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INTRODUCTION: 

The purpose of this paper is to show the applications of standard numerical 

methods to new problems arising in biochemistry. 

The source of these problems is a team of biochemists (ERA 338 CNRS, Labora- 

toire d'Enzymologie Mgdicale, Universit~ de Technologie de Compi~gne) lead by 

Dr D. THOMAS (I). 

They study artificial membranes, made of enzyme linked to inactive protein. 

Typically such a membrane separates 2 compartments containing some substrate. The 

substrate diffuses inside the membrane and reacts because of enzyme (which is a 

catalyst). 

We are interested in 2 kinds of problems:-First, what is the state of the 

system, what are the profiles of concentration of substrate and product, either in 

transient state, or in steady state, or in quasi steady state ? 

-Secondly optimization problems arise, 

either in identification of kinetic parameters or in optimal control of some quan- 

tities such as fluxes of substrate. 

In § I we describe the 3 kinds of states for which we are asked to give a nume- 

rical approximation: transient, steady, and quasi steady states, and the way to ob- 

tain this numerical approximation. 

In § 2 we give an example of optimization problems: identification of kinetic 

parameters. This case, as many others, have been studied by JOLY G. (2). 

Notations 

s(x,t) = concentration of substrate at point x and at time t, (O < x < ])° 

s(x) = concentration of substrate at point x (in steady state). 

~(resp~) = concentration of substrate at the boundary x = 0 (resp x = I). 

= (positive) parameter. 



313 

h and k are the space and time steps: Jh = | , Nk = T. 

n 
s. = approximation of 
J 

¢~(x)  = (B - cO x + c~ 

s (jh,nk). 

~. = ¢(jh) 
J 

J~l 2 J-I ¢j+! j 
I¢[ = h ¢~ , ]+l = h :EO 

where ¢ = (¢0,¢i . . . . .  Cj) 

i / 2  

with ¢0 = CJ = O.(We shall use I¢l ~ [¢]) 

F(s) :<~s I (i + Isl) 

I - STATE OF THE SYSTEM 

l . l .  - TRANSIENT STATE 

For instance at time t = o the membrane is empty of substrate and we are 

interested by the filling up of the membrane by substrate during a short interval 

of time ]O,T [ ; equations are: 

2 
___~ _ ~ s + s 0 O< x< I 
~t ---2 °lTs 

ax 
(1.i) 

s(0,t) = ~ s(1,t) = 

s(x,O) = 0 

It is therefore possible to use the explicit scheme: 

(1.2) 

wi th 

(i ,3) 

if 

n n+l n n n - 27-s n 
sj - sj - Sj+l + sj-I J +o s.j 

n 
k h 2 1 + s j  

n n 
s o = ~ sj = B 

s ° = o 
3 

0~< s n+l .< max(a,~) 
3 
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(I,4) k < 
2 

h 2 

We can also use the implicit scheme 

(1.5) 

n+1 S~ +I  - s~  n+l  + n+I  _ 2 s n + t  s .  
~ -  s J + l  s------J-I $ +o 3 

k h 2 1 + s~  +I 
J 

n+] n+] 
s o = e sj = B 

0 
s. = 0 
J 

for which we have the 

= 0 

Theorem 1 .1 .  - Let us call 

(1.6) yj = sj - ~j 

Then 

( I . 7 )  l y n + l i  ~ C 0 ~ n ~ N-1 

N-I r n+lq 2 
(1 ,8 )  k Z LY J < C 

n=O 

C being a constant independant of h and k. 

Proof: 

n+ l 
Y 

(1.9) j 
[yo +I 

multiplying by 

n n+1 n+1 n+l Cj + y~,+1 
- Y[_ Yj+I + Yj-I - 2yj = -O 

k h 2 I +~j + y3 +I 

n+1 0 
= yj = 0 yj - ~j 

hkyn+1 and summing from j = I to j = 3-I, one gets: 

1 n+1 2 I yn[2 + I n+l yn[2 iyn+l ~klyn+l ~ Y i ~I 7 Y - + k[yn+II2-< ~k I ~< 

t ~ n + l  2 
,.< -~ o2k + ~- k iY 
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and at last, summing over n , 

m i2 (1.10) lym+l I 2 + k X ]ym+l 
n=O 

which gives the result. 

2 T < o + 1 0 ]  
2 2 T < o + (max(cz,~) 2 

n+1 
To solve (1.5) we can use, to get the s. 

O 
iterative scheme: 

n 
from the s. , the following 

J 

( i . l l )  

n+ l  ,~+1 n n+ l  ,~.+1 
s j  - Sj - s j +  1 

n + l  ,%+1 
s o 

n + l  ,£+1 ~ n+]  ,~+I  n+ l  ,£+1 
+ s._lj - AS. s. 

J + o  J 
h 2 I + sn. +1 '~ 

J 

n + l , O  n 
s. =s. 
J J 

n+l ,~+I 
sj = fl 

= 0 

and we stop the iterations if 

(I.12) 3 J J < e 
E s n + l , ~ + l  
j j I 

( u s u a l l y  e = 1 0 - 4 ) .  

We can also use Newton's method and, in (I.II), replace the "reaction term" 

by 

~+I _ s~) F'( ~ (I.13) F(s ) + (sj sj) 

1.2. - STEADY STATE 

Steady state equation is: 

(1.14) I 
_ d2___~s + ~ s - O 

dx 2 I + s 

s(O) = ~ s(1) = B 
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The following algorithm 

(1.1s) 
k+! k+i ~+ 11 h 2 osk+l - ~ s , +  + - 2 s  / + / (1 + sk.)  j 1 sj-I j j 

k+! k+l 
s o = ~ sj = B 

with 

O O 
(1.16) s. = 0 or s. = ~. = (~-~) j h+~ 

J 3 3 

and a stop test of the form 

(i.~7) 

J-I , k+1 k~ 
Z ~s - sj i j=!. I J 

sk+i i - < 
j=ol j 

gives an approximation of its solution in a few iterations. 

(5 iterations for o = iO, ~ = ~ = I and E = 10-4). 

1.3. - STEADY STATE IN THE CASE OF INHIBITION BY EXCESS OF SUBSTRATE 

The system is governed by the equations 

- --d2s + G(s) = 0 O < x < i 

(I.18) dx 2 

s(O) = s(1) = v v > O 

where 

(I.19) G(s) = os / (i + s + as 2 ) a > O 

This system is interesting because it presents some hysteresis for o 

enough: 

large 



317 

v5= 0 

v4=v 6 

v3=v 7 

v2=v 8 

Vl=V 9 

D 

g Q 

• • 

• • 

I e • 6 ° 

. • ~ 
• ,  L 2 ' 

D IJ Q 

H 6 
i 

e 

H 7 

e ~ * 4 0 

• 4' t ~  I 

L 4 • ' , , . 
• e • 6 • 

e • • ::! !"" . e e  4 , • O ~ • 

• t S • • . . .  - : . .  . . . .  • 

H 8 

Let the system be defined by (1.18) with 

( 1 , 2 0 )  

0 

f 
v = v(t) = I t if O< t < @ 

20-t if 0< t < 28 
k 

being large enough. 

In a first phase v increases from 0 to v 5 

For v = vl,v2,v 3 and v 4 we have the dotted profiles. 

For v = v 4 there is a jump from the "low" profile L 4 

profile H 6 . 

to the "high" 

Continuing to increase v until v 5 , the profile of concentration rises to 

H 5 , remaining in a "high" position. 

Now after t =0 v decreases and the profiles superimpose on those found in 

the ascending phase, at least for v 6 < v < v 5. 

It is at this moment, when v decreases from v 6 to v8, that hysteresis 

appears: the profiles of concentration remain in "high' positions H6,H7,H 8. 
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For v = v 8 

the line L2. 

For v ~ v 8 

If we plot 

there is another jump, this time from the high level H 8 to 

we find again the same profiles than in the ascending phase. 

s[~] against v we otain: 

J 

J 

f f  

v 2 v 6 v 

For v between v 2 and v 6 the system can have 2 stable states, according 

to its past history. 

This is a system with memory. 

According to this property we must be prudent when solving (1.18) by a scheme 

like in § 1.2. 
O 0 

We begin with s. = 0 if we wish to get the "low ~ profile, and by s. = 
J J 

if we desire the '~igh" one. 

1.4. - QUASI STEADY STATE. 

In this case s = s(x,t) is governed by 

(1.21) 

- --d2s + F(s) = 0 

dx 2 

~s ~s 
3t 3x for x = 0 , s(O,O) = eO 

~s ~s 
3t ~x for x = I~ s(l,O) = B O 
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If we call 

(1 .22 )  a ( t )  = 
~( t )  = 

and if we call f 

If 

(1.23) 

Then 

(1.24) 

and 

- d---Z ÷ F ( y )  = 0 

dx 2 

~y(O) = g , y ( l )  

s (O , t )  

s ( l , t )  

and g t h e  f u n c t i o n s  d e f i n e d  by :  

are 2 (positive) numbers and if y 

= n 

{ f($,n) = ~x (0) 

g(g,n~ = - ~x (0) 

is the solution of 

The system (1.21) is equivalent to the ordinary differential equations 

I 
da = f(e,~ a(O) = s O 
7~ 

( 1 . 2 5 )  
d8 
~-f = g(~,8) , ~(0) = B o 

to which we apply Runge Kutta method. 

1.5. - OTHER SYSTEMS 

We conclude this first paragraph by referring to (3) where many other systems 

are described and numerical and experimental results are compared. 
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II - OPTIMIZATION PROBLEMS 

Examples of optimal control of such biochemical systems have already been given 

by KERNEVEZ (4), QUADRAT and VIOT (5) and YVON ( 6 ) .  

In this paper we give an example of identification of parameters, which is 

dependant on the same technique, i.e. we have some cost function to minimize, we 

use for that a gradient method, and to get the gradient we use an adjoint state. 

2.1. - DESCRIPTION OF THE PROBLEM 

The (steady) state of the system is defined by 

(2.~) 

where 

i - d2s + v(x) s 0 

dx 2 1 + s 

is(O) = c~ s ( I )  = 

O < x <  1 

v(x) is proportional to the concentration of enzyme at point x. 

v is an unknown function of x in 

(2.2) ~d = { V [ v L2(O,l) and 

M being some positive constant. 

0~<v~<M} 

(2.3) 

function 

(2.4) 

The problem is to find 

Let ~. and B. (i = l,.~.,N) be N choices of the boundary concentrations 
i i 

of substrate. 

We shall call si(x;v) the solution of (2.]) for the function v and for 

= ~i ' B = Bi* 

We observe the fluxes of substrate entering the membrane at x = 0 and x = ! 

for the different values of i (i = l,...,N) : 

observation = Zoi and Zli (i = 1,2,...,N) and we define the cost 

2 dsi(.,v) 2] dsi 'V)(o)zoil + ( )z,il 
J(v) = ~ i =] dx 

u such that 

(2.5) J(u) ~< J(v) Vv e ~ad 
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2.2. - LAGRANGIAN, ADJOINT STATE AND GRADIENT. 

JOLY G. (2) shows that this problem has at least one solution and gives justi- 

fication for the following formal indications to find a solution. 

First step: define the lagrangian: 

I N _ ds i ]2 
(2.6) ~(v,s,p) = ~ i=l ~ (O)-zoi 

I 

1 N ds i 2 

+ ~ i~l -~-x (1)-Zli 

l Pi - -- + v(x) i dx 
i=l dx 2 I + s. 

I 

where v,s = (s I ..... s N) and 

(2.7) v ~ q~ad 

(2.8) s i - ~H~(~)OH2(~) 

p = (pi,...,pN) are independant and such that 

( a  = ] o , 1 E )  

(2.9) pi e L2(~). 

Second step: 

(2.10) 

(2.11) 

(2.12) 

for every s define p such that 

w = O 
3s 

i d,, -~x + dx 

dx 2 (l+si)~ J 

= 0 

, Pi (I) 

which is equivalent to 

I d2pi v(x) I 

- dx---2 -+ (l+si)2 Pi 

Pi(O) = dsi 
dx (O)-Zoi 

(I) 

V~ HOI (~)N H2 (~?) 

ds. 1 
= dx (1)-Zl i  

(i = 1 ,2 , . . . ,N)  
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Third ste~j_ we know that 

(2 .  I3)  J ( v )  = ~ ( v , s ( v ) , p )  V p 

(2.14) (J'(v),#) = I~-~,#] [a~ o~s ] Fv,,l 
i f  we c h o o s e  p as i n d i c a t e d  i n  ( 2 . 1 2 ) .  

( ¢ i s  an  a r b i t r a r y  f u n c t i o n  i n  L 2 ( a )  an ( f , g )  

= ~ '11 si 
(2. ID) (J' (v),~) i=l ~0 Pi(X) ~(x) I + s. dx 

1 

denotes f~ f(x) g(x) dx). 

2.3. - NUMERICAL METHOD 

We work with the discrete lagrangian 

/%1 2 
= I N ISi,o - si, I zi O' 

(2.16) ~ ~ E -- - + 2 
i=| h 

N J-1 [ Si,~+ 1 + si,j_ l 
+ h Z E . -  - h2 i=I j=! Pij ( 

2 
N si'j - si'J-I 1 

i ~ l  h zig 

- 2s. . .s..1 
l~j + v. ~--b3- I 

3 l+si, j) 

which corresponds to the discrete state 

(2.17) 

( 
i si,~+l + Si,$_l ' - 2si.,j __~_ 

-- + V. 

h 2 3 l +s. 
] 

s i ,  = c~ s i ,  J = B 

to the discrete adjoint state 

(2.38) I 
_ Pi,~+l + Pi,j-I - 2Pi,j + vl 1 

h 2 (1+sj) 2 

si, 0 - si, I 
[Pi,o ......... h ....... Zio Pi,J 

and to the gradient 

(2.19) a-!-J = h ~ ~'J 
av. Pij l+s. 

3 i=l l,j 

= 0 

Pi,j = 0 

si, J - si,j_ I 
= 

- Zil 
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The algorithm is the steepest descent method: 

i/ 

that 

ii/ Compute the state by (2.17) 

iii/ Compute the adjoint state by (2.18) 

iv/ Compute the gradient g by (2.19) 

v/ find ~opt such that 

~(v - ~opt g) ~< J~v -(~g) 

iJ(v,  optg) - I 
vi/ if < E , stop. 

J(v) 

else replace v by v - ~optg 

We have tested the method with 

and 

Start with an initial distribution of enzyme v = (v!,v2,,..,vj_ I) 
J-! 

h Z v. = total (given) amount of enzyme inside the membrane. 
j=l J 

V£ >0 

and go to ii/ 

v(x) = a sin Ex 

N = 7 observations, starting with a uniform distribution 

such 
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