HYPER-AFL'S AND ETOL SYSTEMS

P. A. Christensen

Department of Computer Science University of Aarhus Aarhus, Denmark

The notions of K-iteration grammars and of hyper-AFL's are introduced in [57] and [103]. The notation follows that of [103].

Theorem

ETOL = ETOL
$$_{iter}^{(1)}$$
 = ETOL $_{iter}$, i.e. ETOL is a hyper-AFL.

Sketch of a proof

It is obvious from the definition of an iteration grammar that

To prove ETOL iter \subseteq ETOL , let $G = (V_N, V_T, S, U)$ be an ETOL-iteration grammar with $U = \{ \mathcal{T}_1, \dots, \mathcal{T}_n \}$, where each \mathcal{T}_i is an ETOL-substitution.

Assume that $\mathcal{T}_j(a_i) = L(G_{i,j})$, where $G_{i,j} = (\bigvee_N^{i,j}, \bigvee_T \cup \bigvee_N, T_{i,j}, S_{i,j})$ are synchronized versions of ETOL-systems and the alphabets $\bigvee_N^{i,j}$ are pairwise disjoint.

We define a new ETOL-system: $G' = (\bigvee_N^i, \bigvee_T^i, T^i, \overline{S})$, where $\bigvee_N^i = \{\$\} \bigcup_{i,j} (\bigvee_N^{i,j} \cup \{\overline{S}_{i,j}\}) \cup \overline{V}_T \cup \overline{V}_N \cup \overline{V}_T \cup \overline{V}_N \text{ where } \$ \text{ and all } \overline{S}_{i,j} \text{ are new symbols.}$

 $\overline{\nabla}_X = \{\overline{a} \mid a \in \nabla_X\}$ and $\overline{\overline{\nabla}}_X = \{\overline{a} \mid a \in \nabla_X\}$ for X = N and X = T are sets of new symbols.

If X is a string of symbols $X = b_1 \dots b_k$, then $\overline{X} = \overline{b}_1 \dots \overline{b}_k$ and $\overline{\overline{X}} = \overline{b}_1 \dots \overline{b}_m$. The axiom of G' is defined as $\overline{\overline{S}}$ in exactly the same way.

Finally T1 consists of the tables:

$$\bar{a}_{i} \rightarrow \bar{s}_{i,j}$$
 for each i and each j

to:

A → \$ for any other symbol A.

For $1 \le j \le n$ there is the table:

$$\overline{S}_{i,j} \rightarrow \overline{S}_{i,j}; \ \overline{S}_{i,j} \rightarrow S_{i,j} \text{ for each } i$$
 t_j :
 $\overline{a} \rightarrow \overline{a} \qquad ; \ \overline{a} \rightarrow \overline{a} \qquad \text{for each } a \in V_N \cup V_T$
 $A \rightarrow \$ \text{ for any other symbol } A.$

For $1 \le j \le n$ and $1 \le i \le |V_N \cup V_T|$ there is the set of tables: which consists of all tables from $T_{i,j}$

T_{i,j}: where the table with the terminal productions (G_{i,j} is synchronized) is changed to produce barred terminals instead. In all these tables we add the productions:

$$\overline{\overline{a}} \rightarrow \overline{\overline{a}}$$
 for each $a \in V_N \cup V_T$
 $\overline{S}_{k,j} \rightarrow \overline{S}_{k,j}$ for each k

A \rightarrow \$ for any other new symbol.

Finally there is the table with the terminal productions:

$$\bar{a} \rightarrow a$$
 for each $a \in V_T$

 $A \rightarrow \$$ for any other symbol A.

The claim is now that $L(G) = L(G^1)$.

The reason for this is that rewriting a double- barred word via t_0 's productions $\overline{a}_i \to \overline{S}_{i,j}$ is the same as choosing the substitution \mathcal{T}_j to be used. The substitution is then performed via the tables t_j and $\widetilde{T}_{k,j}$, and when the substitution is performed, the word is again double-barred. We can choose a new substitution and so forth until we finally use the terminal table to reach a terminal word. If the tables to be used in the line of derivation are not chosen according to this scheme, a \$-symbol is introduced in the string, and from this it is impossible to reach a terminal word.

Therefore ETOL = ETOL $_{iter}^{(1)}$ = ETOL $_{iter}^{(1)}$, and since it is well-known that ETOL is a full AFL, we conclude that ETOL is a hyper-AFL.

Corollary 1

If K is a family of languages such that $F \subseteq K \subseteq ETOL$ then $K_{iter} = ETOL$.

Proof

Thus we have for instance proved that:

Since each hyper-AFL is a full AFL and since ETOL = Riter, we conclude:

Corollary 2

ETOL is the smallest hyper-AFL.

In [56] it is stated that the family $R_{iter}^{(1)}$ is exactly the family of languages accepted by pre-set-pushdown automata, and we are now able to prove:

Corollary 3

$$R_{iten}^{(1)} \subseteq R_{iten} = ETOL$$
.

Proof

By definition $R_{iter}^{(1)} \subseteq R_{iter}$ and we know that $R_{iter} = ETOL$. Furthermore, hyper-AFL's are easily seen to be closed under substitution; in order to prove the corollary, it suffices to prove that $R_{iter}^{(1)}$ is not closed under substitution: Let $L_1 = \{a^{2^n} \mid n \ge 0\}$ and $L_2 = \{ab^{2^m} \mid m \ge 0\}$, then obviously

Let
$$L_1 = \{a^{2^n} \mid n \ge 0\}$$
 and $L_2 = \{ab^{2^m} \mid m \ge 0\}$, then obviously L_1 , $L_2 \in OL \subseteq EOL = F_{iter}^{(1)} \subseteq R_{iter}^{(1)}$.

Define the substitution \mathcal{T} by $\mathcal{T}(a) = L_2$. Then $\mathcal{T}(L_1)$ is the set of all words $ab^{2^{n_1}}ab^{2^{n_2}}\dots ab^{2^{n_k}}$, where each $n_1 \geq 0$ and there exists $1 \geq 0$ such that $k = 2^l$. Define the finite substitution t by $t(a) = \{a\}$ and $t(b) = \{\lambda, b\}$ then the proof in [35] of the non-closure of EOL under inverse homomorphism shows that $t(\mathcal{T}(L_1)) \notin EOL = F_{iter}^{(1)}$. It is furthermore well-known that EOL is closed under finite substitution, therefore $\mathcal{T}(L_1) \notin F_{iter}^{(1)}$. But since infinite regular sets fulfil a pumping lemma, it is obvious that $\mathcal{T}(L_1) \notin R_{iter}^{(1)}$ and the corollary is proved.

Finally we mention that we have proved the existence of full AFL's $\,$ K $\,$ and $\overline{\,}$ K such that:

$$K_{\text{iter}}^{(1)} \subseteq K_{\text{iter}} = \overline{K}_{\text{iter}}^{(1)} = \overline{K}_{\text{iter}}$$

and K \subseteq K_{iter} but (K_{iter})_{iter} = K_{iter} namely K = R and \overline{K} = ETOL.