
BOUNDED PARALLELISM AND REGULAR LANGUAGES

D. WOOD

Department of Applied Mathematics, McMaster University

CONTENTS

Section I: Introduction and Overview

Section 2: n-parallel finite state generators

Section 3: Variations on the basic model of n-PFSG's

Section 4: An alternative formulation, n-PRLG's, and closure
properties

Section 5: Characterisation Theorems for ~[I and ~irl

Section 6: Concluding Remarks

Section i: Introduction and Overview.

If we examine the rewriting systems of Ibarra (I), the so called

Simple Matrix Grammars (SMG), we see that rewriting has the following

three facets, namely

(i) rewriting occurs in PARALLEL,

(2) the parallelism is, a priori, BOUNDED, and

(3) the rewriting is, a priori, CONTROLLED.

Secondly, if we examine the rewriting systems of Lindenmayer

[61], the so called E0L systems, and compare and contrast with the

(!) Ibarra, O. H., Simple matrix languages, Information and Control
17 (1970), 359-394.

293

SMG's we find:

(1) rewriting again occurs in PARALLEL,

(2) the parallelism is, a priori, UNBOUNDED and EXHAUSTIVE, and

(3) the rewriting is, a priori, UNCONTROLLED.

Later extensions to E0L systems have lead to two kinds of CONTROL

(a) 'RULE-CONTEXT-FREE' CONTROL - Rozenberg's Tabled Systems

[81]; rules are applied EXHAUSTIVELY from one table of

rules from a given set of tables. However, within this

restriction a particular rule is applied independently of

the other rules that are applied at the same time.

(b) 'RULE-CONTEXT' CONTROL - [ii]. The application of a partic-

ular rule is dependent upon its context within the sequence

of rules applied at a particular time.

In the light of these developments in E0L systems, simple matrix

grammars can be considered to have either 'RULE-CONTEXT' or 'RULE-

CONTEXT-FREE' CONTROL. In the following we present a survey of

results on the effect of changing facet (3) for SMG to:

(3) the rewriting is UNCONTROLLED.

This is the investigation of EOL-like systems where the paral-

lelism is bounded, and can be considered to be the investigation of

the development of filamentous organisms under an environment which

deprives the cells of "food". We consider two different kind of gen-

erating systems, finite state generators and right linear grammars,

which we generalise to give n-parallel finite state generators and

n-parallel right linear grammars.

Section 2: n-parallel finite state generators.

Definition

A f~nite state generator (FSG) G, is a quintuple (N,T,E,S,F)

where

294

N is a finite set of points,

T is a terminal alphabet,

E is a set of edges, E VxT*xV,

S N is a set of entry points, and

F N is a set of exit points.

Example 1

>aa

" b

D e f i n i t i o n

N = {1,2}, T = {a,b},

E = {(l,aa,2), (2,b,l)}

S = {i} and F = {2}.

Given G, an FSG, then we write u÷vx if u,v in N, x in T* and

(u,x,v) in E.

Similarly, we write u÷ivx, i>0 if there exist sequences u 0, ,u i

and Xl,...,x i such that

uj÷uj+iXj+l, 0~j<i,

x = Xl...xi, u = u 0 and v = u i.

+ i
We write u÷ vx if there exists i>0 such that u÷ vx, and we write

* +
u ÷ Vx if either u÷ vx or u = v and x = e. The language generated by

an FSG G is

w

L(G) = {x: u+ vx, u in S, v in F}.

We say L~T is a finite 8tare language (FSL) iff there exists an FSG

G such that L = L(G). We usually say L is a regula~ set, so we denote

the family of FSL's by ~ .

Example 1 (cont.)

L(G) = {aa,aabaa,aabaabaa,...}

= {aa(baa) i: i~0}.

We can now consider n-parallel FSGs. The basic idea is to have

n FSG's operating synchronously and in parallel. Rather than re-

peating a generalised form of the notation above, we develop the

model informally.

295

Consider a 2-PFSG (2-parallel FSG) G:

Initially these two processors (or generators) (G 1 and G 2) are

both alive and idle. We start them up simultaneously and synchro-

nously (by which we mean we move along edges at the same time).

Thus we have:

point reached and word generated so far:

G 1 G 2

time = 0 1 2

= 1 la 2b

= 2 laa 2bb

= 3 laaa 2bbb

i

2

3

o o o o ~ o

Thus, we say L(G) = {albl:

If the two processors each reach an exit point at the same time,

then we catenate the two words generated so far. Here we have, since

both points 1 and 2 are exit points that:

word generated by G so far

time = 0 E

ab

a2b 2

a3b 3

i~0}.

In a similar way we can generate languages given by an n-PFSG,

n~l, called n-PFSL's. Let ~ denote the family of n-PFSL's.
n

We have:

Result i: ~'~= ~i' trivially.

Result 2: For n~l, ~ n ~ ~n+l"

296

Proof: Simply add an extra processor Gn+ 1 to G, which generates

nothing but the empty word, giving an (n+I)-PFSG, i.e.

Result 3: ~-edges do add generating power.

Proof: Consider L = {alb3: 0~i~j}, L cannot be generated without an

c-edge occurring in at least one processor.

{a!i i but not Result 4: For n~2, L n = ...a n : i~0} is in ~ n in

n-l"

Corollary: For n>l, ~ n ~ ~n+l: an infinite hierarchy of lan-

guages.

Result 5: ~2 ~ family of one-counter languages.

Result 6: For n~l, ~ ~ family of context-sensitive languages.
n

Result 7: For n~3, ~ and the family of context-free languages are
n

incomparable.

These results will be found in Wood (2).

Section 3: Variations on the basic model of n-PFSG's.

In the previous section, the terminology alive and idle with

respect to n-PFSG's was introduced. If we say that an FSG dies when

it reaches an exit point, then a word is output by an n-PFSG whenever

all n processors die at the same time. We also say a processor is

active when it is alive and not idle.

Variation i: Given m FSGs, m>0 and n, 0<n<m then allow n live pro-

cessors (at most) to be active at one time, and no longer require

that n processors die together. A word is generated by GI,...,G m if

initially, they become alive simultaneously and n of them become

active for one time step, then another n become active for the next

(2) Wood, D., Properties of n-parallel finite state languages,
Utilitas Mathematica 4 (1973), 103-113.

297

time step, and so on until all m processors are dead. Then we cate-

nate the m words together left to right, to give a word generated by

Let ~(m,n) be the family of languages defined by this GI,...,G m.

model. Then we have:

Result 8: ~ = ~(m,n) for all m,n, 0<n<m. That is the model degen-

erates.

Variation 2: Let the m processors proceeding from left to right be-

come active n at a time (if there are less than n, then the remaining

number of processors), and all n die simultaneously. Let ~ de-
m,n

note the corresponding family of languages.

Result 9: For m>0, 0<nKm, where m = np+q, 0Kq<n, then ~ =
m,n

(~n)P~q°

Result i0: ~ m,n=~ m+l,n' for all m,n, 0<ngm.

Result ii: ~ m,n and ~ m,n+l are incomparable, for all m,n, 0<n.<m.

Note that ~ m , m = ~ m and ~ -m,1 = ~ ' f o r a l l m>O.

Variation 3: We can impose more structure on the n-PFSG by intro-

ducing a traffic cop, who by making use of a book of regulations de-

termines which edges are allowable edges for the n FSG's at this

time instant.

Example 2 ~ a b a ~ ~ V e n the 2-PFSG G:

with the rule book {<(l,a,l),v(2,a,2)>, <(l,b,1), (2,b,2)>} then pro-

cessor G 1 can only traverse the a-edge whenever processor G 2 tra-

verses an a-edge, thus L(G) = {ww: w in {a,b}*}. The rule book is

usually called a control set, the corresponding family of languages

is denoted ~ C
n

Result 12- "~n ~ ~n c' for all n>l.

C = ~[n] , the family of n-~ight linear SML (3) Result 13: ~n

(3) see footnote i.

298

These results can be found in Wood (4)

Section 4: An alternative formulation, n-PRLG's and closure proper-

ties.

Definition

For n~l, let G = (NI,...,Nn,T,S,P) where Ni, l~i~n, are disjoint

nonterminal alphabets,

T is a terminal alphabet,
n

S is a sentence symbol, S not in ~N i = N,

P is a finite set of rules of the form:

(i) S÷Xl...Xn, X i in Ni,

(ii) X÷aY, X,Y in Ni, some i, a in T*, and

(iii) X÷a, X in N i, some i, a in T*.

G is an n-parallel right linear grammar, n-PRLG.

We write x => y iff

either x = S and S÷y in P,

or x = YlXl...YnXn , y = YlXl...YnXn , Yi in T*, X i in N i, x i in

÷x. in P, l~i~n. T*uT*N i and X l i

In the usual way we obtain x ~+ y and x => y, notice that either

a valid sentential form, other than S itself, has either no nonter-

minals or exactly n nonterminals° L(G) = {x: S =2 x, x in T*}, and

L~ T* is an n-PRLL iff there exists an n-PRLG G such that L = L(G).

Let the family of n-PRLL's be
n

Result 14: ~i = ~.

Result 15: ~n~n, for all n>l.
/1

Result 16: Closure and non-closure results for ~ n- and ~n, n>l.

(4) Wood, D., Two variations on n-parallel finite state generators,
McMaster University CS TR 73/3 (1973).

299

operation

union

homomorphism

finite
substitution

substitution

catenation

intersection

complementation

intersection
with regular set

a-NGSM maps

~n ~n
No Yes

No Yes

No Yes

No No

No No

No No

No No

No Yes

(accepting states) No Yes

These results are detailed in Rosebrugh and Wood (5) and Wood (6) .

Section 5: Characterisation Theorems for ~ iI and ~ i i.

Definition

Let ~ ii = O ~ i and ~ii = O ~ and <M> denote an
i=l i= 1 l

infinite sequence MI,M2,... where M ~i T*. Define L(M) = {x: x in Mi,

some i~l}. A sequence <M> is a regular s~quence iff there exists an

FSG G such that L(M) = L(G) and M = {x: u+ivx, u in S, v in F}.
1

Given two sequences <MI> and <M2> define <MI> ~ <M2>, the

synchronised product of <Ml> with <M2>, as the sequence MIIM21,MI2M22,

.... Define <MI> G<M2>, the synchronised union of <Ml> with

<M2>, as the sequence, MllUM21,MI2UM22,...

Result 17: For n>0, L in~ n iff there exist mxn regular sequences

<M>, l~i~m, l(j~n for some m)l such that
13

(5) Rosebrugh, R. D., and Wood, D., Restricted parallelism and
right linear grammars, McMaster University CS TR 72/6 (1972).

(6) See footnote 2.

300

L = L(M) where <M> = <MII > Q <MI2> G °.. <Mln >

~<M21 >

®<Mml>®. O<Mmn>
Result 18: For n>0, L in ~ iff there exist n regular sequences

n

<Mo>I such that L = L(M) where <M> = <MI> ~ .•. Q <Mn >"

Definition

Let ~be the smallest family of sequences containing the

regular sequences and closed under Q and~and let L(~) = {L(M):

<M> in~ }.

Result 19: Sequence Characterisation of ~ i i.

Definition

Let ~ be the smallest family of sequences containing the regular

sequences and closed under ~ .

Result 20: Sequence Characterisation of ~II"

Definition

An a-NGSM is a nondeterministic generalised sequential machine

with accepting states. Let L = (all...a i: i~0}.
n n

Result 21: Image Theorem for ~n an__dd ~n

For all L in /~n, n>0 there exists an a-NGSM M such that

L = M(Ln). Since ~ n~ ~n the result holds for ~n.

Result 22: Language Characterisation of ~n°

For n>0, ~ is the smallest family of languages con-
n

taining L and closed under union and a-NGSM maps. n

For further details see Wood (7) and Rosebrugh and Wood (8) .

(7)
(8)

See footnote 2.
Rosebrugh, R. D., and Wood, D., A characterization theorem for
n-parallel right linear languages, Journal of Computer and
System Sciences 7 (1973), 579-582.

301

Section 6: Concluding Remarks.

We close by first posing two open problems and secondly intro-

ducing some possibilities for future research.

Open problem I: Is the equivalence of two n-PRLG's decidable or

undecidable?

Open problem 2: Prove%J9 i i is not closed under intersection. It
p 4

is easy to construct examples of languages which are formed by the

intersection of two n-PRLL, which intuitively are not in ~ i I.

some new (or adapted) proof techniques are needed.

Future research possibilities

(i)

(2)

But

Can generalise n-PRLG (or n-RLSMG) in the same way that Salomaa

[103] has generalised E0L systems.

Rewriting in E0L systems has been considered as a one-state NGSM

map, Salomaa [103] has considered one extension of this notion,

however it can be extended in another way by allowing more than

one state in the NGSM. This extension can then be applied to

n-PRLG (n-PFSG and n-RLSMG).

