instead of PD(I,0)Ls, 

change everywhere 6. (~,$,h) = $ into ~.(k,$,h) = k, and let i range over 
I 1 

{0,I ,I~ ,2,2~ ,3}. 

(iii) Follows from (i). 

Corollary 5. There is no algorithm which, for an arbitrary PDIL G, gives an explicit 

expression for fG in a formalism we can use. 

The undeeidability of whether a (P)DIL is of a certain growth type holds (be- 

cause of the proof method) also for future refinements of the classification. We could 

have proved theorem 11 by simulating Turing machines with PDILs (cf. lemmas I and 2) 

and reducing everything to the printing problem for Turing machines. This, however, 

would have caused some difficulties with the slow growth types. 

Theorem 11 has some interesting corollaries. Two DIL systems GI,G 2 are said to 

be Icrn~uage equivalent if L(G I ) = L(G2). Now it is known that the language equiva- 

lence for e.g. OL languages is undecidable. The status of the language equivalence 

problem for DOL languages is unknown as yet. (Cf. [5,99,84]. ) By the special tract- 

able nature of PDIL systems it might well be that the language equivalence problem 

is decidable in this case. However, in the proof of theorem 11 (i) it is clearly 
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undeeidable whether L(G 4) = L(G]). Therefore we have: 

Corollary 6. The language equivalence of PDIL languages is undecidable. (According 

to theorem 12 this is even the case if we are informed in advance that both PD]Ls 

2 ~ concerned are of the same growth type i, i ~ {2, ~,3}.) 

V.I. Varshavsky proposed the following problem: "Consider the class of D2L gram- 

mars producing strings which stabilize at a certain length. Make some reasonable as- 

sumptions about the maximal production length (e.g. 2) and axiom length (e.g. I) and 

find the maximal stable string length as a function of the number of letters in the 

alphabet. ''9 The restrictions as stated in the above problem are no restrictions on 

the generating power of any usual subfamily of DILs since it is clear that by enlarg- 

ing the alphabet we can simulate any DIL G I by a DIL G 2 where G 2 takes k I production 

steps to generate the axiom of G I and takes a constant number k 2 of productions steps 

k I +k2t 
of G 2 to simulate one production step of GI, i.e. 6 2 (w2) = 6 t i(wi) for all t. 

(This is similar to deriving e.g. the Chomsky Normal Form for context free grammars. ) 

Suppose we restrict ourselves to the family of PDILs and there is a function as pro- 

posed by Varshavsky where, moreover, this function is computable. Then it would also 

be decidable whether or not a PDIL G simulating a Tag system T ever generates a 

string of the form $k¢ for some k: contradicting lemma 4. Therefore, we have 

Corollary 7. Let V. be the family of PDILs G = <W,~,w> such that #W = i, w ~ W, 
1 

ig(6(a,b,k)) -< 2 for all b ~ W and a ~ Wu{k}, and Ig(~t0+t(w)) = Ig(~tO(w)) for some 

t O and all t. Let v(i) = max{ig(v)IvEL(G) and GEV.}.I There is no computable function 

f such that v(i) -< f(i) for all i, i.e. v increases faster than any computable function 

and hence Varshavsky's problem has a negative solution. 

Theorem 12. 

(i) It is undecidable whether or not two PDILs are growth equivalent even if we 

have the advance information that they are of the same grow~th type i, 

i c {2,2~,3}. 

(ii) It is undecidable whether or not two DILs are growth equivalent even if we 

have the advance information that they are of the same growth type i, 

i ~ {I I 1,3} ~,2,2~ . 

(iii) The growth equivalence of two DiLs is decidable if we have the advance infor- 

mation that they both have bounded growth functions. 

Proof. Take an arbitrary Tag system T and simulate it with a PDIL G I as in the proof 

of theorem 11. 

(i) Now construct two variants of GI, called G 2 and G3, which act like G I until ~¢ 

occurs in a string. Then G 2 and G 3 start different growths albeit of the same 

9 
In: Unusual automata theory. Univ. of Aarhus, Comp. Sci. Dept. Tech. Rept. 
DAIMI PB-15 (1973), 20. 
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growth type i, i c (2,2½,3)° Now let f be another growth function of type i. 

Since PDIL growth functions are closed under addition (theorem 5) both g = 

= fG2+f and h = fG3+f are PDIL growth functions of type i, say of G 4 and G 5. 

If $¢ never occurs in a string then fG4 = fG5 = fG1+f and fG1(t) ~t. If $¢ 

occurs in a string then fG4 # fG5. Since it is undecidable whether $@ occurs 

in a string it is undecidable whether or not fG4 = fG5 , where it is known that 

b~th fG4 and fG5 are of growth type i, i ~ {2,2½,3}. 

(ii) Similar to (i). Since we talk here about DILs we can slow the growth function 

fG1 down to fG~ where fG' I < l°gr t, r > I, (cf. discussion after example 9). 

(iii) Trivial. 0 

Note that the theorem above leaves open the decidability of the question of two 

PDILs being growth equivalent if we are informed in advance that they are both of 

growth type I~ This is because in our simulation method of Tag systems all simulat- 

ing PDILs are either of growth type I or growth type 2. 

Theorem 13. It is undecidable whether two PD2Ls are growth equivalent even if we are 

informed in advance that they are both of growth type 1½. 

Proof. Take a PD2L O I simulating a Tag system T. Construct a PD2L O 2 which simulates 

G I such that fG2(t) < log r fG1(t) (cf. discussion after example 9). Since fG1(t) ~ t 

or fG1(t) < m for some constant m, fG2 is of growth type 11 or I. Then use the method 

of proof of theorem 12 (i). 0 

Theorems 11-13 have analogues for the growth ranges of DIL systems. The grow$h 

range of a DIL G is defined by R(G) = {ig(v) I v c L(G)). Although the results on 

growth ranges are not corollaries of theorems 11-13 they follow by the same proof 

method. Two DILs G I and G 2 are said to be growth rc~ge equivalent iff R(G I) = R(G2). 

Theorem 14. The growth range equivalence is undecidable for two PDILs G I and G 2 even 

if we have advance information that they both are of growth type i, i c {2,2½,3). 

Proof. The proof of theorem 12 (i) will do since we can choose fG1 and fGo__ such 

that they are strictly increasing at different rates iff a substring $@ occurs. 0 

Under appropriate interpretation we can prove the undeeidability of growth r~uge 

type classification etc. analogous to theorem 11-13. Note, however, that the growth 

range type can be different from the growth function type of a DIL. E.g. fG(t) = 

2[iog2 t] 
= is of growth type I whereas R(G) = {2 i I i -> 0) and therefore is expon- 

ential. 
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Afortiori all undecidability results above hold under appropriate interpreta- 

tion also for nondeterministic context dependent L systems. 


