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Section i: Introduction and Overview. 

If we examine the rewriting systems of Ibarra (I), the so called 

Simple Matrix Grammars (SMG), we see that rewriting has the following 

three facets, namely 

(i) rewriting occurs in PARALLEL, 

(2) the parallelism is, a priori, BOUNDED, and 

(3) the rewriting is, a priori, CONTROLLED. 

Secondly, if we examine the rewriting systems of Lindenmayer 

[61], the so called E0L systems, and compare and contrast with the 

(!) Ibarra, O. H., Simple matrix languages, Information and Control 
17 (1970), 359-394. 
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SMG's we find: 

(1) rewriting again occurs in PARALLEL, 

(2) the parallelism is, a priori, UNBOUNDED and EXHAUSTIVE, and 

(3) the rewriting is, a priori, UNCONTROLLED. 

Later extensions to E0L systems have lead to two kinds of CONTROL 

(a) 'RULE-CONTEXT-FREE' CONTROL - Rozenberg's Tabled Systems 

[81]; rules are applied EXHAUSTIVELY from one table of 

rules from a given set of tables. However, within this 

restriction a particular rule is applied independently of 

the other rules that are applied at the same time. 

(b) 'RULE-CONTEXT' CONTROL - [ii]. The application of a partic- 

ular rule is dependent upon its context within the sequence 

of rules applied at a particular time. 

In the light of these developments in E0L systems, simple matrix 

grammars can be considered to have either 'RULE-CONTEXT' or 'RULE- 

CONTEXT-FREE' CONTROL. In the following we present a survey of 

results on the effect of changing facet (3) for SMG to: 

(3) the rewriting is UNCONTROLLED. 

This is the investigation of EOL-like systems where the paral- 

lelism is bounded, and can be considered to be the investigation of 

the development of filamentous organisms under an environment which 

deprives the cells of "food". We consider two different kind of gen- 

erating systems, finite state generators and right linear grammars, 

which we generalise to give n-parallel finite state generators and 

n-parallel right linear grammars. 

Section 2: n-parallel finite state generators. 

Definition 

A f~nite state generator (FSG) G, is a quintuple (N,T,E,S,F) 

where 
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N is a finite set of points, 

T is a terminal alphabet, 

E is a set of edges, E VxT*xV, 

S N is a set of entry points, and 

F N is a set of exit points. 

Example 1 

>aa 

" b  

D e f i n i t i o n  

N = {1,2}, T = {a,b}, 

E = {(l,aa,2), (2,b,l)} 

S = {i} and F = {2}. 

Given G, an FSG, then we write u÷vx if u,v in N, x in T* and 

(u,x,v) in E. 

Similarly, we write u÷ivx, i>0 if there exist sequences u 0, .... ,u i 

and Xl,...,x i such that 

uj÷uj+iXj+l, 0~j<i, 

x = Xl...xi, u = u 0 and v = u i. 

+ i 
We write u÷ vx if there exists i>0 such that u÷ vx, and we write 

* + 
u ÷ Vx if either u÷ vx or u = v and x = e. The language generated by 

an FSG G is 

w 

L(G) = {x: u+ vx, u in S, v in F}. 

We say L~T is a finite 8tare language (FSL) iff there exists an FSG 

G such that L = L(G). We usually say L is a regula~ set, so we denote 

the family of FSL's by ~ . 

Example 1 (cont.) 

L(G) = {aa,aabaa,aabaabaa,...} 

= {aa(baa) i: i~0}. 

We can now consider n-parallel FSGs. The basic idea is to have 

n FSG's operating synchronously and in parallel. Rather than re- 

peating a generalised form of the notation above, we develop the 

model informally. 
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Consider a 2-PFSG (2-parallel FSG) G: 

Initially these two processors (or generators) (G 1 and G 2) are 

both alive and idle. We start them up simultaneously and synchro- 

nously (by which we mean we move along edges at the same time). 

Thus we have: 

point reached and word generated so far: 

G 1 G 2 

time = 0 1 2 

= 1 la 2b 

= 2 laa 2bb 

= 3 laaa 2bbb 

i 

2 

3 

o o o  o ~ o  

Thus, we say L(G) = {albl: 

If the two processors each reach an exit point at the same time, 

then we catenate the two words generated so far. Here we have, since 

both points 1 and 2 are exit points that: 

word generated by G so far 

time = 0 E 

ab 

a2b 2 

a3b 3 

i~0}. 

In a similar way we can generate languages given by an n-PFSG, 

n~l, called n-PFSL's. Let ~ denote the family of n-PFSL's. 
n 

We have: 

Result i: ~'~= ~i' trivially. 

Result 2: For n~l, ~ n ~ ~n+l" 
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Proof: Simply add an extra processor Gn+ 1 to G, which generates 

nothing but the empty word, giving an (n+I)-PFSG, i.e. 

Result 3: ~-edges do add generating power. 

Proof: Consider L = {alb3: 0~i~j}, L cannot be generated without an 

c-edge occurring in at least one processor. 

{a!i i but not Result 4: For n~2, L n = ...a n : i~0} is in ~ n in 

n-l" 

Corollary: For n>l, ~ n ~ ~n+l: an infinite hierarchy of lan- 

guages. 

Result 5: ~2 ~ family of one-counter languages. 

Result 6: For n~l, ~ ~ family of context-sensitive languages. 
n 

Result 7: For n~3, ~ and the family of context-free languages are 
n 

incomparable. 

These results will be found in Wood (2). 

Section 3: Variations on the basic model of n-PFSG's. 

In the previous section, the terminology alive and idle with 

respect to n-PFSG's was introduced. If we say that an FSG dies when 

it reaches an exit point, then a word is output by an n-PFSG whenever 

all n processors die at the same time. We also say a processor is 

active when it is alive and not idle. 

Variation i: Given m FSGs, m>0 and n, 0<n<m then allow n live pro- 

cessors (at most) to be active at one time, and no longer require 

that n processors die together. A word is generated by GI,...,G m if 

initially, they become alive simultaneously and n of them become 

active for one time step, then another n become active for the next 

(2) Wood, D., Properties of n-parallel finite state languages, 
Utilitas Mathematica 4 (1973), 103-113. 
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time step, and so on until all m processors are dead. Then we cate- 

nate the m words together left to right, to give a word generated by 

Let ~(m,n) be the family of languages defined by this GI,...,G m. 

model. Then we have: 

Result 8: ~ = ~(m,n) for all m,n, 0<n<m. That is the model degen- 

erates. 

Variation 2: Let the m processors proceeding from left to right be- 

come active n at a time (if there are less than n, then the remaining 

number of processors), and all n die simultaneously. Let ~ de- 
m,n 

note the corresponding family of languages. 

Result 9: For m>0, 0<nKm, where m = np+q, 0Kq<n, then ~ = 
m,n 

( ~n)P~q° 

Result i0: ~ m,n=~ m+l,n' for all m,n, 0<ngm. 

Result ii: ~ m,n and ~ m,n+l are incomparable, for all m,n, 0<n.<m. 

Note that ~ m , m  = ~ m and ~ -m,1  = ~ ' f o r  a l l  m>O. 

Variation 3: We can impose more structure on the n-PFSG by intro- 

ducing a traffic cop, who by making use of a book of regulations de- 

termines which edges are allowable edges for the n FSG's at this 

time instant. 

Example 2 ~ a  b a ~ ~ V e n  the 2-PFSG G: 

with the rule book {<(l,a,l),v(2,a,2)>, <(l,b,1), (2,b,2)>} then pro- 

cessor G 1 can only traverse the a-edge whenever processor G 2 tra- 

verses an a-edge, thus L(G) = {ww: w in {a,b}*}. The rule book is 

usually called a control set, the corresponding family of languages 

is denoted ~ C 
n 

Result 12- "~n ~ ~n c' for all n>l. 

C = ~[n] , the family of n-~ight linear SML (3) Result 13: ~n 

(3) see footnote i. 
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These results can be found in Wood (4) 

Section 4: An alternative formulation, n-PRLG's and closure proper- 

ties. 

Definition 

For n~l, let G = (NI,...,Nn,T,S,P) where Ni, l~i~n, are disjoint 

nonterminal alphabets, 

T is a terminal alphabet, 
n 

S is a sentence symbol, S not in ~N i = N, 

P is a finite set of rules of the form: 

(i) S÷Xl...Xn, X i in Ni, 

(ii) X÷aY, X,Y in Ni, some i, a in T*, and 

(iii) X÷a, X in N i, some i, a in T*. 

G is an n-parallel right linear grammar, n-PRLG. 

We write x => y iff 

either x = S and S÷y in P, 

or x = YlXl...YnXn , y = YlXl...YnXn , Yi in T*, X i in N i, x i in 

÷x. in P, l~i~n. T*uT*N i and X l i 

In the usual way we obtain x ~+ y and x => y, notice that either 

a valid sentential form, other than S itself, has either no nonter- 

minals or exactly n nonterminals° L(G) = {x: S =2 x, x in T*}, and 

L~ T* is an n-PRLL iff there exists an n-PRLG G such that L = L(G). 

Let the family of n-PRLL's be 
n 

Result 14: ~i = ~. 

Result 15: ~n~n, for all n>l. 
/1 

Result 16: Closure and non-closure results for ~ n- and ~n, n>l. 

(4) Wood, D., Two variations on n-parallel finite state generators, 
McMaster University CS TR 73/3 (1973). 
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operation 

union 

homomorphism 

finite 
substitution 

substitution 

catenation 

intersection 

complementation 

intersection 
with regular set 

a-NGSM maps 

~n ~n 
No Yes 

No Yes 

No Yes 

No No 

No No 

No No 

No No 

No Yes 

(accepting states) No Yes 

These results are detailed in Rosebrugh and Wood (5) and Wood (6) . 

Section 5: Characterisation Theorems for ~ iI and ~ i i. 

Definition 

Let ~ ii = O ~ i and ~ii = O ~ and <M> denote an 
i=l i= 1 l 

infinite sequence MI,M2,... where M ~i T*. Define L(M) = {x: x in Mi, 

some i~l}. A sequence <M> is a regular s~quence iff there exists an 

FSG G such that L(M) = L(G) and M = {x: u+ivx, u in S, v in F}. 
1 

Given two sequences <MI> and <M2> define <MI> ~ <M2>, the 

synchronised product of <Ml> with <M2>, as the sequence MIIM21,MI2M22, 

.... Define <MI> G<M2>, the synchronised union of <Ml> with 

<M2>, as the sequence, MllUM21,MI2UM22,... 

Result 17: For n>0, L in~ n iff there exist mxn regular sequences 

<M>, l~i~m, l(j~n for some m)l such that 
13 

(5) Rosebrugh, R. D., and Wood, D., Restricted parallelism and 
right linear grammars, McMaster University CS TR 72/6 (1972). 

(6) See footnote 2. 
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L = L(M) where <M> = <MII > Q <MI2> G °.. <Mln > 

~<M21 > .... 

®<Mml>®. O<Mmn> 
Result 18: For n>0, L in ~ iff there exist n regular sequences 

n 

<Mo>I such that L = L(M) where <M> = <MI> ~ .•. Q <Mn >" 

Definition 

Let ~be the smallest family of sequences containing the 

regular sequences and closed under Q and~and let L(~) = {L(M): 

<M> in~ }. 

Result 19: Sequence Characterisation of ~ i i. 

Definition 

Let ~ be the smallest family of sequences containing the regular 

sequences and closed under ~ . 

Result 20: Sequence Characterisation of ~II" 

Definition 

An a-NGSM is a nondeterministic generalised sequential machine 

with accepting states. Let L = (all...a i: i~0}. 
n n 

Result 21: Image Theorem for ~n an__dd ~n 

For all L in /~n, n>0 there exists an a-NGSM M such that 

L = M(Ln). Since ~ n~ ~n the result holds for ~n. 

Result 22: Language Characterisation of ~n° 

For n>0, ~ is the smallest family of languages con- 
n 

taining L and closed under union and a-NGSM maps. n 

For further details see Wood (7) and Rosebrugh and Wood (8) . 

(7) 
(8) 

See footnote 2. 
Rosebrugh, R. D., and Wood, D., A characterization theorem for 
n-parallel right linear languages, Journal of Computer and 
System Sciences 7 (1973), 579-582. 
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Section 6: Concluding Remarks. 

We close by first posing two open problems and secondly intro- 

ducing some possibilities for future research. 

Open problem I: Is the equivalence of two n-PRLG's decidable or 

undecidable? 

Open problem 2: Prove%J9 i i is not closed under intersection. It 
p 4 

is easy to construct examples of languages which are formed by the 

intersection of two n-PRLL, which intuitively are not in ~ i I. 

some new (or adapted) proof techniques are needed. 

Future research possibilities 

(i) 

(2) 

But 

Can generalise n-PRLG (or n-RLSMG) in the same way that Salomaa 

[103] has generalised E0L systems. 

Rewriting in E0L systems has been considered as a one-state NGSM 

map, Salomaa [103] has considered one extension of this notion, 

however it can be extended in another way by allowing more than 

one state in the NGSM. This extension can then be applied to 

n-PRLG (n-PFSG and n-RLSMG). 


