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Abstract 

The determination of optimal closed-loop control (or 'on line' control> laws is 

often referred to in the mathematics literature as the 'synthesis' problem. Except 

for the well-known case of 'linear dynamics, quadratic criteria', this problem is 

still largely unsolved. This paper presents a local approximation technique for 

time-optimal control synthesis of a class of non-linear systems: specifically, 

point-to-point aerodynamic flight in a resisting medium. Preliminary computational 

results are presented, indicating that the approximation technique is feasible. 

i. INTRODUCTION 

By control 'synthesis' we mean the determination of the optimal control 'on line' or 

'closed loop'; that is to say, as a function of the state (as well as time> along the 

optimal trajectory. Excepting the case of 'linear dynamics, quadratic cost', this 

still continues to be the major unsolved problem in optimal control - for ordinary 

differential equations, at any rate. The complexity of the problem is acknowledged 

already in the early Pontryagin work [i]. Indeed we do not yet possess any general 

existence theory, let alone whether constructive or not. Computational techniques 

for optimal control (see [2]) yield only open-loop controls; the control is determined 

as a function of time for given initial and/or final conditions, and not as a function 

of the state. The lone exception is time-optimal bang-bang control of linear 

systems, where switching surfaces have been calculated for second-order and 

third-order systems; the general case being given up as hopelessly complicated 

(see [3]>. 

~Research supported in part under ,AFOSR Grant No. 73-Z492, Applied Mathematics 

Division, United States Air Force. 
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Previous attempts at approximation have been confined mostly to linearizing the 

equations to conform to the linear quadratic theory [4]. In this paper we present a 

local approximation technique for a particular class of nonlinear dynamics: namely~ 

rocket flight in a resisting medium, using techniques based on the Bellman equation, 

known to be invalid for time-optimal control of linear systems, see [i]. Bryson and 

Ho [4], Jacobsen [5] have also used the Bellman equation but for the purpose of ob- 

taining an iterative technique for the optimal trajectory. Our technique is different 

in concept and execution from theirs. Vie do not in particular seek to calculate the 

trajectory but rather the control, directly. 

Z. THE PROBLEM 

We begin with a more precise statement of the problem. 

the problem splits into two parts: 

x(t) =I xl(t)} 

[xz(t) 

and the dyna~r~ic equations have the form: 

where 

form: 

il(t) = fl(t;xz(t)) 1 

xz(t ) = fz(t;xz(t);u(t)) I 

where C 

state at time 

that 

The state vector x(t) for 

(z.i) 

u(t) is the control to be synthesized, and is subject to the constraint of the 

u(t) ~ C (Z.Z) 

is closed and convex. Let t. be an initial time, and x(ti) the initial 
I 

t.. Assuming that it is possible to find an admissible control such 
l 

x(tiJ given 

x2(T ) = O, T>t.,~ (2.3) 

the ~time-optimal ~ control, problem is that of finding u(.) that minimizes T. Let 

us assume now that an optimal control exists for every initial state in some open 

set ~. The synthesis problem is that of finding a function h(tlx) such that the 

(an) optimal control can be expressed: 
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Uo(t ) = h(t ;Xo(t))  t_> t i . . . .  (Z.4)  

where Xo(t ) is the corresponding optimal trajectory, so that 

tf /./t 
~°(t) = f(t~x°(tl;u°(t)); f(') = Ifz ('>I 

and satisfies the given conditions at t. and T, and yields the minimum such T. 
I 

As we have remarked earlier, no sufficient conditions of any generalit~f are avail- 

able at the present time for the existence of such a function h(t;x), and of course 

no general algorithm for computation is known either. Indeed it does not seem 

likely that there will be any forthcoming in the near future. It would appear that 

the best we can hope for is an approximation scheme that is good in special cases, 

and how good being demonstrable only by computation. At any rate, the present 

work offers not more. 

Since the Bellman equation plays a fundamental role, we shall state and prove it 

first in the form we shall need to use. 

Theorem Z.l (Bellman) 

Let T(t;x) denote the (incremental) minimal time taken to reach the origin begin- 

ning with the state x in ~ at time t, for the system described by (Z.1), (2.2), 

(2.3). Assume that T(t;x) is continuously differentiable in t and x, x e ~. 

Assu~rle further that fl (.),fZ(.) are also continuous in all the variables. Fix t. 
i 

and x, and let Uo(t ) denote an optimal control, and x°(t), t>t i, the corresponding 

optimal trajectory, x°(ti) = x. Then if t. is such that Uo(ti) is continuous from 
1 

the right, or is in the Lebesgue set of the function f2(t;x°(t);Uo(t)), we have 

Min [5~2, fz(ti;x;u)] = 5[~2' fz(ti;x;u°(ti))] (2.5) 
u¢C 

Proof 

Define a new control to be equal to arbitrary given u in C for t. < t < t. + ~. 
i-- -- 1 

Let x(t) denote the corresponding trajectory. Then for all ~ sufficiently small, 
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x(t i + A) will belong to the open set ~. Moreover 

T ( t  i + &; x ( t  i + &)) + ~ >_ T ( t i ; x )  

But 

and is 

by virtue of (2.6) where 

other hand, of course 

lira ± (T(t i + i + a)) - T<ti; > ) 
A-->O & 

_ ~-'[- + , f l ( t f ,  x + ~ T  

~T denotes gradient, and [,] inner product. On the 

( 2 . 6 )  

i (T(t i +A; xO(ti +~)) - T(ti;x)) lira -~- 
A-->0 

= - 1 (since equality holds in (Z. 5) in this case), 

provided t i is a point of continuity of Uo(t ), or more generally belongs to the 

Lebesgue set of the function fz(t;x°(t);Uo(t)). Hence it follows that 

M i n  
u ¢ C  

at all points t. 
I 

L~x2 'fz(ti;x;u) 1 = [~' fz(t;X;Uo(ti ))] 

where Uo(ti) is continuous from the right. 

If the conditions of the Theorem are met, then we can use (Z.5) to determine con- 

trol synthesis, namely the u that minimizes: 

[ ~T fz(t;x;u)] {2.7) 

w h i c h  y i e l d s  a f u n c t i o n  o f  t a n d  x .  O f  c o u r s e  t h e  b a s i c  f a u l t  i n  t h i s  m e t h o d  h a s  

a l r e a d y  b e e n  n o t e d  b y  P o n t r y a g i n [ t ] ;  t h e  f u n c t i o n  T ( t ; x )  n e e d  n o t  p o s s e s s  t h e  

r e q u i s i t e  d i f f e r e n t i a b i l i t y  p r o p e r t i e s ,  i n d e e d  d o e s  n o t  e v e n  f o r  l i n e a r  s y s t e m s  a n d  

b a n g - b a n g  c o n t r o l .  H e n c e  i t  w o u l d  b e  f o o i i s h  to  i n v o k e  t h i s  t e c h n i q u e  f o r  t h e  c a s e  

o f  l i n e a r  s y s t e m s .  H e r e  w e  s h a l l  o n l y  c o n s i d e r  n o n l i n e a r  s y s t e m s .  O f  i n t e r e s t  i n  

t h i s  c o n n e c t i o n  i s  a r e s u l t  d u e  to R a d e m a c h e r ,  p o i n t e d  o u t  b y  F r i e d r r ~ a n  [6]  t h a t  
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uniform Lipschitz continuity implies almost everywhere differentiability. It is not 

clear however that this is any great help; it is not for our problem at any rate. 

An Example 

It may be helpful to consider first an illustrative example which although quite 

simple, still retains some of the salient features of the flight dynamic system we 

shall consider. In particular we can see what the local approximation is, and how 

good it is. We consider motion in a plane with fixed speed: 

~(t) = cos ~(t) 

,>(t)-- sin ~ (t) 

y(t) = ol 

where ~ is the control variable (one-dimensional), and subject to the constraint: 

i~V < 1 

We consider the problem of returning to the origin in the plane: x = 0, y = 0, in 

minimal time, beginning with any given x, y, ~/. It can be readily verified that the 

optimal controls are of the form: 

+ I, - i, or zero 

(The control is not bang-bang), and that the optimal trajectories are arcs of unit 

radius circles and straightline tangents to them. Let 

r =~x2 + y 2 ; Tan c~ = y/x; cos c= -y/r 

Let T(t;x;y;y) denote the minimal time starting from x,y,~( at time t. Then an 

actual calculation shows that T(...) is differentiable so long as 

r - Zlsine(~ ( - C;)I ~= 0 

On the other hand at points where 

r - 2 sine(~(- c~) = 0 

the function need not even be continuous. For example at ~= 0, y= TI/Z, x = -Z, 

y = 0, the function is not continuous in ~( . On the other hand, it is differentiable at 
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all points along an optimal trajectory where y does not switch from +i to -i 

vice versa. 

or 

For a local approximation to synthesis, we proceed as follows. 

c~=0 

W e  n o w  u s e  [2.6]. is optimal. 

ing 

If ~ = a ,  then 

We note that the optimal ce is obtained by minin~iz- 

~ T  
c~ (2.8) 

w e  do  n o t  a t t e m p t  to c a l c u l a t e  ~ T  
5V 

exactly. Instead, we note first that 

5TJ 
Tg- =0 

V=Cr 

since the time is a .q~ini~rlum along a straight line path, the time being proportional 

to arc length. Hence also 

~z2 > o 
5 7 2  V=c~ 

W e  n o w  u s e  a T a y l o r  e x p a n s i o n  a n d  w r i t e  

, ~ZT 5STy - 8"¢STrv=o + (~ - ~ - Z - S v  + "'" 

Stopping at the second term and substituting in (Z.8) we obtain that the optimal c~ 

is given by 

a n d  w e  d e f i n e  

- sign (V-o) 

sign 0 = 0 

to take care of the case where o~ = 0, or equivalently, V = cr. 

This is then the local approxhr, ation to the control law. This law yields the optimal 

trajectory in this example so long as 
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r - Zlsine(y-c;)l >0 

r - Z Isine(y - C r ) l  < 0 

For example, it does not hold when 

y -~ = 17/Z ; x = -i; y = 0 

at which point the optimal choice of ~ is +i, rather than -i as given by the local 

approximation. 

3. THE FLIGHT DYNAMIC PROBLEM 

We consider rocket motion in a resistive medium at fixed altitude, the dynamics 

now being described as follows: 

x = v c o s  V 

y = v  s i n y  

~z : f3(t;v;~) 

= f4(t;v;c~) 

w h e r e  v is the  s p e e d  ( m a g n i t u d e  of v e l o c i t y  v e c t o r ) ,  a n d  ~ is  the  ( o n e - d i m e n s i o n a l )  

c o n t r o l  v a r i a b l e  - t he  ' a n g l e  of  a t t a c k ' ,  V b e i n g  the  f l i g h t - p a t h  a n g l e .  T h e  f u n c t i o n s  

f3( .  ), f 4 ( . ) ,  b e i n g  n o t a b l e  f i r s t  in  t h a t  they  do no t  d e p e n d  on V , a r e  s p e c i f i e d  a s  

follow s : 

where T, 

with 

T-C N 
f3 - -- (t;v;cl) - m cos ~ m sin c~ 

T-C N 
f4 - sin a + cos (t;v;z) m .v m.v 

the thrust program is a function of time assumed given, 

C = C [ ~ ; v ] v  z 

N = N ( ~ ; v ] v  2 

N(~;v)  = 0 ~ =  0 

we assume that the functions are continuously differentiable [although in practice 

these are only tabulated and must be interpolated for intermediate points]. In 
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p a r t i c u l a r  

f3(t;v;0z)_ = 0 a t  c~= 0 B--7 

and f3(t;v;oe} is a maximum at o/= 0 for all t and v, and 

~Zf3(t;v;cY) 
< 0 

8c~ 2 

We shall consider only the unconstrained time-optimal control problerrl of starting 

with arbitrary initial variables denoted by the subscript i: 

x(t i) 

Y(t i) 

v(t i) 

Y{t i) 

at the initial time t. and returning to 
i 

x=O 

y=O 

in minimal time, the control variable ~ being unconstained. 

We a s s u m e  t h a t  t h e r e  i s  a b o u n d e d  o p e n  s e t  f r o m  w h i c h  w e  c a n  a l w a y s  r e a c h  the  

o r i g i n  in t he  x - y p l a n e  ( h e r e i n a f t e r  s i m p l y  the  o r i g i n )  u s i n g  s o m e  c o n t r o l .  We  

s h a l l  o n l y  b e  c o n c e r n e d  w i t h  t h e s e  p o i n t s  in  the  s t a t e  s p a c e  f r o m  now o n .  W e  

o b s e r v e  now t h a t  t he  f o r m  of  the  e q u a t i o n s  c o n f o r m s  to ( 2 . 1 ) ,  a n d  w e  a s s u m e  t h a t  

the necessary differentiability conditions are satisfied in the state space region of 

interest. 

In slightly different (but more convenient) notation, let T(ti;xi;Yi;vi;Yi) denote the 

actual time at which the origin reached on the minimal trajectory. Our method of 

local approximation proceeds as follows. Let 

Z Z 
r= x +y 

tan ~ = y/x 
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Let c~(t,x,y,v,Y) denote the optimal control synthesis function we are after. Then 

from the given properties of the functions f3 (.), f4(.) we can make the following 

crucial observations : 

(i) The optimal control corresponding to Yi = c;i is given by 

c~(ti' xi' Yi' vi' ~i ) = 0 (3.8) 

(ii) 5T 
BY. = 0 at Yi = ~i 

I 

Although strictly speaking (3.8) will be an assumption, we can offer the following 

explanation. At Yi = ~i ' if we set the control c~ to be identically zero, we obtain 

a straightline trajectory which satisfies the initial and final conditions, since for 

Cy= O, 

From 

y = f 4 ( t , v , O )  = 0 

f3(t;v;c~) s f3( t ;v;O) 

it follows that for the same speed, the acceleration is a maximum along the straight 

line. Hence we should expect ~ = 0 is the optimal control for Yi = ai" We can 

also show that c~ = 0 satisfies the Hamilton-Jacobi system of equations. Thus let 

us use the notation 

x I = x;x 2 = y;x 3 = v; x 4 = y 

and let ~i' i = i, 2, ..4 denote the adjoint variables. Then for 0~ = 0, the adjoint 

equation yields the solution: 

Y1 = ]Y 

72= 1Y 

73= [Y 

~4=0 

(where T 

COS 0-. 
I 

sin o'. 
I 

ft_~ ~f3/~v do 

is the final time), and 

w3 f3 + v4 f4 = ~'3 f3 

ds 
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and Y3 being positive, this is clearly maximized by ff = 0. But of course, we are 

verifying only a necessary condition, strictly speaking. Observation (ii) is a conse- 

quence of the fact that for fixed initial velocity, the straight line trajectory is mini- 

mal time. Actually we can offer a formal proof based on (3.8) by calculating the 

necessary partial derivatives [see below]. 

~Ve next invoke the Bellman equation for our case, and thus we must minimize 

with respect to c~, the expression: 

5T f3(ti;vi;~ ) + 5T (3 9) 5--7 - ~  f4(ti;vi ;°~) ° 

We approximate the derivatives using Taylor expansion about y = cv o 
I 

~T - (~)c~ B2T + 
BY + (~¢i- ai) ~ 5 v  " '"  

1 

~T l 2Tl 
_ ~T + (%li-<~i)~y2j + "'" 

:~i ~i 

~ Z T ]  + 

We have: 

The first term in 13.9) being non-zero, we may neglect the second term in compar- 

ison. Hence we minimize 

C+Io f3(ti;vi;°l) + (7i - a i )  \"~V2 / ~4(ti;vi;ff) 
1 C .  

1 

(3.10) 

As a further approxin~.ation, the minimum may be approximated by a Newton- 

P~aphson step about 0z = 0, yielding 

¢~opt (~i-ci) 

/fT~ ~f4 

(~TI ~2f__! 
~vf~il 5 2 (ti,v i,0) 

(3.1t) 
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where we have exploited (3.6), (3.8). The approximate synthesis problem is thus 

"reduced" to calculating the indicated derivatives of the function T(...). For this 

let h l,h Z be fixed and let 

T(k) = T(ti;xi;Yi;V i + ~ hl;Cr i + kh Z) 

All derivatives with respect to k that are written will be understood to be the value 

at k = 0. Let x(k, t); y(k;t) v()Gt),y(k;t) denote the optimal state trajectory. Then 

we have 

x(~;T(X)) : 0 

y(~;T()~)) : 0 

Differentiation with respect £o % yields: 

(3.1z) 

5--'t + 5 - i ' - 5 x  5T v(T) cos  ~i = 0 

5y + 5T v(T) sin cr. : 0 

(3.14) 

where for simplicity of notation, we indicate T(0) by T. Let c~(%;t) denote the 

control corresponding to T(k). Using the dynamics (3.1) and using x(%, t), y(7~, t), 

v(%,t), Y(k,t) with obvious mean ing ,  we have 

d ~x _ 5v cos ~. - v sin <r. ~--~Y 
dt 5l 5k l i ~)~ 

d AX ~v 
-- = -- sin o. + v cos Cr i By 

(3.15) 

d ~v _ 5f3(t;v;0) 5v since 5f3(t;v;0) = 0 
dt ~y ~v ~--f, ~ (3.16) 

~f4 (t;v;0) d ~Y - 5f4(t;v;0) 5--Xv + -  ~' (3.17) 

Equations (3.14-3.17) together yield for h 1 

~Tv(t) By dt = 0; ~v ~ i  ~ ~ -= O; v(T) 

=0, hz=l 

=0 (3.18) 
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(where for simplicity of notation we use v(t) for v(0;t)), 

and f o r  h I : 1, h 2 : O, we  ob ta in :  

or, 

~T _ i ?T ~v dt 

t i 

Gt ?f3 
t i -gV ~T i ~T e 

%L-i :-V(~, t. 1 

ds 

dt (3, t9) 

The first equation in (3.18) yields 

. {,t 5f4 ~c¢ ds ]d t  = 0 
[Tv(t)[l + Jt. ?oe ~X 
t. 

t 1 

(3 .20)  

~O~ This is a condition then that ~-~ must satisfy. This relation can be simplified by 

noting that 

~f4 
r = pTv( t )d t ;  ~ =  v(t)/v(t)  

t. 
1 

o r ,  

r + 7tTv(t)  '%.~t v-(s)V(S) 5X5c¢ ds dt  = 0 (3 .21)  

1 1 

Remembering that all derivatives written are to be taken at c~ = 0, we can now 

indicate the second derivative equations, dropping derivatives that are zero at 

c~ = 0. We shall only calculate them for the case h I = 0, h 2 = i. 

~2 (x(k;t)  = 8Zv cos  V " v c o s  V ( ~ )  2 - v s in  ~ . %  
~t ~X2 ~X2 ~X 

(3.22) 

= - -  V C O S  - -  

~t 512 5Xg 5X Z 
(3.23) 

~2f3 I~_X~ 2 

~t ~X2 ~v ~X2 ~ 2 
(3.24) 
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8 ~27 _ ~f4 BZv 
~t 2 ~v 2 

~Zf 4 ~u 
+ - - - z -  -g~ 

2 
+ 

5f4 82~ 

Bt 
(3.25) 

Substituting into : 

we obtain: 

~x 
2 

~k 
+ v(T) cos y(T) -- - ~ZT - 0 

2 ~k 

8ZY + v(T) sin y(T) ~ZT ~xz ~ ?X 

z = - ~ ~ ~x 2 - v 
81 't, 

l 

fT v(t) 8z~ 
5k z 

1 

dt = 0 

dt = 

= 0 

(3.z6) 

(3.z7) 

8f 3 

z e ---r \~x I 
~k ~t be i 

ds (3.z8) 

substituting (3.28) into (3. Z6) and noting that 

51 = i + [,t 5f4 ~c~ ds 

$ 

8C~ 
we have thus evaluated all the quantities required in (3.11) except for -~ . We 

note that -~ must satisfy (3,Z0). Further we must also have 

~--~k t=t, = Factor of (Yi " °i) in (3,11), 

i 

yielding us a second condition it must satisfy. We do not know whether these two 

8~ 
conditions can uniquely specify ~-~ . To obtain an approximation we let 

~Of _ 

a t. < t < b [ o r  = a ( t - b ) / ( t i - b ) ]  
~I i -  - 

= 0 b < t < T  
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where a and b are unknown, and determine them from the conditions that ~--q 8k 

must satisfy. Of cot~rse other choices are possible. The best choice will depend 

on comparison with the optimal open loop solutions. This completes our approxi- 

mation procedure. 

4. NUMERICAL RESULTS 

Calculations were made for a specific example with the functions m(t), T(t) shown 

in figure i. The functions C(c~,v), N((~,v) were taken in the form: 

G(ce, v) : (32400) (f(~)h(v) - H(v)) 

N(c~, v) : (32400) (N(~)M(v)) 

and f(~),N(c~),h(v),H(v), and M(v) are shown in figures 2, 3, 4, 5, 6, respectively. 

The time optimal problem was considered for 

t.=0 
I 

v. = 800 ft/sec 
1 

~(i:O 

~. : a3.7 ° 
l 

v_ = - 9133 
I i 

The optimal open loop control for this case is indicated in figure 7, curve I 

Curve Z is for the case <~i = 60°" Both were obtained by the epsilon technique. 

For the synthesis, we note first of all that when 

which we expect to hold as 

(3. ii) as 

ti--~T, we can calculate the coefficient of (Yi 

~T v(t)dt 

' t i  ~(ti) 1 
~T Jt ~f3/~v ds v(ti) 
i i 
t e dt \7/ 

1 

- CYi) in 
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~2f 3 
-V) (since -'---2- 

Thus a = -i is a first approximation. The corresponding control is shown in 

figure 8, where we also show the open loop control for comparison. It is seen that 

the approximation is already reasonable, (although it systematically underestimates 

the actual value) demonstrating the feasibility of the technique. Further computer 

studies are in progress. 
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