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1. Abstract. 

In this paper with simple examples there is examined one of 

the improvement methods of approximate solution, which is derived 

with integral equalities for elliptic differential problems. The 

improvement method is to use some approximate systems having low 

order of accuracy and depending on the mesh size as the parameter. 

A linear combination of solutions of these problems is made, which 

has a given order of accuracy limited by only a degree of smooth- 

ness and the data of the differential problem. 

An idea of this method is due to L.F.Richardson, but E.A.Vol- 

kov and some other mathematicians obtained a constructive proof for 

some problems in the 1950's. 

We research the realization of this method for an ordinary dif- 

ferential equation (in detail, as as illustration), an elliptic dif- 

ferential equation in a rectangle and in the domain with a smooth 

boundary, and an evolutional equation with a bounded operator. 

2. An ordinary differential equation. 

For a function ~<~) , which is defined in the segment 

= [0,1] , the notation ~ ~ Ck(~ means existence of the con- 

tinuous derivatives of q<~3 on G up to order k 

Let the function aaC~(~] be found from the equation 

Lu=- - (au')~* ~ : ~ in G : (O,~) (1) 
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with boundary conditions 

~(0) = O, (2) 

The coefficients of the equation (~) ~ ~ ~ 

a(~) ~ > 0 ,  ~(~ ~0 

($) 

are nonnegative: 

(~) 

L e t :  

6 

~e s c a l a r  p roduc ts .  

For to  c o n s t r u c t  a lgeb ra i c  system approx imat ing  problem (1)  - 

(3) we fix integer ~ > 0 and denote 

Let us introduce a set of a fttuctions,~e~Ln~ ~ / ~ e ( ~ ,  

([. t f <:,. c ~ + -L ") ot ~ ) / . [  t / a C t j  -+ +_') ot ~ , i ~ x - "t e ( - "k , o ) , 

t- t -, h. (6)  COh(cc~)= ( ~. "t i a ( t~ ÷ i- ) d'l: ) l ! st i oc ( $ + Jc ) d'E , ;i'~ ~-~a[O~h) [ :r<.-~ 
0 or el~; ~ 

and for ~ = 

COk (~ ,4') = -1,,. - h  

0 or else 

m-~ ~ (-~,o).  

(7) 

The equation (I) is multiplyed by every function (6) and is 

integrated ove~ x : 

The methodic value of the test functions (6) - (7) is in 
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fact that the term of aWoo~d~ 

approximate the other term so 

system: 

is approximated exactly. We 

aS to obtain Ritz's method 

It is notprincipal, but proof is simpler. 

The boundary condition (2) ~ield 

tt ~ (o) = 0 

(8. a) 

(8. b) 

and the condition (3)  with the equation (1) permitsus to obtain 

approximate equation 

.,~ e_ & h 

If we unite the equations (8. a) - (8.0) and denote @~,~ 

oo~ ~ t j )  , we have system 

(8.c) 

i 

i % @~,~ Uh(Z')=(f.,~h(x:,~)), V~.e Gh, (9) 
~e. &h 

which is equivalent to Ritz's method system, when one takes linear 

space of functions (6) - (7) as approximate subspace. Therefore 

the system (9) has a unique solution. For further account let 

us estimate solution of system 

,7_.. e~,~ -o-(~) --d (tdb V t j e  e, h ( lo )  
F= a__.. ~ h 

~__ h@%4 ~(~) .ya (~) ~(I) = ~ (I) 
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Lemma 1. For the solution of system (10) estimation 

~,E G, h ~eG h 

is valid. 

Proof. Let us denot~ ~(~)--~_ e(~ ooh (~,~) 

every equation of system (10) by 

~F~ 

(11 )  

, multiply 

~(N) and sum up ove~ 

~ G  h 

With the condition t~(0) = 0 the left part may be decreased 

with help of Sobolev's theorem [ 3 ] : 

There is the inequality 

is valid for the right part. If we devide these inequalities by 

~naxl~ i , we obtain the lemma statement. 

Let us consider a connection between solution of system (9) and 

problem (1) - (3). 

Lemma 2. Let us suppose that a a C~k~(G), ~ , ~ ~ ¢ak (6) 

and integer k>~ 0 in equation (1). Then there are k functi- 

ons ~ ~ C~(~_p..O(~) which do not depend on 41 and V~(o,~) 

k 
{:~ (12) 

where descrete function is bounded: 

~o,~. I~,~(~I "-- c ~#i~ ( o d ) .  
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Proof. In analogy with [ 1 ] let us suppose decomposition (q2) 

being. We shall find necessary conditions and make them 

sufficient. 

So, let us substitute phrase (q2) in system (9) and change its 

right part: 

~: ~z~+~(O) 0 ( l ~ . a )  ~ ( 0 )  + = 

k 

V~eO~ , 

(lZ~. b) 

~e~ h ~=~ 

T,et us note  t h a t  V ~ e ~  0~ ,~  :#- 0 on l y  f o r  t h ree  

values ~=~±~I,~ • Let ~ c (0,~) and examine quantity 

Let function t~e C~(~) and h~ mLn {~,~-~ ~ , then 

A(~) = 7_ ~ ~-j(~ *~3 ~*~ ~ ' (~)  (~5) 

with functions d~ e C~(~_~)(G~ , which do not depend on ~ , 

and with a discrete function ~k , which is bounded by costant, 

consisting of moduli of derivatives of the functions m , ~ , ~ • 

(14. c) 

It follows from derivation: 

( ÷ o) = o dj = (.o) 
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q/h = ~ ~n ~*~ 

The estimation of ~h (similar (13)) is obLaiued by change o{ 

~(~) £or Taylor's line 

,JU- e ( ' ~ ,N)  

Further, 

L:~ " (2- P-) t 

s i m i l a r  way g i v e s  us 

E-4 

]= i  
(16) 

ons from (15) we 

~ 6  h 

where functions ~ , flk have such properties as dj , u/~ 

accordingly. Using now statement (16) for (E-4)o{ different fuucti- 

have by the induction 
E-¢ 

(17) 

The functions 

and 

which 

qj , ~ have such properties as dj , u/h . 

Similar way gives us formula 

E-4 

~_ 0~j ~(~) = [ e(~), ~hC~J~] + 2_ ~2~(~ (~(~j)) + 

j ='1 

~ j  a r e  t h e  same f u n c t i o n s  a s  i n  ( 1 7 ) ,  ~ 

do not depend on ~ . 

Now we use these formulae b~ changing u , k for e , 

and substracting (17), (18) from (14.b), (14. c) 

k Z~ k . 

~eh = ~=~ " (19) 

are constants 
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Here ~ ~_ Cz(k_i) (~) and do 

bounded: t ~h ~,~ )i ~ C V ~ ~ Gk 

constants which clo not depend on 

Then we take ~ as solution of problem 

, k 

~C~ h = 

k 

=2_ 

not depend on ~ ; ~k is 

Vk~ (o,~ ; ~ are 

1 
(21) 

It necessarJl~ follows from this that 

not depend on ~ . Let us substitute 

(18), multiply them by ~2 and substract from (19) - (20) 

k k 

W 

It is obvious from (22), that it is necessaz~# to take 

as a solution of a problem 

a~(O)= 0 

a~ e Czk (~) a~a ~oes 

~ in identities (17) - 

(22) 

{A z 

%uch choice g~aarantees that the reguirem~¢ £o ~a is valid and 

that we have possibility to take away elements in (22) with multi- 

pliers h~ ~ h~ • 

Continui~gi~th~s ~&~uer, over k steps we come to system 



247 

A (2~) 

A 

with bounded discrete function ~ . This system has a unique 

solution~ i.e. ~h is found by a unique way so that (12) is 

valid when the functions a~ are chosen. The estimation (13) 

follows from lemma 1 and from a fact that the function ~ is 

bounded. 

Lemma is proved. 

The decomposition permits us to basis improvement method. 

Theorem I. 

lution of problem (I) - (~) which has accuracy of order 

where ~ = rua~c h e 

Proof. When a point ~ (where we find value of 

is a common one for all regular meshes, a higher accurac~j 

iS made up a~ £ o l l o w s  

k+~ 

Git~e~ the conditions of lemma 2,one may find so- 

( x )  ) 

solution 

Here 

coefficient~ of all u~ 

achieved by a choice of~e 

C=t 

~=~ 

he is a solution of problem (9), when the mesh ~ize 

is equal to ~ , and {he ~ are chosen so that the 

vanish in the linear combination. That is 

from system 

(24) 

In this case on basis (13) it follows {Nat 
k.4 

2 k + 4  

e=4 



248 

For to estimate ~k 

method using result~ 

one may solve the system (24) by Kramer's 

of [2] on Vandermond's determinants: 

From these formulae with a condition h~/he+~ ~Ic~>~ , V ~=~...,k 

it follows that 

c~ ( v 

When point x is not common o~e for all meshes it is neces- 

sary to use an interpolation. The smoothness of functions ~ and 

~ permits us to conclude that using Lagrange interpolation to 

point ~ from (k* ~) neighbouring points of the discrete mesh 

C~k¢ we may obtain, the decomposition (12) with the same functions 

i~ a . There is changed only the constant c in the estimation of 

functions ~k~ where derivation estimations of ~ , ~ and 

interpolation weights appear in addition. If (k * ~ )of decomposi- 

tionS(q2) is made in the point ~ by interpolation, the higher 

accuracy method is like above. 

Remark. The proof may be used without any changes in a case 
of 

when the coefficientsVthe right part (and the solution) are piece- 

wise smooth and there are conditions in every point of discontinui- 

ties of function 

where ~a is a certain constant. To this end the discrete 

meshes must be regular in each piece of smoothness and the points of 

discontinuities must be points of meshes. 
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~. The Laplace equation in a recta~le. 

Considering the Laplace equation in a rectangle we try to 

show one of way of work with ang~points. The main difficulty is 

bad solution smoothness near angul~rpoints notwithstanding good 

smoothness of all problem data except boundary. 

In this section 

O< m~,~ <~ in R a 

for two points ~, ~ R ~ 

is an open square: G=~:~ =(~4,x~) ; 

with boundary F , ~ is G U F and 

the distance is: loc-~i~l=((~c~-~'~) ~- 

For to simplify our considerations let us examine an equation 

with constant coefficients, Laplace's equation 

Our problem is to find 

(I) and condition 

function ~ which satisfi~ equation 

u = 0 on Z .  ( 2 )  

For to describe differential properties of the solution let us 

introduce norms 

k 
M~. [~] =Y__. ma~ od~-k(~)1~(~c) I (3) 

and 

(m~ ~ , ~ ' ~  I ~ - ~ ' 1  ~ 
(4) 

where k , m are integer nonnegative numbers, o( ~ [ 0 , ~ ]  

is distance from ~ to nearest square angle, 

We use usual classes of smoothness (s.f. 

is a class of functions which have in ~ continuous deriva- 
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rives and the quantity 

o 

is limited. 

~,~ (G) is the set of functions from Q~ (~) 

closed set ~ C ~ , 

It follows from monograph [ 5 ] that notwithstanding 

smoothness of the right part: 

for any 

(5) 

good 

f E C2e.~,~. (CV) (6) 

the solution o{ ( 0 - ( 2 ~  is  v a l i d  for 

but not for 

i.e. quantities in the right part of (5) may be infinite. But 

investigation of [ 5 ] shows that asymptotic behaviour of 

discontinuities is less than some orders of ~/~ , namely, quanti- 

ties 

• - -  ~.~,~ [ ~ 3  (8) 

are limited. 

Moreover it is sufficient that one has more weak assumptions for it 

~ Cz~.~,~(~) and quantities 

Mo[ ]~M~[~]  V ~  = ~ , . . . , 2 E + ~ ,  M ~ , ~ [ ~ ]  (9) 

are limited. 

Some difficulti~with infinite derivatives are avoided with the 

help of a special choice of a discrete mesh which is condensed near 

the discontinuities points. Let 



251 

4 

o o 

A positive parameter 

> 0 and let ~ = ~/~q 

will be chosen later. Let us fix integer 

a n d  

q:  nF. ( ~ )  

The basic functions are introduced as follow~ : 

~(I ! 

(~: ,~:' ) : 

k ~ - qo (~ -~ 

0 or else 
We multiply every £~rm of the equation (1) by a basic functi- 

on, integrate i~ over ~ . Then we change some integrals 

(after integration by parts)for simplest quadrature formulae:V~eG~ 

(13.b) 
~h(~,,~(~r~) ~(~4"m~ ÷~) ~ u~(~,~O 

Thus let us note that discrete operators A and B are 

defined. An approximate system may be written i~ a form 
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A (~) u)'(:c) + B C~, u~(~:)--.fS(o~) ~ h ( ~ , x t ) d x  ~ 
6 

V~c e 6~, 

(lZ~) 

t o  

The special form of an approximating error permits us to 0bta~ 

(ewn in case ff ¢ Lz (~) ) t~ speed of convergence is equal 

h ~*~ ( ~  ~ (O,C}) i n  the norm 

where P(~) is the area of the support of the function 

cOhC~,x ~) with respect to ~c t . Namely for any ~70 

even for ~ (+-) = 

system (1#) converges 

and there is an estimation 

where constant ¢ depends on ~ only. 

To prove this statement and the more general one w~ sha~ heed 

some results about a steady characteristic and approximation. 

and 

(i.e. the mesh is regular) the solution of the 

to the solution of the problem (1) - (2) 

Lemma 1. If functions ~ and ~ a~e defined on Gh 

satisfy systems 

qo ( ~  = 0 

V ~ ¢ C ~ k  

V~eF~ 

a n d  

a n d  
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T ( . )  ---o V:z~. l-i~ 

then the estimations are va1~d 

11o c, il llo a . d  liq.'ito %_tt tlo, 

where c~ , c~ do not depend on ~ and ~ . 

Lemma 2. Let t~(oc) b~ the solution of the problem (1) - (2) 

and the condition ( 8 ) .  Th~}R 

[ 2.L , l+ 

G. L=i 6 

where the functions ~t do not depend on 

mula (10) ~ ie~ condition 

then ~t 

and ~ 

to h : 

h . And if in for- 

>., 2 E  .*- .5 + ~ , ( 1 6 )  

satisfie~(9), where [ -i is instead of ~ ; ~ 

depend on h but they are regular bounded with respect 

This result is sufficient for using the proof which is similar 

to the second section proof (see also the proof scheme in [1] ). 

This gives us 

Lemma ~. In conditions (9) the solution of the system ( I # )  

converge~ to the solution of the problem (1) - (2) and there are 

( ~ + ~) functions t~ e C2E_~k~ ~ (G~ which do not depend 

on h and for any ~ >~ (0 ~h 4~) 
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(18)  

If ~>~ 2e ÷5 +M then for each i~ k the condition (8) is 

valid ( ~ -  k is instead of ~ ) and the function &h is 

bounded for all h in the sense: 

Remark. The estimate (19) involves estimate modulo 

(20)  

where ck(~) is defined by ( # ) .  

That is why the final resultYformulated as £onow~. 

Theorem i .  G ive~ the conditions of lemma 3one may find 

(with the help of (~-2] solutions of the system (14) with diffe- 

rent mesh Size~ hk) the approximate solution of the problem (I) - 

(2) which has a precision of order ~z~*~*~ : 

where c 7 do not depend on ~ , h and ~ = nqa~ h k 
i ~ k~E~2  

Remark, The p roo f  and the above techn ique are s u i t a b l e  f o r  the 

problem (i) - (2) in the cases: 

a)o when the right part of (I) has first sort discontinuity 

lines which a~e parallel to coordinate axes; 

b). when the solution has first sort discontinuity on such 

lines and there are conditions for the solution 

a ( , x -  o )  = a ( o c ÷  o)  

and for it~normal derivatiw 
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an (m-O) = (~+0)÷ 
8~ 

( ~ is a unit normal direction). An argument ~ ÷ 0 means that 

we take a limit on the right side of the discontinuity lines. It is 

similar for ~-0 . 

Both in the first case and in the second case it is necessary 

that the discontinuity lines are the mash lines. But in the second 

case we mu~t condense the mesh lines near in~e~c~io~ of boundary and 

the discontinuity lines. 

4. The elliptic equation in a domain with a smooth boundary. 

When we solve the elliptic equation in a domain with a smooth 

boundary we have some difficulties of an approximation because ~h~ 

mesh is not regular near boundary. 

A way to avoid this difficulty is to adjust mesh and the 

domain. We explain it by example with a domain with one boundary 

component. Let there be transformation which is smooth enough and 

which transforms the initial domain to the circle. Then we need 

introduce polar coordinates. Now the domain is a rectangle, where 

the equation is defined. If the domain has two boundary components 

we reduce it to ring and so on. 

When the transformation may be found easi]~ such a way has an 

algorithmical profit. 

If the Dirichlet problem is examined then one may use a 

method, described in [4 ] . This method contains a multipoint 

interpolation formula which has a high precision. By choice of free 

parameters in formula one may take a diagonal dominance in the 

obtai~ algebraic equations. It permits us to put up stable system 

of algebraic equations. 
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Using the indicated methods one may solve Dirichlet's problem 

in a different domain. 

In this section we examine the question about an improvement 

of a solution of the penalty method. It follows from [ 6 ] that 

the use of a boundary penalty in the Ritz method permits us to 

come from the Dirichlet problem to the third boundary proble~ 

And if the solution is smooth enough then adding the penalty 

to the variational functional is equivalent to coming from a problem 

to the problem 

u~ + ~ = Q on r. 

Here 

(1) 

(2) 

L -= - 2.. cLtj ~ : ~ L B ~  + Z.  ~L'~-:~-~ + C (3 )  

is the elliptic differential operator, 

space RP with a boundary F , 

mal° 

Similar as above let us suppose the existence of the decompo- 

sition 

is a domain in p - 

is an unit external co-nor- 

where the functions tr~ do not depend on ~ and the function 

~a is bounded. Then we substitute (4) ~u the problem (2) and 

compare coefficients for every power & . Thu% we put up 

& 

~ -  = ~ ÷  ~ ~ - ~  ÷ ~.~"~' ~ ,  ~.,o, p~_ r.o,~] (4) 
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sequence of problems: 

1) /~u=÷ 

u : $  

2) ; ~  = o 

& =--F'~ 

i) L e  t : 0  

~÷~) L~ ~ : o 

~ + 

F 

o~ F 

tu 

on r VL = 'I, . . .  ,Z 

If this problem has a unique solution then the functions 

are found recurrent1~ . The quantity of the members in (4) is 

bounded by a power of smoothness of the problem data. 

If one has the decomposition (4) one may obtain the solution 

of (I) by linear combination with accuracy of order E ~ , 

usi~ for it ~*~ solutions with different Ek • 

5. The numerical solution of an evolutional problem with a bounded 

operator. 

We need this section 

for any type of equations. 

In Hilbert's space X with a norm 

consider functions of one real variable 

section we write ~ E C k if 

k continuous derivations (s.f. 

Let us examine a problem 

to show that this method is universal 

ll~ II = (~ ~c) V~ we 

£ ~ [O~T] . In this 

has a value in ~ and has 

[8]). 
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at~ + Au --- ~ , u ( o )  -- u o  , ( '1) B+- 

where 

on [ O,T ] and positive semi-definite in 

~a)~ ~ h~ [O~T] . Let the operator 

sum A(~) = ~ A[(h) , where AL:)[ -* X 
i = ~  

w h i c h  a r e  r e g u l a r  b o u n d e d  and p o s i t i v e  s e m i - d e f i n i t e  on 

For numerical solving we use a splitting-up scheme 

A : X - *  X is a linear operator, which is regular bounded 

a sense: (A~,~)= 0 

A be decomposed in the 

are linear operators, 

[ O , T ]  . 

u (t-~ 

(2) 

a n d  

t~ ~ (0 ' }  = t ~  

Here o~ is a regular net with the slze T = T/M , I is a 

unit operator. It follows from [ I ] that the scheme is stable: 

L e t  u s  n o t e  t h a t  t h e  s e m - d e f i n i t e n e s s  i s  t a k e n  f o r  t h e  

stableness. We may lay aside this supposition if we choose the 

s~ze 

A L • 

Theorem I. Let ~ ~ C ~ and A Qh) 

is enough to have a unique solution 

right part ~ a C k 

from the condition of the limitation of the operators 

has a smoothness which 

u ~ C k~ for m~y 

and any initial value aoaX (O~k ~ S). 
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Then there are (s-~) functions e~ a £s ~ 

depend on C and decomposition 

which do not 

is valid. Here discrete function ~ s is bounded: 

: II II , 

~ C~. T 

where constant c depend on norms of derivatives of 

does not depend on T . 

and 

Proof may be constructed zuch a way. At first let us suppose 

the decomposition (3) ~xist , 

Let us fix any ~ ~0~ , expel t~(~) and t~Ct-~) 

froE (~) (using decomposition (3)) and substitute Taylor's 

formula for any functions So that we have functions only in 

the point £ . Comparing coefficient of all powers of E we 

put up discrete systems 

Besides,expressions taking part in ~L include only a, ~, ..,~t_~ . 

If we change the domain ~ on the interval (0~T) we obtai~ 

list of problems and 

smoothness of e~ 

the independence of 

their right part. 

Assuming ¢i to be given we define 

valid. Then from the way which we find 

Ct may be found recurrently The 

follows from supposition of the theoremand 

follows from a kind of the equations and 

~ so that (3) is 

~t it follows that 

From the stability of this system and from a kind of ~q 
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(which is a combination of derivatives of u~ ~ and any multi- 

plications by A~ ) estimates follow for ~ . 

On the basis of this result the usual considerations give us 

TheoremS2. Give~ ~be conditions of theorem 1 and solving 

problem with different ~b ~ize T~ one may find approximat~ 

tion of the problem (1) which has precis~o, of order O(T~) 

the norm of space 

$ 

solu- 

in 

X in each point of [0,T] (here ~=ma~ ~) 
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