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Abstract 

Three new types of context sensitive parallel rewriting systems, called 

global context L-systems, rule context L-systems and predictive context L-systems 

are introduced in this paper. We investigate the generative power of these new 

types of context sensitive parallel rewriting systems and we compare i t  to the 

generative power of TOL-systems ~I], L-systems with interaction [92], regular 

grammars and context sensitive grammars. 

I .  Introduction 

Parallel rewriting systems were introduced in [59, 60] as a mathematical 

model for biological developmental systems. Most of the papers related to parallel 

rewriting have dealt with rewriting systems of coDtext free type, e.g. OL-systems 

[6~, TOL-systems [8~, and their generalisations [9], [B~]. 

A generalisation of context sensitive grammars with parallel rewriting 

known as L-systems with interactions has been studied in [ 9~. L-systems with 

interactions have the same basic rules (productions) for rewriting as OL-systems, 

but with restriction on their use given by right and le f t  "context". A rule may be 

applied only in the given context. 

However, in the case of parallel rewriting i t  is quite natural to consi- 

der different forms of "context". Since we are replacing all symbols at once, we 

may restr ict  the use of a rule, a ÷ m say, by the context adjacent to m after 

simultaneously replacing al l  the symbols in a string rather than by the context 

adjacent to a before the rule was applied. We wi l l  call this kind of context, 

predictive context. 

Even more generally, the restriction on the use of a rule may concern 

rules used on adjacent symbols. We wi l l  call this type of restriction rule 

context. 

Clearly, al l  these generalisations make sense only in the case of 

parallel rewriting. 

We can also consider restrictions on the use of rules, which in distinc- 

tion to the above are of a global rather than a local character. In a global 
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context L-system, in addition to the set of labeled rules, a control set 
over their labels is given. We can only rewrite a string with a sequence of 

rules with labels from the control set. 

The new types of context sensitive L-systems introduced in this paper 

also have a natural biological motivation. The development of a cell might be 

completely independent of the other cel ls,  i .e.  in OL-systems, or i t  might depend 

on the configuration around the cell before the development takes place i .e .  in 

L-systems with interactions, or i t  might be restricted in such a way that only 

compatible cells can occur adjacently, i .e.  in predictive context L-systems, or 

only compatible developments can occur adjacently, i .e.  in rule-context L-systems, 

or even the development of  an organism as a whole is  r es t r i c t ed  by ce r ta in  

pa t te rns ,  e.g.  the development can be d i f f e r e n t  in  cer ta in  parts of the organisms, 

i . e .  in  global  context  L-systems. 

In t h i s  paper we inves t i ga te  the generat ive power of  these new types of 

L-systems. Among other  resu l t s  i t  is shown tha t  global context  L-systems wi th  

regu la r  cont ro l  sets ( regu lar  global context  L-systems) are equ iva len t  to ru le  

context  L-systems. We also show that  the fami l y  o f  regu lar  global context  

L-languages proper ly  contains the fami ly  o f  languages generated by L-systems w i th  

i n te rac t i ons  and the fami ly  o f  TOL-languages. 

2. Pre l im inar ies  

We sha l l  assume ~hat the reader is  f a m i l i a r  w i th  the basic formal 

languages theory ,  e.g.  [ I  02 ] .  

Now, we w i l l  review the d e f i n i t i o n s  of  OL and TOL-systems [9~, [8~, and 

L-systems w i th  i n te rac t i ons  [92 ] ,  and we w i l l  in t roduce some nota t ion used 

throughout the paper. 

D e f i n i t i o n  I .  A tab le  OL-system (TOL-system) is  a 3- tup le  G = (Z ,P , { ) ,  where: 

( i )  Z is  a f i n i t e ,  nonempty set ,  ca l led  the alphabet.  

( i i )  P is a f i n i t e  set o f  tab les ,  P = {PI,P2 . . . . .  Pn } f o r  some n m I ,  where 

each P i '  i : 1,2 . . . . .  n is  a f i n i t e  subset o f  Z × Z*. Element 

(a,~) of  P i '  1 ~ i ~ n, is ca l l ed  a ru le  and is usua l l y  w r i t t e n  in  the 

form a ÷ m. P must s a t i s f y  the f o l l ow ing  cond i t ion  of  completeness. 

For each a E Z and i ,  1 ~ i ~ n, there ex is ts  m ~ Z* so tha t  (a,m) ~ Pi" 

( i i i )  ~ c Z +, the i n i t i a l ,  s t r i ng  of G. 

Given a TOL-system G = (S,P,~) ,  we wr i t e  m~> 6, where m ~ Z +, 6 E z* ,  

i f  there ex i s t  k m I ,  a l , a  2 . . . . .  a k c Z, and 61 ,62 . . . . .  6 k c Z* so tha t  

= a l a 2 . . . a  k, 6 = 6162. . .6 k and f o r  some tab le  Pi ~ P' aj ÷ #j ~ Pi f o r  1 ~ j ~ k. 

The t r a n s i t i v e  and r e f l e x i v e  c losure of  the b inary r e l a t i on  ~> is 

denoted by -> * ,  
G 
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The language generated by a TOL-system G is denoted by L(G) and is 

defined to be the set {~ ~ %* :~>*  ~}. 

Definit ion 2. A TOL-system G = (%,P,o) is called an OL-system i f  P consists of 

exactly one table of rules, i .e.  P = {Pl }. 

Notation. Throughout the paper i f  r is any binary relation, then r* denotes 

the reflexive and transi t ive closure of r ,  without repeating i t  specif ical ly in 

every case. 

Notation. The empty string is denoted by E. The length of a string c is denoted 

by l~I. For any string ~ and k ~ l ,  we define Firstk(~) and Lastk(~) as follows. 

Firstk(m) = i_f_f Iml m k then f i r s t  k symbols of 

el se m. 

Lastk(m) = i_[_f Iml m k then l as t  k symbols of 

else m. 

For any string ~, we define 

Firsto(~) = ~, First (~) = 

Lasto(m) : E, Last (m) = 

{F i r s t k (m) } ,  
k=l 
I~I 
k=l {Lastk(m) }. 

Definit ion 3. A context L-system is a 3-tuple G = (Z,P,o), where 

( i )  z is a f i n i t e ,  nonempty set of symbols, called the alphabet. 

( i i )  P is a f i n i t e  subset of {#,c}.Z* x S × %*.{#,E} × Z*, called the 

set of rules, where # is a symbol not in Z called the endmarker. A 

rule (~,a,8,y) c P is usually written as <~,a,8> ÷ ¥. 

( i i i )  ~ ~ Z +, the i n i t i a l  string. 

Given a context L-system G = (S,P,~) we write ~ >  8 for ~ E S +, 

6 E £*, i f  there exist k z O, al,a 2 . . . . .  a k E Z and 81,B 2 . . . . .  8 k ~ z* so that 

= ala2...a k, B = BIB2...~ k and for every i ,  l ~ i ~ k, there exist m,n z 0 

such that (Lastm(#ala2...ai_l),ai, Firstn(ai+lai+2...ak#),Si ) ~ p. 

Context L-system G must be strongly complete, i .e.  for any ~ c Z + there 

exists ~ c Z* such that ~ >  8. 

The language generated by a context L-system G is denoted by L(G) and 

is defined to be the set {~ E Z * : ~ > *  ~}. 

Note. The def in i t ion of a context L-system given above is a simplif ication 

and an unessential generalisation of the def ini t ion of an L-system with inter- 

action from [92]. I t  is obvious that both types of systems have the same 

generative power. 
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Notation. We say that  a language L is a ~-language (where ~ may be OL, TOL, 

context L, e tc . )  i f  there ex is ts  a h-system G such that L = L(G). 

The fami ly of context L-languages w i l l  be denoted by ~. 

I f  f is a mapping from Z to subsets of A*, then f can be extended to 

st r ings and languages over Z as fo l lows.  

( i )  f ( s )  = {s} .  

( i i )  for  a ~ ~, ~ ~ S*, f (~a) = f ( ~ ) - f ( a ) ,  where " . "  is the operation of set 

concatenation. 

( i i i )  for  L E ~*, f (L)  = {~:~ c f(B) for  ~ ~ L}. 

We w i l l  use these extended mappings l a te r  on without repeating the 

process of extension in every s ingle case. 

3. Context sens i t ive para l le l  rewr i t ing  systems 

Now, we w i l l  def ine three d i f f e ren t  types of context sensi t ive para l le l  

rewr i t ing  systems. A l l  of them are using only one type of symbols, i . e .  we are 

not considering any nonterminals. 

F i r s t  we w i l l  give the d e f i n i t i o n  of global context L-systems. A global 

context L-system has, s im i l a r l y  as an OL-system, a f i n i t e  set of context free ru les ,  

however, each ru le  has a f i n i t e  number of labels .  The use of rules in a global 

context L-system is res t r ic ted by a language over labels,  cal led the control set. 

De f in i t i on  4. A global context L-system is a 5-tuple G = (S,F,P,C,a), where: 

( i )  ~ is a f i n i t e ,  nonempty set of symbols, cal led the alphabet. 

( i i )  F is a f i n i t e ,  nonempty set of symbols, cal led the labels.  

( i i i )  P is a f i n i t e ,  nonempty subset of p(F) x Z x ~*, where p(F) denotes the 

fami ly of nonempty subsets of ?. Element (B,a,~) c P is cal led a ru le 

and is usual ly wr i t ten  in the form B:a ÷ ~. 

( iv )  C E ?*, cal led the control set. 
~+ (v) a c , the i n i t i a l  s t r ing.  

Given a global context L-system G = (Z,F,P,C,a), we wr i te  ~ >  ~ fo r  

~ Z +, ~ c Z*, i f  there ex is t  k ~ I ,  a l ,a  2 . . . . .  a k c Z, BI,~ 2 . . . . .  ~k E Z* and 

BI,B 2 . . . . .  B k E p(F) so that ~ = a la2 . . .ak ,  ~ : B182...~k, (B j , a j , ~ j )  E P, fo r  

j = 1,2 . . . . .  k and BIB2...B k n C ~ @ I 

The language generated by a global context L-system G is denoted by L(G) 

and is defined to be the set {~ ~ ~*:~ =>* ~}. 

i BIB2...B k is the concatenation of  sets BI,B 2 . . . . .  B k. 
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A global context L-system G is said to be a X global context L-system 

i f  i t s  control set is of the type X. In th is  paper only regular global context 

L-systems w i l l  be studied and the i r  control sets w i l l  be denoted by regular 

expressions. 

The fami ly of regular global L-languages w i l l  be denoted by ~. 

Example 1 Let G 1 be a regular global context L-system, G 1 : { {a} , {SI ,S2} ,P,C,a} ,  

where P = { {S l } :a  ÷ aal{s2}:a ÷ aaa} and C is denoted by regular expression 

s I s 2 • 

C lear ly ,  at any step in a der iva t ion ,  we can apply e i ther  the production 

a ÷ aa to a l l  symbols in a s t r i ng ,  or the production a ÷ aaa is used throughout 

the s t r ing .  Therefore L(G I )  = {a2i3J: i  ~ O, j ~ 0}. 

Since we may consider an L-system as a model of the development of a 

fi lamentous organism, i t  is natural to require that  fo r  any stage of the 

development there exists a next stage of  the development. Therefore, a condi t ion 

of "completeness" is usual ly  included in de f i n i t i ons  of a l l  versions of L-systems. 

Now, we w i l l  give the formal de f i n i t i ons  of the completeness and strong 

completeness for  regular global context L-systems. 

De f in i t i on  5. Let G be a regular global L-system with an alphabet ~. G is 

complete i f  for  any ~ E L(G), ~ # c, there exists B E so that ~ >  B. 

De f in i t i on  6. Let G be a regular global L-system with an alphabet Z. G is 

strongly complete i f  for  any ~ ~ there ex is ts  ~ c so that  ~ >  B. 

Note that in [92] only strongly complete systems were considered 

(and cal led complete). However, th is  is unnecessar i ly  r e s t r i c t i v e ,  there is  no 

bio logical  motivat ion to require that a next stage of the development is defined 

also fo r  conf igurat ions of ce l l s  which can never occur in the development. More- 

over, i t  fo l lows from the next lemma that  every complete regular global context 

L-system can be modified to an equivalent strongly complete regular global context 

L-system. 

Lemma I .  For any regular global context L-system G, there e f f ec t i ve l y  ex is ts  an 

equivalent regular global context L-system G' which is strongly complete. 

Proof. Let G = (~,?,P,C,~) be a regular global context L-system. Let f be a 

f i n i t e  subst i tu t ion  on r*  defined by a ~ f (k )  i f !and only i f  there exists a ru le 

(B,a,~) ~ P so that k ~ B. Let R = f (C) ,  l e t  R 1 = S*-R. Since regular languages 

are closed under f i n i t e  subs t i tu t ion  and complement, R and R 1 are regular languages. 

I f  ~ E R, then there exists ~ c such that  ~ >  ~. I f  R 1 = @ then G is strongly 

complete. 
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Suppose tha t  R 1 ~ @. Let s be a new symbol not in F. Let h be a 

homomorphism def ined by h(a) = s fo r  any a in  Z. Let G' = ( Z , F ' , P ' , C ' , ~ ) ,  

where F' = F u { s } ,  C' = C u h (R l ) ,  and P' = P u { ( { s } , a , a ) : a  c ~}. From the 

const ruc t ion  of  G' fo l lows tha t  G' is  s t rong ly  complete and i f  m E R, and m~> 

fo r  some B E %*, then m G= ~ B, and i f  m c R 1 then m G=~ m. Therefore L(G') = L(G). D 

Lemma 2. I t  is undecidable whether a regu lar  global context  L-system is 

complete. 

Proof. We w i l l  show tha t  f o r  any instance of  Post 's Correspondence Problem Do~ 

there ex is ts  a regu lar  global context  L-system which is complete i f  and only i f  

the instance of  Post 's Correspondence Problem (PCP) does not have a so lu t i on .  

Let Z = { a l , a  2 . . . . .  a n } be a f i n i t e  alphabet,  and l e t  A and B be two 

l i s t s  of  s t r ings  in Z + wi th  the same number of s t r ings  in each l i s t .  Say 

A = ml,m2 . . . . .  mk and B = #I,S2 . . . . .  B k. Let G = (Z ' ,F ,P,C,$)  be a regular  global 

L-system, where Z' = Z u {$ ,~ } ,  F = {Sl,S2,S3,S 4} u { r i : i  = 1,2 . . . . .  n} ,  

P = { ( { S l } , $ , ~  i $ S~): i  = 1,2 . . . . .  n} u { ( { r i } , a i , s ) : i  = 1,2 . . . . .  n} u 
r denotes u { ( { s 3 } , a i , a i ) : i  = 1,2 . . . . .  n} u { ( { s 2 } , $ , ~ ) }  u { ( { s 4 } , ~ , ~ ) } ,  where S i 

the reverse of  ~ i '  and C is denoted by S3SlS 3 .  * + s3s2s 3 + + + s~s 4 + s4s ~ + s~s4s ~ + 

+ s3 r l s4 r l s  3 + s3r2s4r2s3 + . . .  + S3rnS4rnS 3. 

C lear l y ,  $ ~>* mi . . . . .  [ BT "' ~ . . . . .  mi ~ 
i~12 ~ l j $ B l j  l j _  1 • l I G> ~ l l ~ l  2 j 

B~ sT . B~ ~j l j _ l  .. i I  f o r  j ~ I ,  i l , i  2 . . . . .  i j  being integers smal ler or equal to k. 

I f  ma ~ aS ~ L(G), where m,~ ~ %*, a ~ %, then ma ~ abe-> m ~ S. I f  ma ~ bS ~ L(G), 

where m,B E %*, a,b ~ % and a ~ b then ma ~ bB~> ma ~ bS is the only possib le 

de r i va t i on  in  G "From ma # b~. Therefore $ ~>* ~ i f  and on ly  i f  the instance of  

PCP has a so lu t i on .  Since s 4 ~ C, G is complete i f  and on ly  i f  the instance of  

PCP does not haw~ a so lu t i on .  Thus i t  is  not decidable whether G is complete. 

Now we w i l l  give the d e f i n i t i o n  of  a ru le  context  L-system. A ru le  

context  L-system has a f i n i t e  set of  context  f ree ru l es ,  each ru le  having a f i n i t e  

number of l abe ls .  For each ru le  p there are r e s t r i c t i o n s  on what ru les  might be 

used on the symbols adjacent to the symbol on which p is  used. These r e s t r i c t i o n s  

are spec i f ied  by a f i n i t e  number o f  t r i p l e s .  

D e f i n i t i o n  7. A ru le  context  L-system is a 5- tup le  G = (S,F,P,C,a) ,  where: 

(i) 
( i i )  

( i i i )  

Z is a f i n i t e ,  nonempty set of  symbols, ca l led the alphabet.  

F is a f i n i t e ,  nonempty set of symbols, ca l led  the labe ls .  

P is a f i n i t e  subset of  p(F) × E × Z*, ca l led  the set o f  ru les .  

(B,a,~) in  P is usua l l y  w r i t t e n  in  the form B:a ÷ ~. 

Rule 
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( i v )  C is a f i n i t e  subset o f  {# ,c}F*  × F × r *  { # , s } ,  ca l led  the context  set ,  

where # is a special symbol not in F, ca l led  the endmarker. 

(v) a ~ ~+, the i n i t i a l  s t r i n  9. 

Given a ru le  context  L-system G = (Z,F,P,C,a) ,  we w r i t e  ~ >  B f o r  

~ z +, B ~ S* i f  there e x i s t  k ~ I ,  a l , a  2 . . . . .  a k ~ Z B I ,B  2 . . . . .  B k ~ Z* and 

Sl,S 2 . . . . .  s k ~ F so tha t  ~ = a l a2 . . . ak ,  B = BIB2.. .B k and fo r  every i ,  1 ~ i ~ k, 

there e x i s t  ( B i , a i , B  i )  ~ P and m,n ~ 0 so tha t  s i ~ B i and (Las tm(#S lS2 . . .S i_ l )S i ,  

F i r s t n ( S i + i s i + 2 . . . S k # ) )  c C. 

The language generated by a ru le  context  L-system G is denoted by L(G) 

and is def ined to be the set {~ ~ Z ~ =>* ~} .  
G 

The fami ly  o f  ru le  context  L-languages w i l l  be denoted by ~. 

Example 2. Let G 2 be a ru le  context  L-system, G 2 = ( {a } , {S l ,S2 ,S3 ,S4} ,P ,C ,a } ,  

where P = { { S l } : a ~  a3, {s2} :a  ÷ a , {s3 } :a  ÷ a4, {s4} :a  ÷ a 2} and 

C = { (# ,s  I , # ) , ( # , s 4 , # ) , ( # , s  I ,s 2 ) , (s  I , s2 ,# ) , ( s2 ,s  I ,s 2 ) , (s  I ,s2,s l ) , ( # , s 4 , s 3 ) ,  

( s 3 , s l , # ) , ( S l , S 4 , S 3 ) , ( s 4 , s 3 , s l ) , ( s 3 , s l , s 4 ) } .  Let ~ be a s t r i ng  in  a*. I f  the 
length of  s t r i ng  ~ is d i v i s i b l e  by 3, then according to cont ro l  set C we can apply 

on ~ only ru les w i th  labels  Sl,S3,S 4 and the only s t r i ng  we can der ive in G 

from ~ is the s t r i ng  ~ .  I f  the length o f  ~ is  even then we can der ive in  G 

from ~ only the s t r i ng  ~ .  From the i n i t i a l  s t r i ng  of  G 2 we can der ive s t r ings  

aa and aaa. Therefore L(G 2) = {a2n:n ~ O} u {a3n:n ~ 0}. 

Now, we w i l l  show that  the fami ly  of ru le  context  L-languages is 

equal to the fami ly  of  regu lar  global context  L-systems. 

Theorem I .  ~ = ~. 

Proof. Let G 1 = (s , r ,P ,C,a)  be a ru le  context  L-system. Let k,m be pos i t i ve  

in tegers such tha t  i f  (~,a,B) c C, then I~i < k and IBI < m. Let 

L = F i rs t (#F  k - l )  u F k, R = Last(Fm-l#) u F m. Let A be a f i n i t e  automaton, 

A : (K,F,6 ,qo,F) ,  where K = (L x F x R) u {qo } ,  F K n ((F u {# } ) *  × F × { # } ) ,  

and ~ is def ined as fo l l ows .  

( i )  I f  (#,p,B#) c C, where B c r *  then (#,p,B#) c ~(qO,p)- 

( i i )  I f  (#,P,B) c C where B ~ F*, then (# ,p ,By l# )  ~ ~(qO,p) and 

(#,p,~y2) ~ ~(qO,p), fo r  every y i ,Y2  ~ ~* such tha t  By1#, By 2 ~ R. 

F* ( i i i )  I f  (ms,p,~) ~ C, where m ~ F* u {#}F* ,  B ~ ,s,p ~ F then 

(Lastk(YlmS),p,By2q) ~ ~((y lm,S,PBy2) ,p) ,  and 

(Lastk(YlmS),p,BY3#) ~ ~((ylm,s,pBY3#),p) f o r  any 

F + q ~ F u {#} ,y2,Y3 ~ ~*, Yl ~ #F* u such that  B¥2q,~¥3# ~ R and ylm~ L. 
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( iv)  I f  (c,p,B) E C, where p E r ,  B E ?*, then 

(Lastk(YlS),p,BY2 q) ~ 6((Yl,s,PBy2), p) and 

(Lastk(YlS),p,By3#) ~ 6((Yl,s,PB¥3#), p) for any 

s c ?, q c r u {#}, Y1 c L, Y2' Y3 c ?*such that BY2q,By3 # E R. 

(v) I f  (ms,p,B#) ~ C, where m c ?* u {#}?*, B c ?*, s,p E ? then 

(Lastk(YlmS),p,B#) c 6((ylm,s,pB#), p) for any Yl ~ #?* u ?+ such 

that yl m E L. 

(vi)  I f  (E,p,B#) c C, where B c r * ,  p ~ ?, then 

(Lastk(YlS),p,B#) ~ 6((Yl,S,pB#), p) for any Yl ~ L. 

L(A) is a regular language and, c lear ly ,  m is in L(A) i f  and only i f  

is a str ing of labels of rules which can be simultaneously applied to a str ing 

in S* according to context set C. Therefore, the regular global context 

L-system G 2 = (Z,r,P,L(A),~) w i l l  also generate language L(G l )  and thus ~ £ ~. 

Now, we w i l l  show the other inclusion. Let G = (~,?,P,Q,~) be a 

regular global context L-system. Let A = (K,?,6,qo,F) be a f i n i t e  automaton such 

that 6(q,e) = @ for any q c K and L(A) = Q. Let G 3 be a rule context L-system, 

G 3 = (Z,?3,P3,C3,~), where ?3 = ? × K, P3 = {(A × K,a,~):(A,a,~) c P}, and C 3 

is defined as fol lows. 

( i )  I f  6(qo,a) ~ @, where a E ?, then (#,(a,qo),E) E C 3. 

( i i )  I f  r ~ 6(q,a) and 6(r,b) ~ @ where a,b ~ ? and q,r E K, then 

( (a ,q) , (b , r ) ,~)  E C 3. 

( i i i )  I f  r ~ 6(q,a) and r c F, where q E K, a E ?, then (E,(q,a),#) ~ C 3. 

I t  can be easily ver i f ied that ~ - >  B i f  and only i f  ~ >  B. Therefore 
G 3 

L(G 3) = L(G). 

Let the completeness and strong completeness is defined for rule 

context L-systems in the same way as for regular global context L-systems. Since 

rule context L-systems are e f fec t ive ly  equivalent to regular global context L- 

systems, Lemma 1 and Lemma 2 also hold when replacing in them a regular global 

context L-system by a ru le context L-system. 

Since any t r i p l e  in the context set in a ru le context L-system 

i m p l i c i t l y  includes also a r es t r i c t i on  on the adjacent symbols, i t  is quite 

obvious that the fami ly of ru le context L-languages includes context L-languages. 

We w i l l  show in the next theorem that  th i s  inc lus ion is proper. 
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Theorem 2. ~ ~ @. 

Proof. Let G = (Z,P,~) be a context  L-system. We construct  a ru le  context  

L-system G' = (S,Z,P ' ,C,~) ,  where P' = { ( { a } , a , B ) : ( ~ l , a , ~ 2 , B )  ~ P, a c Z, B c ~*, 

~I c {#,E}%*,~ 2 E ~*{# ,~} }  , and C = { (~ ,a ,B ) : (~ ,a ,B , y )  E P fo r  some y c Z*}.  

We have constructed the ru le  context  L-system so that  a l l  ru les  fo r  a symbol a in 

% have the same label  a, and the context  set of  G' a l lows to obta in  in G' exac t l y  

the same der i va t ions  as in G. Therefore L(G) : L (G' ) .  Thus we have shown that  

~ @ and i t  remains to show that  the inc lus ion  is proper. In Example 2 the 

language L = {a2n:n ~ O} u {a3n:n ~ O} is generated by a ru le  contex L-system. 

I t  has been shown in [92] ,  that  L is not in ~. Q 

Now, we w i l l  g ive the d e f i n i t i o n  o f  a p red ic t i ve  context  L-system. 

In a p red ic t i ve  context L-system the use of a ru le  is r es t r i c t ed  by the context 

of  the r i g h t  hand side of  the ru le  a f t e r  the simultaneous replacement of  a l l  

the symbols in a s t r i ng .  

D e f i n i t i o n  8. A p red ic t i ve  context  L-system G is a 3- tup le  (Z,P,~),  where 

( i )  ~ is a f i n i t e ,  nonempty set of  symbols, ca l led  the alphabet.  

( i i )  P is a f i n i t e  subset of ~ × {#,~}Z* x z* x S* {# ,~} ,  ca l led  the set of  

ru les ,  where # is a special symbol not in Z, ca l led  the endmarker. 

A ru le  (a,Bl,m,B 2) in P is usua l ly  w r i t t en  in the form a + <BI,m,B2 >. 

(We assume that  "<" and ">" are symbols not in Z.) 

( i i i )  ~ E ~+, the i n i t i a l  s t r i ng .  

Given a p red i c t i ve  context  L-system G = (%,P,~), we w r i t e  m -> B fo r  

~ %+, B c ~* i f  there exist  k ~ I ,  a l ,a  2 . . . .  . a k c ~ and BI,B 2 . . . .  . B k ~ ~* so 

that m = ala2. . .a k, B = BIB2...B k and for every i ,  l ~ i ~ k there exist m,n m 0 

such that 

(ai,Lastm(#BiB2...Bi_l),Bi,Firstn(Bi+iBi+2...Bk#)) ~ P. 

The language generated by a predictive context L-system G is denoted by 

L(G) and is defined to be the set {m E Z * : ~ > *  m}. 

The family of predictive context L-languages is denoted by ~. 

Example 3. Let G be the predictive context L-system ({a,b,c},P,abc), where 

P = {a ÷ <~,a,bc>, b ÷ <a,b,c>, c ÷ <b,c,a>, c ÷ <ab,cabc,#>, a ÷ <~,aa,bb>, 

b ÷ <aa,bb,~>, c ÷ <bb,cc,c>, a ÷ <~,a,a>, b ÷ <b,b,~>, c ÷ <c,c,~>. 

Using the f i r s t  four  rules in P we can generate from the s t r ing  abc the 

s t r ing  (abc) m, m m I .  I f  we decide to use a ru le  which would double a symbol, 

then, c l e a r l y ,  we have to double each symbol throughout the whole s t r ing  (abc) m. 
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Therefore, (abc) m ~> (a2b2c2) m and from any s t r ing  of the form ( a i b i c i )  m, where 

i > I ,  m m 1 only the s t r ing  ( a i + I b i + I c i + l )  m can be generated. Thus 
L(G) = {Caib ic i )m: i m I ,  m m I } .  

We can def ine the completeness and strong completeness for  p red ic t i ve  

context L-systems in the same way as fo r  regular global context L-systems. We 

can prove that  i t  is undecidable whether a p red ic t i ve  context L-system is 

complete. However, in th is  case we cannot show that  fo r  every p red ic t i ve  context 

L-system i t  is  possible to construct an equivalent s t rongly  complete p red ic t i ve  

context L-system. We can only show that  every complete p red ic t i ve  context L- 

system can be made st rongly  complete. 
{a312 j 

Lemma 3. The language L = : i  ~ O, j ~ O} is not a predictive context 

L-language. 

Proof: Since the proof of th is lemma is very tedious, we w i l l  present i t  only 

informally. 

Suppose that there exists a predictive context L-system G = (Z,P,~) 

such that L(G) = {a312J:i ~ O, j ~ 0}. Then there exists exactly one integer j ,  

j ~ 0 such that a ÷ <al,aJ,ah> ~ P for some integers i ,h .  Since L is i n f i n i t e ,  

j ~ I .  To be able to generate a l l  str ing a 31 for i ~ l ,  j has to be a power of 

three, i . .e . j  = 3 p, p ~ I .  But then we cannot generate in G al l  strings 

a 21 fo r  i ~ I .  D 

Theorem 3. ~ ~ ~. 

Proof: Let G : (Z,P,~) be a p red ic t i ve  context L-system. Let k, m be natural 

numbers such that  I~I < k, IYl < m for  any (a,~,B,y)  ~ P. Let A be a f i n i t e  
automaton, A = (K,P,6,qo,F),  where K : (First(#% k - l )  u Z k) x (Last(zm-l#) u Z m) u 

u {qo } ,  F = K n (% u {#}7* × (#),  and 6 is defined as fo l lows.  

( i )  I f  p = (a,#,B,y#) E P where a E ~, and B,y ~ S*, then 

(Lastk(#B),y#) E 6(qO,p). 

( i i )  I f  p = (a ,# ,~ ,y)  c P, where a c z, and B,y c ~*, then 

(Lastk(#B),y61#) E 6(qO,p) fo r  any 61 ~ Z* such that  

1811 ~ m~Iy l - I  and (Last(#~),y~2) c 6(qO,p) fo r  any 62 

such that  1621 = m-IYl .  

( i i i )  I f  p = (a:,~,B,y) c P, where ~ ~ S* u #~+ and B,y ~ E*, then 

(Lastk(Yl~B),yy26) ~ 6( (y l~ ,Byy2) ,  p) fo r  any Y1 ~ S* u #S*'Y2 ~ ~* '  

c Z* u Z*# such that  (y l  ~, By2 ) ~ K and 161 = I~ I ,  and also 

(Lastk(Y l~) ,YY2#)  E 6( (y l~ ,~yy2#) ,p)  fo r  any Yl E z* u #S*, and 
Y2 E %* such that  (yl~,~yy2 #) E K. 
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= ~* ( iv) I f  p (a,m,~,y#) E P, where m c Z* u #Z + and B,y E , then 

(Lastk(YlmB),y#) E ~((ylm,By#),p) for any Yl E ~ u #Z* such that 

(y]~,By#) E K. 

I t  follows from the construction of automaton A that i f  plP2...pn ~ L(A), 

where Pi ~ P' Pi = (a i ' ~ i 'S i 'Y i )  for l ~ i ~ n, then ala2...a n ~ 8iB2...Sn and 

vice versa. Therefore, the regular global context L-system G' = (Z,P,P',L(A),a), 

where P' = {({a,B,~,y},a,~):(a,B,~,y) E P}, generates also the language L(G). 

Thus ~ 5 ~. 

In Example l we have shown that the language L = {a3i2J:i z O, j z O} 

is a regular global context L-language. However, by Lemma 3, L is not a predictive 

context L-language. Thus, the inclusion is proper. 0 

I t  has been shown in [92] that the family of regular languages is 

included in the family of context L-systems. I t  is easy to modify this proof to 

show that al l  regular languages containing a nonempty string are also included 

in the family of predictive context L-languages. 

Let the family of regular languages be denoted by REGULAR. 

Theorem 4. REGULAR-{{~},$} ~ ~. 

Proof. Similar to the proof that REGULAR-{{~},@} is included in ~ in [92]. 

Now, we wi l l  compare the generative power of TOL-systems with that of 

context sensitive L-systems. The family of TOL-languages w i l l  be denoted by TOL. 

Theorem 5. TOL ~ R. 

Proof. TOL does not include al l  f i n i t e  sets as shown in ~I]. Therefore, i t  

follows from Theorem 4 that ~ ¢ TOL. We have shown in Lemma 3 that the language 

L = {a312J:i z O,j z O} is not a predictive context L-language. However, L is 

generated by TOL-system G = ({a},{{  a ÷ aa},{a ÷ aaa},a). Therefore, 

TOL ¢ ~. 0 

Theorem 6. TOL ~ ~. 

Proof. Let G = (Z,P,~) be a TOL-system, where P = {PI,P2 . . . . .  Pn }. 

Let G' = (z,?,P',Q,~) be a regular global context L-system, where 

r = {Sl,S 2, . . . .  ,Sn}, Q is denoted by s T + s~ +.. +s n,+ and P' is defined as follows. 

P' = {(A,a,~):a c Z, ~ c S*, (a,~) c Pi for some i ,  l ~ i ~ n and 

A = {sj c r:(a,~) c Pj}}, i .e.  a rule p has label sj i f  and only i f  p is in the 

table Pj. Since the control set Q allows to use at one step in a derivation 

only rules which al l  are from the same table of P we have L(G) = L(G'). Thus 

TOL 5 ~. 
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I t  fo l lows from Theorem 3 and Theorem 5 that  the i nc lus ion  is 

proper. D 

Lemma 4. The language L = {(anbncn)m:n,m ~ I }  i s  not a context  L-language. 

Proof. We w i l l  g ive here on ly  an informal proof to keep the paper shor t .  

Suppose tha t  there ex is ts  a context  L-system G = (~,P,~) generat ing 

the language L = {(anbncn)m: n,m ~ I } .  Since G can generate a l l  s t r i ngs  anbnc n 

fo r  n ~ O, there ex is ts  exac t l y  one in teger  i ,  i ~ 1 such tha t  <ak,a,aJ> ÷ a i is 

in P fo r  some in teger  k , j .  S i m i l a r l y ,  f o r  ru les i nvo l v i ng  on ly  symbol b and 

on ly  symbol c. Therefore,  there ex is ts  a constant c such tha t  f o r  any n ~ c,  
i f  (anbncn)m~> * ~ then ~ = (akbkck)m fo r  some in teger  k ~ n. Thus there ex is ts  

an in teger  j ~ 1 such tha t  the fo l l ow ing  holds. There ex i s t  i n f i n i t e l y  many n 

s t r i ngs  in  L of type (aJbJcJ) m fo r  some in teger  m and (aJbJcJ)m~> (aJlbJ2c ~2) I ,  

(aJbJcJ)m~> (aJ2bJ2cJ2) m2 and m I ~ m 2, Jl # J2" Then we can generate in  G also 

s t r ings  not in  L, which is a con t rad ic t i on  to L = L(G). D 

Since we have shown in  Example 3 t ha t  the language 

L = {(anbncn)m:n,m ~ I }  is a p red i c t i ve  context  L-language, i t  is c lear  tha t  

context  L-languages do not inc lude a l l  p red i c t i ve  context  L-languages. 

Theorem 7. ~ ¢ ~ . 

Proof. I t  fo l lows d i r e c t l y  from Lemma 4 and Example 3. D 

Now~ we w i l l  compare the generat ive power o f  context  sens i t i ve  grammars 

w i th  tha t  o f  p red i c t i ve  context  L-systems and regu la r  global context  L-systems. 

Theorem 8. For each type 0 language L over alphabet T, there ex is ts  a p red i c t i ve  

context  L-system G such tha t  L = L(G) n T*.  

Proof. Let L be generated by a type 0 grammar G 1 = (N,T,P,S).  Let 

G = (Z,P' ,S)  be a p red i c t i ve  context  L-system, where 

= T u N u { (p ,p ) :P  c P} u { (p ,A ) :p  ~ P and A ~ N u T} ,  and P' is  constructed 

as fo l l ows .  

( i )  I f  A ÷ ~ c P, where A ~ N, ~ c (N u T) * ,  then A ÷ ~ ~ P' .  

( i i )  I f  p = AIA2. . .A  n ÷ BIB2.. .B m ~ P, where AI,A 2 . . . . .  An,BI,B 2 . . . . .  Bm~NUT, 

m ~ n, then A i + < (P ,A I )B I (P ,A2)B2 . . . (P ,A i_ I )B i_  l , ( p , A i ) B  i ,  

(P ,A i+ I )B i+ I (P,A i+2)B i+2. . . (P ,An_I )Bn_I (P,An)BnBn+I . . .Bm(P,P)  > ~ P' 

f o r  1 ~ i ~ n - l ,  and A n +  <(P,AI )BI (P,A2)B2. . . (P,An_I )Bn_ I ,  

(P,An)BnBn+l. . .Bm(p,p),~> c p' 
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( i i i )  I f  p = AIA2.. .A n ÷ BIB2...B m E P, where AI,A 2 . . . . .  A n , 

BI,B2, . . . .  B m E N u T, 1 ~ m < n. Then 

A i + < (P ,A l )B l (P ,A2 )B2 . . . (P ,A i_ l )B i_ l , (P ,A i )B i , (P ,A i+ l )B i+  1 

(P,Ai+2)Bi+2...(P,Am)Bm(P,Am+l)(P,Am+2)...(P,An)> E P' fo r  

1 ~ i ~ m, and A i + <(P,Al)Bl(P,A2)B2...(P,Am)Bm(P,Am+ I )  

(P 'am+2)" " "(P 'Ai -I  ) '  (p 'Ai ) '  (p 'Ai+ l  )(p 'Ai+2)" "" (p 'an)> E P' fo r  

m+l ~ i ~ n. 

( i v )  I f  p = AIA2.. .A n ÷ ~, where AI,A 2 . . . . .  A n E N u T, n > I ,  then 

Ai ÷ <(P'AI )(P 'A2)" "" (P 'Ai - I  ) '  (p "Ai ) '  (p 'a i+ l  )(p 'A i+2)"""  (p 'an)> E P' 
f o r l  ~ i ~ n .  

(v) (p,A) + ~ c P' ,  and (p,p) ÷ c E P' fo r  any p ~ P, A E N u T. 

( v i )  A ÷  A E P' fo r  any A c N u T. 

I t  fo l lows from the construct ion that  i f  ~AIA2...AnB ~>El ~BIB2...BmB, 

where AI,A 2 . . . . .  An,BI,B 2 . . . .  B n ~ N u T,~,B E (N u T)* using the ru le 

AIA2.. .A n ÷ BIB2...Bm,m ~ n, then ~AIA2...AnB~> ~(P,AI)BI(P,A2)B2. . .  

(P,An)BnBn+l...Bm(p,p)B~> ~BIB2...Bm~, and i f  ~ >  ~(P,AI)BI(P,A2)B2.. .  

(P,An)BnBn+l.. .Bn(p,p), then y = AIA2.. .A n. The same can be shown i f  other types 

of rules of  G 1 are used. Therefore S ~>* ~, where ~ E (N u T)* i f  and only i f  

~>* T*, S GI ~. Thus L(G I )  = L(G) n D 

Let the fami ly  of  con tex t -sens i t i ve  languages be denoted by CS. 

Theorem 9. ~ ~ CS. 

Proof. Suppose that  ~ ~ CS. Since context sens i t i ve  languages are included in 

recursive languages and recursive languages are closed under i n te rsec t ion ,  

L n T* is a recursive language for  any L in ~ and any alphabet T. This is a 

cont rad ic t ion to Theorem 8. Therefore, ~ ~ CS. 

We have shown in Lemma 3 that  the language L = {a3 i2J : i  ~ O,j ~ O} 

is not in ~. However, L is c l e a r l y  a context sens i t i ve  language. Therefore, 

CS ¢ ~. D 

Now, we would l i k e  to compare the fami ly  of  context sens i t i ve  languages 

to the fami ly  of  regular global context L-languages. I t  ~s c lear  from the 

previous theorem and from Theorem 3 that  the fami ly  of regular  global context 

L-languages is not included in the fami ly  of  context sens i t i ve  languages. To 
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prove that the fami ly  of regular global context L-languages does not contain 

a l l  context-sensi t ive languages we introduce the concept of exponential ly dense 

languages. 

Def in i t ion 9. Language L is cal led exponential ly dense i f  there ex is t  constants 

c I and c 2 having the fol lowing property: For any n ~ 0 there exists a str ing 
in L such that c le(n- l )c2 ~ I~I < Cl eric2. 

Lemma 5. Any regular global context L-language which is i n f i n i t e  is exponential ly 

dense. 

Proof. Let L be an i n f i n i t e ,  regular context L-language. Let G (Z,F,P,C,~) 

be a regular global context L-system generating L. Let c I = 1oi, 

d 2 = max { I y I : ( A , a , y )  c P for  some A~F, a c Z and y c ~*}. Let c 2 = log d 2. 

Since L is i n f i n i t e ,  d 2 > I .  I f  n = 0 theD,c lear ly ,  c I ~ l~I < c I e c2. Let n 

be an a r b i t r a r y  f i xed  in teger ,  n > 0. Since L is i n f i n i t e ,  there ex is ts  ~ E L 

nc 2 
such that  I~I ~ c I e As ~ ~ L and i~l > I~I there ex i s t  k > l and 

BI,B 2 . . . . .  B k ~ L so that  ~i -> ~i+l fo r  l ~ i ~ k - l ,  ~l = ~ and B k = ~. Let j be 
nc 2 nc 2 

an integer, 1 ~ j < k such that IB<Ij < cle and IBj+II m c I e . Clear ly,  

enC2/d2 c I (n- l)c2 such integer j ex is ts .  Now we have i. Bjl ~ I~ j+ l l / d  2 ~ c I = e 

Lemma 6. The language {a22n:n m O} is not a regular global context L-language. 
2 n 

Proof. The language {a 2 :n m O} is not exponential ly dense and therefore by 

Lemma 6 is not a regular global context L-language. 

Theorem I0. CS ~ ~. 
@ 

Proof. By Theorems 3 and 9, ~ is not included in CS. The language 

L = {a22n:n m O} is a context sensi t ive language, however, L is not in ~ by 

Lemma 6. D 


