Skip to main content

Optimum Composite Laminates Least Prone to Delamination under Mechanical and Thermal Loads

  • Chapter
Multiscale Modelling of Damage and Fracture Processes in Composite Materials

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 474))

  • 1226 Accesses

Abstract

In this Chapter we will describe how optimum laminate configurations are sought for multidirectional fibre-reinforced composite laminates under combined in-plane mechanical and thermal loads. The design objective is to enhance the value of the loads over and above the first-ply-failure loads which are judged by a transverse failure criterion and the Tsai-Hill criterion, respectively. The in situ strength parameters previously obtained are incorporated in these criteria. It is found that the optimum designs under combined mechanical and thermal loads are not the same as those under pure mechanical loads for three of the four loading cases studied. For all cases the optimum loads are significantly larger than those for a quasi-isotropic design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J.M. Bai. Stiffness reduction analysis of cracked cross-ply laminates by using integral equation approach. Engineering Fracture Mechanics, 34:245–251, 1989.

    Article  Google Scholar 

  • J.E. Bailey and A. Parvizi. On fibre debonding effects and the mechanism of transverse-ply failure in cross-ply laminates. Journal of Material Science, 16:649–659, 1981.

    Article  Google Scholar 

  • H.E. Brandmaier. Optimum filament orientation criteria. Journal of Composite Materials, 4:422–425, 1970.

    Google Scholar 

  • F.K. Chang and M.H. Chen. The in situ ply shear strength distributions in graphite/epoxy laminated composite. Journal of Composite Materials, 21:708–733, 1987.

    Google Scholar 

  • F.K. Chang and L.B. Lessard. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings Part I: analysis. Journal of Composite Materials, 25:2–43, 1991.

    Google Scholar 

  • C.C. Chao, C.T. Sun, and S.L. Koh. Strength optimization for cylindrical shells of laminated composites. Journal of Composite Materials, 9:53–66, 1975.

    Google Scholar 

  • R.J. Chester and G. Clark. Modelling of impact damage features in graphite/epoxy laminates. In J.E. Masters, editor, Damage Detection in Composite Materials, volume ASTM STP 1128, pages 200–212, 1992.

    Google Scholar 

  • H.Y. Choi and F.K. Chang. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. Journal of Composite Materials, 26:2134–2169, 1992.

    Google Scholar 

  • G. Clark and D.S. Saunders. Morphology of impact damage growth by fatigue in carbon fibre composite laminates. Materials Forum, 15:333–342, 1991.

    Google Scholar 

  • E.T. Copson. On certain dual integral equations. Proceedings of the Glasgow Mathematical Association, 5:19–24, 1961.

    Article  MathSciNet  Google Scholar 

  • F.W. Crossman and A.S.D. Wang. The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates. In Damage in Composite Materials, volume ASTM STP 775, pages 118–139. American Society for Testing and Materials, 1982.

    Google Scholar 

  • G.A. Davies and X. Zhang. Impact damage prediction in carbon composite structures. International Journal of Impact Engineering, 16:149–170, 1995.

    Article  Google Scholar 

  • G.A.O. Davies, D. Hitchings, and J. Wang. Prediction of threshold impact energy for onset of delamination in quasi-isotropic carbon/epoxy composite laminates under low-velocity impact. Composite Science and Technology, 1997.

    Google Scholar 

  • L.E. Doxsee, P. Rubbrecht, L. Li. I. Verpoest, and M. Scholle. Delamination growth in composite plates subjected to transverse loads. Journal of Composite Materials, 27: 764–781, 1993.

    Google Scholar 

  • F.W. Fan, W. Dong, and J. Wang. A study of the in situ transverse tensile lamina strength and the solution of the opening mode crack in 0°/90°/0° laminate. Acta Mechanica Sinica, 21:450–458, 1989.

    Google Scholar 

  • J.C. Fish and S.W. Lee. Three-dimensional analysis of combined free-edge and transverse-crack-tip delamination. In Composite Materials: Testing and Design, volume ASTM STP 1059, pages 271–286. American Society for Testing and Materials, 1990.

    Google Scholar 

  • D.L. Flaggs and M.H. Kural. Experimental determination of in situ transverse lamina strength in graphite/epoxy laminates. Journal of Composite Materials, 16:103–116, 1982.

    Google Scholar 

  • H. Fukunaga and T.W. Chou. On laminate configurations for simultaneous failure. Journal of Composite Materials, 22:271–286, 1988.

    Google Scholar 

  • H. Fukunaga and G.N. Vanderplaats. Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Computers nad Structures, 40:1429–1439, 1991.

    Article  Google Scholar 

  • K.W. Garrett and J.E. Bailey. Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester. Journal of Material Science, 12:157–168, 1977.

    Article  Google Scholar 

  • P. Gudmundson and W. Zang. An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks. International Journal of Solids and Structures, 30:3211–3231, 1993.

    Article  MATH  Google Scholar 

  • Z. Hashin. Analysis of cracked laminates: a variational approach. Mechanics of Materials, 4(121–136), 1985.

    Google Scholar 

  • C.T. Herakovich. Influence of layer thickness on the strength of angle-ply laminates. Journal of Composite Materials, 16:216–227, 1982.

    Google Scholar 

  • A.L. Highsmith and K.L. Reifsnider. Stiffness-reduction mechanisms in composite laminates. In Damage in Composite Materials, volume ASTM STP 775, pages 103–117. American Society for Testing and Materials, 1982.

    Google Scholar 

  • C.J. Jih and C.T. Sun. Prediction of delamination in composite laminates subjected to low velocity impact. Journal of Composite Materials, 27:684–701, 1993.

    Google Scholar 

  • A.K. Kaw and G.H. Besterfield. Mechanics of multiple periodic brittle matrix cracks in unidirectional fiber-reinforced composites. International Journal of Solids and Structures, 29:1193–1207, 1992.

    Article  MATH  Google Scholar 

  • R.Y. Kim. Experimental observations of free-edge delamination. In N.J. Pagano, editor, Interlaminar Response of Composite Materials, pages 111–160. Elsevier, Amsterdam, 1989.

    Google Scholar 

  • J.W. Lee, D.H. Allen, and C.E. Harris. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks. Journal of Composite Materials, 23:1273–1291, 1989.

    Google Scholar 

  • S. Liu, Z. Kutlu, and F.K. Chang. Matrix cracking and delamination in laminated composite beams subjected to a transverse concentrated line load. Journal of Composite Materials, 27:436–470, 1993.

    Google Scholar 

  • A. Miravete. Optimization of symmetrically laminated composites rectangular plates. In Y. Wu, Z. Gu, and R. Wu, editors, Proceedings of the Seventh International Conference on Composite Materials, volume 3, pages 289–294, Beijing, 1989. International Academic Publishers.

    Google Scholar 

  • J.A. Nairn. The strain energy release rate of composite microcracking: a variational approach. Journal of Composite Materials, 23:1106–1129, 1989.

    Google Scholar 

  • H.F. Nied. Periodic array of cracks in a half-plane subjected to arbitrary loading. Journal of Applied Mechanics, 54:642–648, 1987.

    Article  MATH  Google Scholar 

  • W.J. Park. An optimal design of simple symmetric laminates under the first ply failure criterion. Journal of Composite Materials, 16:341–355, 1982.

    Google Scholar 

  • A.K. Parvizi, K.W. Garrett, and J.E. Bailey. Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. Journal of Material Science, 13:195–201, 1978.

    Article  Google Scholar 

  • M.J. Pavier and M.P. Clarke. Experimental techniques for the investigation of the effects of impact damage on carbon-fibre composites. Composite Science and Technology, 55: 157–169, 1995.

    Article  Google Scholar 

  • R.S. Sandhu. Parametric study of Tsai’s strength criterion for filamentary composites. Technical Report TR-68-168, Air Force Flight Dynamic Laboratory, Wright-Patterson AFB, 1969.

    Google Scholar 

  • G.C. Sih and E.P. Chen. Mechanics of Fracture-Cracks in Composite Materials. Martinus Nijhoff Publisher, The Hague, 1981.

    Google Scholar 

  • R. Talreja. Transverse cracking and stiffness reduction in composite laminates. Journal of Composite Materials, 19:355–375, 1985.

    Google Scholar 

  • S.C. Tan and R.J. Nuismer. A theory for progressive matrix cracking in composite laminates. Journal of Composite Materials, 23:1029–1047, 1989.

    Google Scholar 

  • S.W. Tsai and H.T. Hahn. Introduction to Composite Materials. Technomic Publishing Co Inc, Westport, 1980.

    Google Scholar 

  • J. Wang and B.L. Karihaloo. Cracked composite laminates least prone to delamination. Proceedeings of Royal Society London, A444:17–35, 1994a.

    Google Scholar 

  • J. Wang and B.L. Karihaloo. Mode II and mode III stress singularities and intensities at a crack tip terminating on a transversely isotropic-orthotropic bimaterial interface. Proceedeings of Royal Society London, A444:447–460, 1994b.

    Article  Google Scholar 

  • J. Wang and B.L. Karihaloo. Fracture mechanics and optimization — a useful tool for fibre-reinforced composite design. Computers and Structures, 31:151–162, 1995.

    Article  Google Scholar 

  • J. Wang and B.L. Karihaloo. Mode I stress singularity and intensity factor at a crack tip terminating at a transversely isotropic-orthotropic bimaterial interface. International Journal of Fracture, (74):325–340, 1996a.

    Article  Google Scholar 

  • J. Wang and B.L. Karihaloo. Optimum in situ strength design of composite laminates Part II: optimum design. Journal of Composite Materials, 30:1338–1358, 1996b.

    Google Scholar 

  • J. Wang and B.L. Karihaloo. Optimum in situ strength design of composite laminates Part I: in situ strength parameters. Journal of Composite Materials, 30:1314–1337, 1996c.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Karihaloo, B.L. (2005). Optimum Composite Laminates Least Prone to Delamination under Mechanical and Thermal Loads. In: Sadowski, T. (eds) Multiscale Modelling of Damage and Fracture Processes in Composite Materials. CISM International Centre for Mechanical Sciences, vol 474. Springer, Vienna. https://doi.org/10.1007/3-211-38102-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-211-38102-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29558-8

  • Online ISBN: 978-3-211-38102-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics