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SUMMARY 

The syntactic inference problem consists of deciding, for a given 

set of words~ whether there exists a grammar such that its language 

includes these given words; and also of actually finding any such 

grammars. In this paper, the problem is considered for DOL-systems. 

The stress is on the second, constructive, part of the problem. 

The initial information may have various forms. Most of the results 

deal with cases in which 

- the words are given as a sequence (i.e.,with their rank order 

numbers), which may be either consecutive or scattered. 

- the size of the alphabet is given. 

From the decidability point of view most of the results are not new. 

The proposed decision method, however, represents a considerable 

speed-up by passing the initial data through a number of algebraic 

"sieves" which turn out to be quite dense. 

The method depends on there being enough information to establish a 

linear dependence relation between the Parikh-veetors of the given 

words. 

Several variants of the problem are discussed. One subcase of a 

hitherto open problem is solved; other problems remain open. 

0. INTRODUCTION 

Suppose a not-too-large set of words, say, S = {ab,aabc,a6bbc} is 

given. One can ask whether there exists a DOL-system G such that 

S ~ L(G). This is perhaps the simplest form of the syntactic in- 



147 

ference problem. It is one of the 36 such problems for L-systems 

posed by Feliciangeli and Herman [28] , and one of the 8 which are 

still open. There may, however, be some additional information. The 

alphabet may be given, and there may be some information on the 

order of appearance of the words; either general (only the order) or 

specific (the precise rank order numbers). Feliciangeli and Herman 

make a different distinction. They only consider ordered, but not 

precisely numbered, sets; within this domain they distinguish sets 

of consecutive words, sets of scattered, but equally spaced, words 

and unspecified ordered sets of words. 

I shall mainly discuss those eases where the aphabet is given as well 

as the rank order numbers. Actually, the inference problem is known 

to be decidable as soon as the alphabet is given: it is not difficult 

to see that in that case the number of (reduced) DOL-systems is 

finite, and one can simply try them all out. I intend to present an 

algorithm which is able to discard the vast majority of combinations 

at an early stage. It can be roughly described by the following se- 

quence of steps: 

1 take the Parikh-images of the given words 

find a linear dependence relation and its associated polynomial 

~(x) 

find a divisor of ~(x) 

4 find a growth matrix 

5 find a set of production rules. 

Essentially, the method makes use of the number of letters present 

in each given word (as opposed to their order) for as long as possi- 

ble. This allows one to apply algebraic methods to the resulting 

vectors, these being generally more powerful than the combinatorial 

approach. The method works only if sufficient words are given to es- 

tablish a linear dependence relation between their Parikh-vectors. 

Even then, a certain amount of trial-and-error work is necessary. 

1. PRELIMINARIES 

I shall assume the reader to be acquainted with the notion of a D0L - 

system such as outlined by Rozenberg and Doucet [91] or Salomaa [102]. 

I shall denote a DOL-system G by the triple < ~,P,w 0 >, where ~ is 
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the alphabet, P the set of production rules, and w0 the axiom. 

&(G) denotes the infinite sequence of words generated by G, in order 

of appearance. If a sequence of words is equal to &(G) for some DOL- 

system G, it is called a DOL-sequenoe. Any subsequence of a DOL- 

sequence is called a DOL,subsequence. Most DOL-subsequences occurring 

in the sequel will be finite. They may either be consecutive (such 

as w~,ws,w6,w~)or scattered (such as w0,w3,w4,w20). 

Unless specified otherwise, any sequence will be a sequence of num- 

bered words, i.e. a subset of ~×~*; it may be finite or infinite. 

Sequences will be denoted by script letters. 

S denotes the number of elements of a set S. 

lwl denotes the length (= number of letters) of a word w° 

If Z = {ol,...,Ok} , then the Farikh-vector w assigned to a word w is 

defined as a vector in ~k with its i th coordinate equal to the num- 

ber of occurrences of o i in w. Example: if ~ = {a,b,c} and w = cacaa, 

then w = (3,0,2) T. The superscript denotes the transposition operator, 

since vectors will be written as column vectors. All vectors will be 

distinguishable by a bar. 

The length of a vector ~ = (~:,...,~k)T is defined as I~l = ~i" This 

definition is compatible with the earlier definition of word length: 

fwj = 

Without the details of a formal definition it will be clear that in 

a similar way the set P of production rules can be mapped into a k×k 

matrix Ap = ((cij)) , where cij gives the number of occurrences of o i 

in P(oij) ; in other words, the j-th column of Ap equals the Parikh- 

vector of P(oj). Ap is called the sroWth matrix of P or G; it is also 

called the production matrix. If no confusion is likely, Ap is also 

written A. 

If ~ is any sequence of words wil,wi2,... , then its Parikh-image 

denotes the sequence of vectors ~i '~i ' .... Similarly, [(G), the 
• 1 _ 2_ 

Parikh-sequence of G, is defined as w0,wl,wz, .... ~ , ~ , ~, ~ , 

and C denote the sets of natural, integer, rational, real and complex 

numbers , respectively. R[x] denotes the set of all polynomials in x 

with coefficients in the set R. 

2. RECURRENCE RELATIqNS SATISFIED BY PARIKH-SE~UENCES. 

Let G = < ~,P,w0 > be a DOL-system with @~ = k, and let A be G's 

growth matrix. The Parikh-mapping oi ~ (1,0,..., 0)T,...,o k ~ (0,... 

~.,0,i) T maps words over the alphabet ~ into the k-dimensional vector 

space R over the field Q~) The growth matrix A is a linear mapping 
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of R into itself. 

In G's Parikh-sequence ~ = w0,wl,w2,.., some vectors are linearly 

dependent. Let such a dependence be given by a recurrence relation 

like 

W8 + w6 - 3ws + 4Wo = ~.  ( 1 )  

This can also be written as 

(AS+A~-3AS+4I)w0 = 

(I is the k×k identity matrix), or 

w h e r e  ~ ( x )  = x 8 + x 6 - 3 x  s + 4 .  

I shall call ~(x) the associated polynomial of the recurrence rela- 

tion (1), and vice versa. (The customary term "characteristic poly- 

nomial" may lead to confusion). 

This section deals with the question: what recurrence relations ob- 

tain in ~(G) ? Most of the answers come by way of their associated 

polynomials. 

Three polynomials connected with A or G are of special importance. 

First, the characteristic polynomial of A, ~A(X), defined by 

~A(X) = det (xl-A). 

Second, the minimal polynomial of A, mA(x) , defined as the lowest- 
• "3 

degree monlc polynomial in ~[x] for which mA(A) = O (the null ma- 

trix). 

Third, the minimal polynomial of G, PG(X), defined as the lowest- 

degree monio polynomial in Q[x] for which PG(A)~0 = ~. 

Observe that ~A(X) and mA(x) depend on A only; PG(X) depends on both 

A and ~0. 

The following lemmas summarize a few standard facts from matrix 

theory. 

Lemma 2.1 ~A(X), mA(x) and PG(X) are unique. 

Lemma 2.2 mA(x) contains the same linear factors x-X i (X i E ~) as 

~A(X); their multiplicaties may, however, be lower. If 

~A(X) = 0 has no multiple roots in C, then mA(x) = %A(X). 

*) It might be more elegant to construct the more restricted module 
R over the ring ~, but the present approach will do. 

**) i.e., with leading coefficient 1. 
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Lemma 2.3 mA(x) divides every polynomial 9(x) for which 9(A) : O. 

Lemma 2.4 ~@(x) divides every polynomial 9(x) for which ~(A)w0 : O. 

Lemma 2.5 There exist algorithms for finding mA(x) and BG(x). 

For further information, I refer the reader to standard texts like 

Gantmacher, Chs. IV and VII *) . Furthermore, I will need two theorems 

from algebra: 

Lemma 2.6 If factorization in an integral domain R is unique, so is 

factorization in R[x]. 

Lemma 2.7 A polynomial in ~[x] which can be factored in polynomials 

in ~|x] can already be factored in polynomials in Z[x]. 
**) 

Both iemmas can, e.g., be found in Birkhoff and Maclane, Ch. III • 

Since ~A(X) e ~ [x], ~G(X) e ~[x], mA(x) e ~[x], and Z has unique 

factorization, lemmas 2.6 and 2.7 can be applied, giving 

Lemma 2.8 mA(x) and BG(X) have integer coefficients. 

Theorem 2.9 If in a DOL-sequence &(G) some vectors from ~(G) satisfy 

a recurrence relation, then they also satisfy a monie 

recurrence relation with integer coeeficients. 

+ - +~oWo Proof Suppose the recurrence relation w r ~r_lWr_l + .... = 

is given, with all ~. E 9. 
i 

If m is the degree of G's minimal polynomial UG(X), then r < m is 

impossible; for r = m the theorem is trivially true (by lem~a 2.1), 

so r > m remains to be examined. 

All ~. are rational, so one can find a number M such that 
l 

M~ r + Mer_lWr_l+...+M~0~0 : ~ (2) 

has only integer coefficients. Wr can be expressed in ~r_l,...,Wr_m 

by means of the recurrence relation associated with ~G(x), which has 

integer coefficients. By subtracting this relation M-1 times from (2), 

one obtains a relation of the required form. [] 

The subspace of Qk spanned by the vectors w0,w1,~2,.., is of dimension 

m, since, from rank order number m on, each vector linearly depends 

on the previous vectors. Hence 

Theorem 2.10 If BG(X) has degree m, then any set of m vectors from 

~(G) is linearly dependent. 

*) F.R. Gantmacher, The theory of matrices. New York: Chelsea, 1959 
(Translated from the Russian). 

*~) G. Birkhoff and S. Maolane. A survey of modern algebra. 
New York: Mac Millan, 1953. 
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Let G be a DOL-system with minimal polynomial BG(X), of degree m. 

Then $~(G) = w0,w~,w2, .... All Parikh-vectors w from ~(G) can be 
r 

expressed in terms of the first m Parikh-vectors w0,...,Wm_l. In the 

sequel, this initial subsequence will be denoted by ~0. These m vec- 

tors can also be collected in the matrix E0, with k rows and m co- 

lumns. Thus each vector w E ~(G) can be written as 
r 

~r = E°~r' 

where ~r' tlhe coefficient vector of the word w (or the vector w ) is 
.... " ........ r r 

is just another way of representing the recurrence an m-vector. So Cr 

relation by which w r can be expressed in the first m Parikh-vectors. 

Observe that 

(i) For each r, ~r is unique and has integer coefficients. 

(ii) The associated polynomial of c (with obvious definition) 
r 

is equal to xr(mod ~G(X)). 

(iii) If some set of Parikh-vectors satisfies a recurrence rela- 

tion 

+ , = Wr ~r_lWr_l +. .+~0w0 0, 

then, since E0 is non-singular, their coefficient vectors satisfy the 

same relation: 

+ o • -- Er ~r_ler_1+ .+~0E0 ] .  

3. THE BASIC INFERENCE PROBLEM 

The simplest problem is the following. 

Given an alphabet of size k and a sequence ~ = w0,...,Wk, find all 

DOL-systems G for which ~ is the initial subsequence of ~(G). 

To solve the problem, first form the Parikh-images of the words: 

= w0,...,w k. If ~ is to be the initial subsequence of some &(G), 

then the following relation must hold: 

F -I :(T O ..... (3) 

or AS = T 

(A is the growth matrix of G). 

One may now distinguish two cases, depending on S. 

(4) 
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First, if S is non-singular (which, incidentally, means that 

CA(X) = mA(x) = ~G(X)), then A is uniquely determined by 

A : TS -1 

Second~ if rank (S) = k-r with r > 0, then A can be written 

A = A0 + ~IAI+ .... +lqAq, 

where - A 0 is some solution of AS = T 

- AI,...,Aq are mutually independent solutions of AS = O; 

q~k.r. 

- Xl,...,lq are otherwise arbitrary numbers such that A has 

only positive elements. 

The last condition leads to q linear unequalities in 11,...,lq, 

with finitely many solutions (perhaps none). Properly speaking, the 

number of solutions can indeed be infinite, but only if (and as far 

as) letters not occurring in ~ are concerned. The complication is 

completely formal, since such a letter will never appear at all if it 

did not appear in A; it may, if desired, be formally eliminated by 

only admitting reduced G's. 

Once an admissible growth matrix A is found, one returns from Parikh- 

vectors to words. 

Lemma 3.1 The growth matrix and the first ~ Z+I words of a DOL- 

sequence uniquely determine the useful production rules. 

Proof The restriction to useful production rules (i.e. rules which 

are at all applied in ~) should be obvious. 

Let w 0 = °°1 .... o0p" 

One can then parse w I in p subwords, starting from the left-hand side; 

wl : P(~01) ...... P(~0p), 

where the subword lengths IP(o0i) I can be looked up in A, being equal 

to the lengths of the column vectors P(~0i ) of A. 

By this procedure, P(o0i ) is found for all letters in w 0. The proce- 

dure is then continued for the one-step derivations w I ~ w2,...,Wk_ 1 

w k. Any letter which has not appeared by then will not appear at 

all. [] 

Theorem 3.2 For a given kxk matrix A and a word sequence 

= w0,...,w k over a k-letter alphabet there is at most 

one reduced DOL-system G with the properties 

(i) A is the growth matrix of G. 

(ii) ~ is the initial subsequence of &(G). 
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G can be effectively constructed. 

Proof The theorem follows from lemma 3.1 by observing that the con- 

struction of the set of production rules P from A and ~ does 

not depend on the fact that A is a growth matrix or A is a DOL-sub- 

sequence. [] 

During the construction of P several things may happen, in this order: 

1 The total length of P(w.) as found from A is not equal to the 
-- l 

length of the given word w. 
i+1 ' 

After parsing wi+ 1 in lwil subwords the Parikh-vectors of the 

individual subwords are not equal to the appropriate columns of 

A, even though the lengths may match. 

3 For some letter ~, P(a) as found from one instance of ~ some- 

where in the derivation may differ from P(o) as found from some 

other instance of ~ even though both Parikh-vectors are equal 

(and consistent with A). 

In each case, A is rejected as a growth matrix for wQ,...,w k. Whether 

in case ~ w0,...,w k must also be rejected as a DOL-subsequence is not 

yet quite clear to me. 

If the matrix A happens to be non-singular (which is the rule rather 

than the exception), theorem 3,2 has interesting consequences, which can 

be formulated in various ways. Let the order of a recurrence relation 

9(A)w 0 = ~ be defined as the degree of the polynomial 9(x). 

Corollary 3.3 If a DOL-subsequence ~ does not satisfy any recurrence 

relation of order lower than ~ then there is only one 

G with { = ~(G). 

Corollary 3.4 If a sequence ~ of k+l words over a k-letter alphabet 

does not satisfy any recurrence relation of order lower 

than k, then there exists at most one DOL-system G such that ~ is the 

initial subsequence of 6(G). 

Corollary 3.5 Two different (and reduced) DOL-systems G and H can only 

produce the same sequence if 

~G(x) = ~H(X) ~ }G(x) = ~H(X). 
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4. Inference from a scattered sequence. 

Like in the previous section, the alphabet Z is regarded as given; 

Z = k. The given sequence of words, however, has the form 

= Wil,Wi2, .... Wip, with i 0 < i I < ... < ip and p arbitrary, instead 

of ~ = w0,wl,...,w k. After a few remarks on notation I shall first 

describe the algorithm which produces all possible G's from 4, then 

go into its justification, and next give two examples. The section is 

concluded by a flow diagram indicating the acceptance/rejection struc- 

ture of the algorithm. 

Three different sequences will appear in the sequel: 

- the given sequence ~ = Wil,Wi2,...,Wip. 

- the initial DOL-subsequence &0 = wQ'wl'''''Wm-l' where m is the de- 

gree of G's minimal polynomial. 

- the next-to-initial DOL-subsequence ~1 = Wl'W2'''''Wm" 

Each of these sequences can be collected in a matrix. They will be 

denoted by S, E 0 and El, respectively; they are elements of ~kxp and 
kxm 

(twice). 

As described at the end of section 2, the elements of ~ can all be 

expressed in the elements of ~, each w. by means of its coefficient 

vector ~.. The coefficient vectors of 13ean again be collected in a 
3 

matrix, C, which is an element of ~ m×p 

The construction procedure now runs as follows: 

1. Find some recurrence relations within ~. Determine the greatest 

common divisor of their associated polynomials, say, ~(x). 

2. Find a monie divisor of ~(x), with integer coefficients and degree 

k. Let X(X), with degree m, be such a divisor. The next steps 

will investigate whether X(X) = PG(X) for some G such that ~ ~ ~(G). 

3. Compute the coefficient matrix C from X(X) and the index set of ~. 

4. Find E 0 6 ~kxm satisfying the matrix equation S = EoC. 

5. Determine ~m from Q0 ..... Wm_ 1 as found in E 0 and from X(X)'S asso- 

ciated recurrence relation. Now one can compose E 1 from E 0 and ~m" 

Next find A C ~kxk satisfying the matrix equation E 1 = A E 0. 

6. Determine all powers of the production rules P needed to produce 

the words of ~ from one another by first computing the appropriate 

powers of A and then using these to parse the words of~(as in the 

basic inference problem from section 3). 

7. By combinatorial means, find the set of production rules P from the 

growth matrix and the various powers of P found in step 6. 

Ad 1. ~ may or may not satisfy a recurrence relation. Of course it 
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always does if ~ contains k+l or more words, but this is not a neces- 

sary condition. If ~ does not satisfy a recurrence relation, the whole 

procedure simply doesn't work. If it does, there may be several, and 

it is helpful (though not necessary) to find them all. If ~ is part of 

a DOL-sequence ~(G), then the associated polynomials of these recur- 

rence relations are all multiples of ZG(X); so is their greatest com- 

mon divisor, ~(x). If the associated polynomial of any of the disco- 

vered recurrence relations does not (in its monic form) have integer 

coefficients, then ~ is no DOL-subsequence (by theorem 2.9). 

Example: If ~ consists of w 2 = acd, w 3 = abba and w 5 = acbbdaa, then 

2~2 + ~3 - 2~5 = [; the associated polynomial (in monic form) is 

5 3 2 
x - ½ x - x , which does not satisfy theorem 2.9. Hence ~ is not a 

DOL-subsequence. 

Ad 2. ~G(X) must have the following properties: 

(i) it divides 9(x) 

(ii) it is monic and has integer coefficients (by lemma 1.8). 

(iii) it has degree k or less. 

Step 2 consists of finding all polynomials X(x) with these properties, 

by trial and error. That this is a finite enterprise is ensured by 

Lemma 4.1. For a given polynomial ~(x) E ~[x] bounds can be found for 

the coefficients of all ~(x)'s divisors of given degree m. 

Proof. By a well-known theorem from algebra, all complex roots yj of 

a polynomial 

9(x) = x n + ~n_l xn-1 + "'" el x + ~0 

are either smaller than 

where 

IBm_ll = lyl+...+yml ~<mM 

IBm_21 : I Z yiYjl ~<m(m-l)M 
i~j 

etc. 

Thus each B i of X(X) can be bounded in terms of m and M. (To be sure, 

the bounds so obtained are often not very practical, and may be con- 

siderably improved by using the fact that B i ~ % ~ for example, B 0 

must, by lemma 2.7, be a factor of ~0 )" 

1 or are bounded by 

IYjl ~ M : n • max {~i}. 
i 

Since in our case l~il ~ 1 for all i, IYjl ~ M holds in all cases. 

Any divisor X(X) of @(x) of degree m can be written as 

)~(x) = (x-Yl)...(x-y m) 
m m-1 

: x + _Bm_iX + ... + _B O, 
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w 

Ad 3. The construction of the various c. was described at the end of 
i 

section 2. 

Ad 4. The matrix C may be singular, so there may be several (though 

only finitely many) E 0 satisfying the equation S = EoC. 

Ad 5. ~ike in the basic inference problem of section 3, several 

(though only finitely many) growth matrices A may be found. 

Ad 6. Knowing A, one can now parse w11. into Iwi0 I subwords,il_i0each of 
length found from the appropriate column vector length of A , and 

il-i 0 
thus infer some rules from P In contrast with the basic problem, 

the absence of a letter in ~ does not mean that it is never used at 

all. It may have been used in the words in between the given words, 

and it may be indispensable. 

Ad 7. The information obtained from step 6 does not always uniquely 

determine P. 

As an example, consider the following problem: 

Find all DOL-systems over the alphabet {a,b,c,d} such ~ that &(G) in- 

eludes w I = d, w 3 = dac, w 5 = acobd, w 9 = cbddacdacaocbd. To solve 

the problem, follow the steps of the procedure: 

1. The sequence ~ consists of ~. (0'0'0'I)T' ~3 = (0'1'1'1)T' 

w5 = ( 1 ' 1 ' 2 ' 1 ) T '  ~9 = (3 ,2 ,5 ,4)~  
The only recurrence relation obtaining in ~ is ~9-3w5+w3-2~1 = ~. Its 

associated polynomial is ~(x) : x9-3x5+x3-2x. 

2. ~(x) = x(x2+2)(x3-x-1) 2. Its set of divisors of degree < 4 (= ~) 

exhausts the possibilities for G's minimal polynomial; it consists of 

x, x2+2, x(x2+2), x3-x-1 and x(x3-x-1) .  
Of these x can be immediately discarded. So can x2+2 (which is asso- 

x(x2+2). elated with the impossible recurrence relation ~2 = -2~0) and 

Two polynomials remain, x3-x-1 and x4-x2-x. 

3. First try X(X) = x3-x-1. X(X) is associated with ~3 = ~1 + w0' and 

iteration produces 

~4 = ~2 + ~1 

~5 = ~3 + ~2 = ~2 + ~1 + ~0 

~9 = 3~2 + 4Q1 + 2~0 

So ~1 = ( 0 ' I ' 0 ) T '  ~3 = (1 ,1 ,0)T,  ~5 = (1 '1 '1 )T  and c 9 = (2 ,4 ,3)T;  

c =  1 1  

4. E 0 must now be solved from S = E0C , or 11 = E 0 11 . 
12 01 
11 
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E 0 must also be in I~ 4x3. 

There happens to be precisely one solution : E 0 = 0 
0 
1 

This supplies the three initial vectors of ~(G). 

5. The fourth vector of ~(G) is found from the first three and from G's 

minimal recurrence relation : w 3 = w I + ~0 = (0,1,1,1) T. Now E 1 is 

also known, and the growth matrix A(E IN 4x~) can be solved from 

AE 0 = A1, or A = 0 

There are solutions, A = 00 and A = 0 0 
0 0 0 0 
01 10 

6. First try the first A. The powers of A relevant for 

are A 2(for ~12 ~3 and ~32 ~5 ) and A 4(for w 54~ w9)" 

(i 01 i) and = (! 01 !I A 2 00 A 4 00 
= 01 01 

0 0 0 1 

These induce the following parsing in ~ : 

d 

cr--~ ~ a  c rd a c a c c b d 

The parsing is consistent, both internally and with A, and produces 

the following information : 

p2(d) = cbd ; p4(a) = cbd, p4(c) = dae, p4(d) = accbd. 

7. Combining the data from step 6 with the growth matrix A, one 

obtains one set of production rules : 

{a ~ cb, b -~ ~, c ~ d, d ~ ac} and two possible axioms: w 0 = b c or 

w 0 = cb. 

6,7 Now try the other A left over from step 5. In the same fashion, 

one set of production rules is produced, again with two possib&e 

axioms : 

P = {a ~ cbd, b ~ d, c ~ ~, d ~ ac} ; w 0 = bc or w 0 = cb. 

3,4,5,6,7 One more X(x) was left over from step 3 : X(x) = x 4- x 2-x. 
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0 0 0 0 ~1 0 0 

It first produces C = 0 1 then E 0 e2 0 1 with 
0 1 
10 3 1 0  

the ~. (the axiom's coordinates) arbitrary. 
i 

In ~ step 5, two solutions for A appear, together with further restric- 

tions on the axiom : 

A = 0 00 0 with ~0 = (1,~,0,0) T (A arbitrary) 

0 1 

or 

A = 0 0 with ~0 : (1,0,i 0)T (i arbitrary) 
00 ' " 

10 

In steps 6 and 7 the same two P's as before are produced ; the axioms 

are, however, sligthly different : 

P = {a ~ cb, b ~ i, c ~ d, d ~ ac} with w 0 = bmcb n (m,n arbitrary), 

P = {a ~ cbd, b ~ d, c ~ I, d ~ ac} with w0 = embc n. 

This concludes the example. 

Another example may show the procedure's speed to advantage. 

Let ~ be given, consisting of w I = b, w 4 = acb, w 6 = ddab,wg=~caddab, 

and Wll = aabbccddabcd. ~ = {a,b,c,d}. Is { part of a DOL-sequence ? 

Step 1 : Wl =(0,1~0,0) T, w 4 = (1,1,1,0) T, w 6 = (1,1,0,2) T, w9=(3,2,1,2)% 

Wll = (3,3,3,3) T. 

Now ~11 is of course dependent on the other vectors, but not 

by a monte relation with integer coefficients. 

Hence ~ is (by theorem 2.9) not a part of any DOL-sequence. 

Observe that this remains true if the alphabet is not given. 
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Given : ~ E = k 
O start 

Construction algorithm 

=Wil~Wi 2 .... ,Wip ~ A n Y r ~ f O r  scattered sequences 

~ i n ~ ? ~ /  
Y ~  ""-No ~ -, 

I F i n d  a l l  m o n i c  d i v i s o r s  o f . ~ ( x )  i n  7Z,[x] a n d  w i t h  

d e g r e e  ~ k .  R e s u l t  " { × ( x ) } .  

Pre Not nresent 
(m: = degree (X(x))I v 

Find C from X(x) and ~ • | 
-I 

Solve E 0 E~ kxm from S = EoC. Result : {E 0} l 

Pre Not present 

I Determine ~m from X(x) and E 0. Determine El. ~ 

Solve A ~kxk from A E 0 = E I. Result : {A}i.J 

Prese Not present 

...... i p - i q  
> iq in ~'s index set Determine A for all ip 

' ~ N o t  consistent with 
C o n s i s t ~  

p l / < "  - -  Fails 
Succeeds '~ceeds~ ~ " - 

[a G has been found] 
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5. Further extensions of the inferenee problem. 

The problems discussed in the previous sections had the following 

properties in common : 

(i) the alphabet Z is given. 

(ii) enough words are given to establish a recurrence relation within 

the given sequence. 

(iii) not only a number of words are given, but their rank order 

numbers as well. 

One can examine to what extent the method remains valid for problems 

not possessing these properties. In this section I shall discuss some 

of the seven remaining cases. 

In general, one can say that the method hinges on determining ~G(X) 

from a recurrence relation within ~ . 

In the absence of such a relation (the eases (000),(001),(100),(101); 

in binary code , referring to the three properties) the method simply 

does not work; If #~ Z is given ((100) and (101)) the problem can be 

solved by a laborious but finite exhaustive search. If ## Z is not 

given (subcases (000) and (001)) the problem is not so simple. In fact, 

I do not know whether the decision problem is at all solvable for 

these cases. The same goes for case (010). 

In case (101) (#~ ~ = k and a numbered sequence ~ are given ; but 

satisfies no recurrence relation), two subcases may be distinguished: 

either does or does not certain a word with rank order number larger 

than k. 

If ~ contains at least one word w with p ~ k, then it is not difficult 
P 

to see that any possible growth matrix A = ((aii))~ is bounded by aij < M 

(where M is the maximum number occurring in the vectors of ~ ), except 

for those numbers referring to mortal letters. As a result, the problem 

is bounded for all vital letters and not bounded (in a rather unimport- 

ant way) for mortal ones. 

If no word w with p ~ k is given, no such upper bound for the 
P 

elements of A can be given, and the problem often has infinitely many 

solutions. 

Case (100) would reduce to a finite number of the previous cases (101) 

if from #@ ~ and ~ an upper bound for the rank order numbers could be 

deduced. This bound can indeed be found ; by a size argument if L(G) 

is finite, by a growth argument if L(G) is infinite. 

If L(G) is finite, then a result by P. Vit~nyi [114] states that 

L(G) contains at most k(1 + k n-l) words, where n is the number of 

different monorecursive letters in a certain, specified, word. Since 

obviously n ~ k, #~ (L(G)) ~ k(1 + kk-1). This number gives the 
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required upper bound~ since any higher rank order number refers to a 

duplicate of an earlier word. 

If, on the other hand, L(G) is infinite, then lWn+kl > lWnl + I for 

every n. Consequently, an upper bound for the rank order numbers {i} 

in the given set of words S is given by 

i ~ k-max {lwl : w e S} 

So case (1QD) can be reduced to ease (1D1) ; hence the case is solvable. 

The indicated procedure is of course not nearly a practical method. 

In case (011) a recurrence relation can be found in [ , but ~ may be 

larger than the "observed" ~obs" 

The inference algorithm of section 4 applies during the first steps, 

where no knowledge of ~ is necessary. 

In step 4 problems may arise. First, the degree of BG(X) can never be 

larger then ~ ~. So, if it turns out that deg (BG(X))= m > ~ ~obs' 

must be larger than ~obs" Now simply extend ~obs to ~ in the 

minimal way : namely, such that 

~ ~ = k : max (~ ~obs,m), and then apply 

step 4 : find a matrix E 0 C ~k×m satisfying S = EoC. 

From the pictorial representation 

P 

q 
i 

I 

m 

i i 

i 
, ? 
i 

I a 

P 

it is not difficult to see that increasing ~ ~ beyond k cannot have 

any other effect than adding mortal letters to solutions already 

obtained with ~. In other words : if there are no solutions for E 0 

with this minimal ~, then there are none. 

That ~ can indeed be larger than ~obs can be seen from this very 

simple example : Find a DOL-system such that w0= a, w 4 = aaa. 

~(x) = x 4 - 3, with no other divisors. If ~(x) is to be G's minimal 

polynomial, then ~%L ~ ~ 4. In fact, p = {a ~ b,b ~ c,c ~ d,d ~ aaa} 

provides a solution. 

Case (110) can be regarded as a more favorable subcase of (100), 

involving considerably less guesswork. 

Of the variants discussed, (011) may be the most interesting one, since 

it solves a subcase of the hitherto open problem (Felieiangeli and 

Herman [28]) of finding G from ~ if ~ is not given. 


