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Abstract
Most, if not all, guidelines, recommendations, and other texts on Good Research
Practice emphasize the importance of blinding and randomization. There is,
however, very limited specific guidance on when and how to apply blinding
and randomization. This chapter aims to disambiguate these two terms by
discussing what they mean, why they are applied, and how to conduct the acts
of randomization and blinding. We discuss the use of blinding and randomization
as the means against existing and potential risks of bias rather than a mandatory
practice that is to be followed under all circumstances and at any cost. We argue
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that, in general, experiments should be blinded and randomized if (a) this is a
confirmatory research that has a major impact on decision-making and that cannot
be readily repeated (for ethical or resource-related reasons) and/or (b) no other
measures can be applied to protect against existing and potential risks of bias.

Keywords
Good Research Practice · Research rigor · Risks of bias

‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it means just what I
choose it to mean – neither more nor less.’

Lewis Carroll (1871)

Through the Looking-Glass, and What Alice Found There

1 Randomization and Blinding: Need for Disambiguation

In various fields of science, outcome of the experiments can be intentionally or
unintentionally distorted if potential sources of bias are not properly controlled.
There is a number of recognized risks of bias such as selection bias, performance
bias, detection bias, attrition bias, etc. (Hooijmans et al. 2014). Some sources of bias
can be efficiently controlled through research rigor measures such as randomization
and blinding.

Existing guidelines and recommendations assign a significant value to adequate
control over various factors that can bias the outcome of scientific experiments
(chapter “Guidelines and Initiatives for Good Research Practice”). Among internal
validity criteria, randomization and blinding are two commonly recognized bias-
reducing instruments that need to be considered when planning a study and are to be
reported when the study results are disclosed in a scientific publication.

For example, editorial policy of the Nature journals requires authors in the life
sciences field to submit a checklist along with the manuscripts to be reviewed. This
checklist has a list of items including questions on randomization and blinding. More
specifically, for randomization, the checklist is asking for the following information:
“If a method of randomization was used to determine how samples/animals were
allocated to experimental groups and processed, describe it.” Recent analysis by the
NPQIP Collaborative group indicated that only 11.2% of analyzed publications
disclosed which method of randomization was used to determine how samples or
animals were allocated to experimental groups (Macleod, The NPQIP Collaborative
Group 2017). Meanwhile, the proportion of studies mentioning randomization was
much higher – 64.2%. Do these numbers suggest that authors strongly motivated to
have their work published in a highly prestigious scientific journal ignore the
instructions? It is more likely that, for many scientists (authors, editors, reviewers),
a statement such as “subjects were randomly assigned to one of the N treatment
conditions” is considered to be sufficient to describe the randomization procedure.
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For the field of life sciences, and drug discovery in particular, the discussion of
sources of bias, their impact, and protective measures, to a large extent, follows the
examples from the clinical research (chapter “Learning from Principles of Evidence-
Based Medicine to Optimize Nonclinical Research Practices”). However, clinical
research is typically conducted by research teams that are larger than those involved
in basic and applied preclinical work. In the clinical research teams, there are
professionals (including statisticians) trained to design the experiments and apply
bias-reducing measures such as randomization and blinding. In contrast, preclinical
experiments are often designed, conducted, analyzed, and reported by scientists
lacking training or access to information and specialized resources necessary for
proper administration of bias-reducing measures.

As a result, researchers may design and apply procedures that reflect their
understanding of what randomization and blinding are. These may or may not be
the correct procedures. For example, driven by a good intention to randomize
4 different treatment conditions (A, B, C, and D) applied a group of 16 mice, a
scientist may design the experiment in the following way (Table 1).

The above example is a fairly common practice to conduct “randomization” in a
simple and convenient way. Another example of common practice is, upon animals’
arrival, to pick them haphazardly up from the supplier’s transport box and place into
two (or more) cages which then constitute the control and experimental group(s).
However, both methods of assigning subjects to experimental treatment conditions
violate the randomness principle (see below) and, therefore, should not be reported
as randomization.

Similarly, the use of blinding in experimental work typically cannot be described
solely by stating that “experimenters were blinded to the treatment conditions.” For
both randomization and blinding, it is essential to provide details on what exactly
was applied and how.

The purpose of this chapter is to disambiguate these two terms by discussing what
they mean, why they are applied, and how to conduct the acts of randomization and
blinding. We discuss the use of blinding and randomization as the means against
existing and potential risks of bias rather than a mandatory practice that is to be
followed under all circumstances and at any cost.

2 Randomization

Randomization can serve several purposes that need to be recognized individually as
one or more of them may become critical when considering study designs and
conditions exempt from the randomization recommendation.

Table 1 Example of an
allocation schedule that is a
pseudo-randomization

Group A Group B Group C Group D

Mouse 1 Mouse 2 Mouse 3 Mouse 4

Mouse 5 Mouse 6 Mouse 7 Mouse 8

Mouse 9 Mouse 10 Mouse 11 Mouse 12

Mouse 13 Mouse 14 Mouse 15 Mouse 16
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First, randomization permits the use of probability theory to express the
likelihood of chance as a source for the difference between outcomes. In other
words, randomization enables the application of statistical tests that are common
in biology and pharmacology research. For example, the central limit theorem states
that the sampling distribution of the mean of any independent, random variable will
be normal or close to normal, if the sample size is large enough. The central limit
theorem assumes that the data are sampled randomly and that the sample values are
independent of each other (i.e., occurrence of one event has no influence on the next
event). Usually, if we know that subjects or items were selected randomly, we can
assume that the independence assumption is met. If the study results are to be
subjected to conventional statistical analyses dependent on such assumptions, ade-
quate randomization method becomes a must.

Second, randomization helps to prevent a potential impact of the selection bias
due to differing baseline or confounding characteristics of the subjects. In other
words, randomization is expected to transform any systematic effects of an uncon-
trolled factor into a random, experimental noise. A random sample is one selected
without bias: therefore, the characteristics of the sample should not differ in any
systematic or consistent way from the population from which the sample was drawn.
But random sampling does not guarantee that a particular sample will be exactly
representative of a population. Some random samples will be more representative of
the population than others. Random sampling does ensure, however, that, with a
sufficiently large number of subjects, the sample becomes more representative of the
population.

There are characteristics of the subjects that can be readily assessed and con-
trolled (e.g., by using stratified randomization, see below). But there are certainly
characteristics that are not known and for which randomization is the only way to
control their potentially confounding influence. It should be noted, however, that the
impact of randomization can be limited when the sample size is low.1 This needs to
be kept in mind given that most nonclinical studies are conducted using small sample
sizes. Thus, when designing nonclinical studies, one should invest extra efforts into
analysis of possible confounding factors or characteristics in order to judge whether
or not experimental and control groups are similar before the start of the experiment.

Third, randomization interacts with other means to reduce risks of bias. Most
importantly, randomization is used together with blinding to conceal the allocation
sequence. Without an adequate randomization procedure, efforts to introduce and
maintain blinding may not always be fully successful.

2.1 Varieties of Randomization

There are several randomization methods that can be applied to study designs of
differing complexities. The tools used to apply these methods range from random

1https://stats.stackexchange.com/questions/74350/is-randomization-reliable-with-small-samples.
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number tables to specialized software. Irrespective of the tools used, reporting on the
randomization schedule applied should also answer the following two questions:

• Is the randomization schedule based on an algorithm or a principle that can be
written down and, based on the description, be reapplied by anyone at a later time
point resulting in the same group composition? If yes, we are most likely dealing
with a “pseudo-randomization” (e.g., see below comments about the so-called
Latin square design).

• Does the randomization schedule exclude any subjects and groups that belong to
the experiment? If yes, one should be aware of the risks associated with excluding
some groups or subjects such as a positive control group (see chapter “Out of
Control? Managing Baseline Variability in Experimental Studies with Control
Groups”).

An answer “yes” to either of the above questions does not automatically mean
that something incorrect or inappropriate is being done. In fact, a scientist may take a
decision well justified by their experience with and need of particular experimental
situation. However, in any case, the answer “yes” to either or both of the questions
above mandates the complete and transparent description of the study design with
the subject allocation schedule.

2.1.1 Simple Randomization
One of the common randomization strategies used for between-subject study designs
is called simple (or unrestricted) randomization. Simple random sampling is defined
as the process of selecting subjects from a population such that just the following two
criteria are satisfied:

• The probability of assignment to any of the experimental groups is equal for each
subject.

• The assignment of one subject to a group does not affect the assignment of any
other subject to that same group.

With simple randomization, a single sequence of random values is used to guide
assignment of subjects to groups. Simple randomization is easy to perform and can
be done by anyone without a need to involve professional statistical help. However,
simple randomization can be problematic for studies with small sample sizes. In the
example below, 16 subjects had to be allocated to 4 treatment conditions. Using
Microsoft Excel’s function RANDBETWEEN (0.5;4.5), there were 16 random
integer numbers from 1 to 4 generated. Obviously, this method has resulted in an
unequal number of subjects among groups (e.g., there is only one subject assigned to
group 2). This problem may occur irrespective of whether one uses machine-
generated random numbers or simply tosses a coin.
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Subject
ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Group ID 4 1 1 3 3 1 4 4 3 4 3 3 4 2 3 1

An alternative approach would be to generate a list of all treatments to be
administered (top row in the table below) and generate a list of random numbers
(as many as the total number of subjects in a study) using a Microsoft Excel’s
function RAND() that returns random real numbers greater than or equal to 0 and
less than 1 (this function requires no argument):

Treatment 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Random
number

0.76 0.59 0.51 0.90 0.64 0.10 0.50 0.48 0.22 0.37 0.05 0.09 0.73 0.83 0.50 0.43

The next step would be to sort the treatment row based on the values in the
random number row (in an ascending or descending manner) and add a Subject ID
row:

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Treatment 3 3 2 3 3 4 2 2 4 1 1 2 4 1 4 1

Random
number

0.05 0.09 0.10 0.22 0.37 0.43 0.48 0.50 0.50 0.51 0.59 0.64 0.73 0.76 0.83 0.90

There is an equal number of subjects (four) assigned to each of the four treatment
conditions, and the assignment is random. This method can also be used when group
sizes are not equal (e.g., when a study is conducted with different numbers of
genetically modified animals and animals of wild type).

However, such randomization schedule may still be problematic for some types
of experiments. For example, if the subjects are tested one by one over the course of
1 day, the first few subjects could be tested in the morning hours while the last
subjects – in the afternoon. In the example above, none of the first eight subjects is
assigned to group 1, while the second half does not include any subject from group
3. To avoid such problems, block randomization may be applied.

2.1.2 Block Randomization
Blocking is used to supplement randomization in situations such as the one
described above – when one or more external factors change or may change during
the period when the experiment is run. Blocks are balanced with predetermined
group assignments, which keeps the numbers of subjects in each group similar at all
times. All blocks of one experiment have equal size, and each block represents all
independent variables that are being studied in the experiment.

The first step in block randomization is to define the block size. The minimum
block size is the number obtained by multiplying numbers of levels of all indepen-
dent variables. For example, an experiment may compare the effects of a vehicle and
three doses of a drug in male and female rats. The minimum block size in such case
would be eight rats per block (i.e., 4 drug dose levels � 2 sexes). All subjects can be
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divided into N blocks of size X�Y, where X is a number of groups or treatment
conditions (i.e., 8 for the example given) and Y – number of subjects per treatment
condition per block. In other words, there may be one or more subjects per treatment
condition per block so that the actual block size is multiple of a minimum block size
(i.e., 8, 16, 24, and so for the example given above).

The second step is, after block size has been determined, to identify all possible
combinations of assignment within the block. For instance, if the study is evaluating
effects of a drug (group A) or its vehicle (group B), the minimum block size is equal
to 2. Thus, there are just two possible treatment allocations within a block: (1) AB
and (2) BA. If the block size is equal to 4, there is a greater number of possible
treatment allocations: (1) AABB, (2) BBAA, (3) ABAB, (4) BABA, (5) ABBA, and
(6) BAAB.

The third step is to randomize these blocks with varying treatment allocations:

Block number 4 3 1 6 5 2

Random number 0.015 0.379 0.392 0.444 0.720 0.901

And, finally, the randomized blocks can be used to determine the subjects’
assignment to the groups. In the example above, there are 6 blocks with 4 treatment
conditions in each block, but this does not mean that the experiment must include
24 subjects. This random sequence of blocks can be applied to experiments with a
total number of subjects smaller or greater than 24. Further, the total number of
subjects does not have to be a multiple of 4 (block size) as in the example below with
a total of 15 subjects:

Block
number

4 3 1 6

Random
number

0.015 0.379 0.392 0.444

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 –

Treatment B A B A A B A B A A B B B A A –

It is generally recommended to blind the block size to avoid any potential
selection bias. Given the low sample sizes typical for preclinical research, this
recommendation becomes a mandatory requirement at least for confirmatory
experiments (see chapter “Resolving the Tension Between Exploration and Confir-
mation in Preclinical Biomedical Research”).

2.1.3 Stratified Randomization
Simple and block randomization are well suited when the main objective is to
balance the subjects’ assignment to the treatment groups defined by the independent
variables whose impact is to be studied in an experiment. With sample sizes that are
large enough, simple and block randomization may also balance the treatment
groups in terms of the unknown characteristics of the subjects. However, in many
experiments, there are baseline characteristics of the subjects that do get measured
and that may have an impact on the dependent (measured) variables (e.g., subjects’
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body weight). Potential impact of such characteristics may be addressed by
specifying inclusion/exclusion criteria, by including them as covariates into a statis-
tical analysis, and (or) may be minimized by applying stratified randomization
schedules.

It is always up to a researcher to decide where there are such potentially impactful
covariates that need to be controlled and what is the best way of dealing with them.
In case of doubt, the rule of thumb is to avoid any risk, apply stratified randomiza-
tion, and declare an intention to conduct a statistical analysis that will isolate a
potential contribution of the covariate(s).

It is important to acknowledge that, in many cases, information about such
covariates may not be available when a study is conceived and designed. Thus, a
decision to take covariates into account often affects the timing of getting the
randomization conducted. One common example of such a covariate is body weight.
A study is planned, and sample size is estimated before the animals are ordered or
bred, but the body weights will not be known until the animals are ready. Another
example is the size of the tumors that are inoculated and grow at different rates for a
pre-specified period of time before the subjects start to receive experimental
treatments.

For most situations in preclinical research, an efficient way to conduct stratified
randomization is to run simple (or block) randomization several times (e.g.,
100 times) and, for each iteration, calculate means for the covariate per each group
(e.g., body weights for groups A and B in the example in previous section). The
randomization schedule that yields the lowest between-group difference for the
covariate would then be chosen for the experiment. Running a large number of
iterations does not mean saving excessively large volumes of data. In fact, several
tools used to support randomization allow to save the seed for the random number
generator and re-create the randomization schedule later using this seed value.

Although stratified randomization is a relatively simple technique that can be of
great help, there are some limitations that need to be acknowledged. First, stratified
randomization can be extended to two or more stratifying variables. However, given
the typically small sample sizes of preclinical studies, it may become complicated to
implement if many covariates must be controlled. Second, stratified randomization
works only when all subjects have been identified before group assignment. While
this is often not a problem in preclinical research, there may be situations when a
large study sample is divided into smaller batches that are taken sequentially into the
study. In such cases, more sophisticated procedures such as the covariate adaptive
randomization may need to be applied similar to what is done in clinical research
(Kalish and Begg 1985). With this method, subjects are assigned to treatment groups
by taking into account the specific covariates and assignments of subjects that have
already been allocated to treatment groups. We intentionally do not provide any
further examples or guidance on such advanced randomization methods as they
should preferably be developed and applied in consultation with or by
biostatisticians.
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2.1.4 The Case of Within-Subject Study Designs
The above discussion on the randomization schedules referred to study designs
known as between-subject. A different approach would be required if a study is
designed as within-subject. In such study designs also known as the crossover,
subjects may be given sequences of treatments with the intent of studying the
differences between the effects produced by individual treatments. One should
keep in mind that such sequence of testing always bears the danger that the first
test might affect the following ones. If there are reasons to expect such interference,
within-subjects designs should be avoided.

In the simplest case of a crossover design, there are only two treatments and only
two possible sequences to administer these treatments (e.g., A-B and B-A). In
nonclinical research and, particularly, in pharmacological studies, there is a strong
trend to include at least three doses of a test drug and its vehicle. A Latin square
design is commonly used to allocate subjects to treatment conditions. Latin square is
a very simple technique, but it is often applied in a way that does not result in a
proper randomization (Table 2).

In this example, each subject receives each of the four treatments over four
consecutive study periods, and, for any given study period, each treatment is equally
represented. If there are more than four subjects participating in a study, then the
above schedule is copied as many times as need to cover all study subjects.

Despite its apparent convenience (such schedules can be generated without any
tools), resulting allocation schedules are predictable and, what is even worse, are not
balanced with respect to first-order carry-over effects (e.g., except for the first test
period, D comes always after C). Therefore, such Latin square designs are not an
example of properly conducted randomization.

One solution would be to create a complete set of orthogonal Latin Squares. For
example, when the number of treatments equals three, there are six (i.e., 3!) possible
sequences – ABC, ACB, BAC, BCA, CAB, and CBA. If the sample size is a
multiple of six, then all six sequences would be applied. As the preclinical studies
typically involve small sample sizes, this approach becomes problematic for larger
numbers of treatments such as 4, where there are already 24 (i.e., 4!) possible
sequences.

The Williams design is a special case of a Latin square where every treatment
follows every other treatment the same number of times (Table 3).

The Williams design maintains all the advantages of the Latin square but is
balanced (see Jones and Kenward 2003 for a detailed discussion on the Williams
squares including the generation algorithms). There are six Williams squares

Table 2 A Latin square
design as a common
example of a pseudo-
randomization

Subject

Consecutive tests (or study periods)

1 2 3 4

#1 A B C D

#2 B C D A

#3 C D A B

#4 D A B C
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possible in case of four treatments. Thus, if there are more than four subjects, more
than one Williams square would be applied (e.g., two squares for eight subjects).

Constructing the Williams squares is not a randomization yet. In studies based on
within-subject designs, subjects are not randomized to treatment in the same sense as
they are in the between-subject design. For a within-subject design, the treatment
sequences are randomized. In other words, after the Williams squares are constructed
and selected, individual sequences are randomly assigned to the subjects.

2.2 Tools to Conduct Randomization

The most common and basic method of simple randomization is flipping a coin. For
example, with two treatment groups (control versus treatment), the side of the coin
(i.e., heads, control; tails, treatment) determines the assignment of each subject.
Other similar methods include using a shuffled deck of cards (e.g., even, control;
odd, treatment), throwing a dice (e.g., below and equal to 3, control; over 3, treat-
ment), or writing numbers of pieces of paper, folding them, mixing, and then
drawing one by one. A random number table found in a statistics book, online
random number generators (random.org or randomizer.org), or computer-generated
random numbers (e.g., using Microsoft Excel) can also be used for simple randomi-
zation of subjects. As explained above, simple randomization may result in an
unbalanced design, and, therefore, one should pay attention to the number of
subjects assigned to each treatment group. But more advanced randomization
techniques may require dedicated tools and, whenever possible, should be supported
by professional biostatisticians.

Randomization tools are typically included in study design software, and, for
in vivo research, the most noteworthy example is the NC3Rs’ Experimental Design
Assistant (www.eda.nc3rs.org.uk). This freely available online resource allows to
generate and share a spreadsheet with the randomized allocation report after the
study has been designed (i.e., variables defined, sample size estimated, etc.). Similar
functionality may be provided by Electronic Laboratory Notebooks that integrate
study design support (see chapter “Electronic Lab Notebooks and Experimental
Design Assistants”).

Randomization is certainly supported by many data analysis software packages
commonly used in research. In some cases, there is even a free tool that allows to
conduct certain types of randomization online (e.g., QuickCalcs at www.graphpad.
com/quickcalcs/randMenu/).

Table 3 An example of a
Williams design

Subject

Consecutive tests (or study periods)

1 2 3 4

#1 A B C D

#2 B D A C

#3 C A D B

#4 D C B A
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Someone interested to have a nearly unlimited freedom in designing and
executing different types of randomization will benefit from the resources generated
by the R community (see https://paasp.net/resource-center/r-scripts/). Besides being
free and supported by a large community of experts, R allows to save the scripts used
to obtain randomization schedules (along with the seed numbers) that makes the
overall process not only reproducible and verifiable but also maximally transparent.

2.3 Randomization: Exceptions and Special Cases

Randomization is not and should never be seen as a goal per se. The goal is to
minimize the risks of bias that may affect the design, conduct, and analysis of a study
and to enable application of other research methods (e.g., certain statistical tests).
Randomization is merely a tool to achieve this goal.

If not dictated by the needs of data analysis or the intention to implement
blinding, in some cases, pseudo-randomizations such as the schedules described in
Tables 1 and 2 may be sufficient. For example, animals delivered by a qualified
animal supplier come from large batches where the breeding schemes themselves
help to minimize the risk of systematic differences in baseline characteristics. This is
in contrast to clinical research where human populations are generally much more
heterogeneous than populations of animals typically used in research.

Randomization becomes mandatory in case animals are not received from major
suppliers, are bred in-house, are not standard animals (i.e., transgenic), or when they
are exposed to an intervention before the initiation of a treatment. Examples of
intervention may be surgery, administration of a reagent substance inducing long-
term effects, grafts, or infections. In these cases, animals should certainly be
randomized after the intervention.

When planning a study, one should also consider the risk of between-subject
cross-contamination that may affect the study outcome if animals receiving different
treatment(s) are housed within the same cage. In such cases, the most optimal
approach is to reduce the number of subjects per cage to a minimum that is
acceptable from the animal care and use perspective and adjust the randomization
schedule accordingly (i.e., so that all animals in the cage receive the same treatment).

There are situations when randomization becomes impractical or generates other
significant risks that outweigh its benefits. In such cases, it is essential to recognize
the reasons why randomization is applied (e.g., ability to apply certain statistical
tests, prevention of selection bias, and support of blinding). For example, for an
in vitro study with multi-well plates, randomization is usually technically possible,
but one would need to recognize the risk of errors introduced during manual
pipetting into a 96- or 384-well plate. With proper controls and machine-read
experimental readout, the risk of bias in such case may not be seen as strong enough
to accept the risk of a human error.

Another common example is provided by studies where incremental drug doses
or concentrations are applied during the course of a single experiment involving just
one subject. During cardiovascular safety studies, animals receive first an infusion of
a vehicle (e.g., over a period of 30 min), followed by the two or three concentrations
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of the test drug, and the hemodynamics is being assessed along with the blood
samples taken. As the goal of such studies is to establish concentration-effect
relationships, one has no choice but to accept the lack of randomization. The only
alternatives would be to give up on the within-subject design or conduct the study
over many days to allow enough time to wash the drug out between the test days.
Needless to say, neither of these options is perfect for a study where the baseline
characteristics are a critical factor in keeping the sample size low. In this example,
the desire to conduct a properly randomized study comes into a conflict with ethical
considerations.

A similar design is often used in electrophysiological experiments (in vitro or
ex vivo) where a test system needs to be equilibrated and baselined for extended
periods of time (sometimes hours) to allow subsequent application of test drugs
(at ascending concentrations). Because a washout cannot be easily controlled, such
studies also do not follow randomized schedules of testing various drug doses.

The low-throughput studies such as in electrophysiology typically go over many
days, and every day there is a small number of subjects or data points added. While
one may accept the studies being not randomized in some cases, it is important to
stress that there should be other measures in place that control potential sources of
bias. It is a common but usually unacceptable practice to analyze the results each
time a new data point has been added in order to decide whether a magic P value
sank below 0.05 and the experiment can stop. For example, in one recent publica-
tion, it was stated: “For optogenetic activation experiments, cell-type-specific abla-
tion experiments, and in vivo recordings (optrode recordings and calcium imaging),
we continuously increased the number of animals until statistical significance was
reached to support our conclusions.” Such an approach should be avoided by clear
experimental planning and definition of study endpoints.

The above examples are provided only to illustrate that there may be special cases
when randomization may not be done. This is usually not an easy decision to make
and even more difficult to defend later. Therefore, one should always be advised to
seek a professional advice (i.e., interaction with the biostatisticians or colleagues
specializing in the risk assessment and study design issues). Needless to say, this
advice should be obtained before the studies are conducted.

In the ideal case, once the randomization was applied to allocate subjects to
treatment conditions, the randomization should be maintained through the study
conduct and analysis to control against potential performance and outcome detection
bias, respectively. In other words, it would not be appropriate first to assign the
subjects, for example, to groups A and B and then do all experimental manipulations
first with the group A and then with the group B.

3 Blinding

In clinical research, blinding and randomization are recognized as the most important
design techniques for avoiding bias (ICH Harmonised Tripartite Guideline 1998; see
also chapter “Learning from Principles of Evidence-Based Medicine to Optimize
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Nonclinical Research Practices”). In the preclinical domain, there is a number of
instruments assessing risks of bias, and the criteria most often included are randomi-
zation and blinding (83% and 77% of a total number of 30 instruments analyzed,
Krauth et al. 2013).

While randomization and blinding are often discussed together and serve highly
overlapping objectives, attitude towards these two research rigor measures is strik-
ingly different. The reason for a higher acceptance of randomization compared to
blinding is obvious – randomization can be implemented essentially at no cost, while
blinding requires at least some investment of resources and may therefore have a
negative impact on the research unit’s apparent capacity (measured by the number of
completed studies, irrespective of quality).

Since the costs and resources are not an acceptable argument in discussions on
ethical conduct of research, we often engage a defense mechanism, called rationali-
zation, that helps to justify and explain why blinding should not be applied and do so
in a seemingly rational or logical manner to avoid the true explanation. Arguments
against the use of blinding can be divided into two groups.

One group comprises a range of factors that are essentially psychological barriers
that can be effectively addressed. For example, one may believe that his/her research
area or a specific research method has an innate immunity against any risk of bias.
Or, alternatively, one may believe that his/her scientific excellence and the ability to
supervise the activities in the lab make blinding unnecessary. There is a great
example that can be used to illustrate that there is no place for beliefs and one
should rather rely on empirical evidence. For decades, compared to male musicians,
females have been underrepresented in major symphonic orchestras despite having
equal access to high-quality education. The situation started to change in the
mid-1970s when blind auditions were introduced and the proportion of female
orchestrants went up (Goldin and Rouse 2000). In preclinical research, there are
also examples of the impact of blinding (or a lack thereof). More specifically, there
were studies that reveal substantially higher effect sizes reported in the experiments
that were not randomized or blinded (Macleod et al. 2008).

Another potential barrier is related to the “trust” within the lab. Bench scientists
need to be explained what the purpose of blinding is and, in the ideal case, be
actively involved in development and implementation of blinding and other research
rigor measures. With the proper explanation and engagement, blinding will not be
seen as an unfriendly act whereby a PI or a lab head communicates a lack of trust.

The second group of arguments against the use of blinding is actually composed
of legitimate questions that need to be addressed when designing an experiment.
As mentioned above in the section on randomization, a decision to apply blinding
should be justified by the needs of a specific experiment and correctly balanced
against the existing and potential risks.
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3.1 Fit-for-Purpose Blinding

It requires no explanation that, in preclinical research, there are no double-blinded
studies in a sense of how it is meant in the clinic. However, similar to clinical
research, blinding in preclinical experiments serves to protect against two potential
sources of bias: bias related to blinding of personnel involved in study conduct
including application of treatments (performance bias) and bias related to blinding of
personnel involved in the outcome assessment (detection bias).

Analysis of the risks of bias in a particular research environment or for a specific
experiment allows to decide which type of blinding should be applied and whether
blinding is an appropriate measure against the risks.

There are three types or levels of blinding, and each one of them has its use:
assumed blinding, partial blinding, and full blinding. With each type of blinding,
experimenters allocate subjects to groups, replace the group names with blind codes,
save the coding information in a secure place, and do not access this information
until a certain pre-defined time point (e.g., until the data are collected or the study is
completed and analyzed).

3.1.1 Assumed Blinding
In the assumed blinding, experimenters have access to the group or treatment codes
at all times, but they do not know the correspondence between group and treatment
before the end of the study. With the partial or full blinding, experimenters do not
have access to the coding information until a certain pre-defined time point.

Main advantage of the assumed blinding is that an experiment can be conducted
by one person who plans, performs, and analyzes the study. The risk of bias may be
relatively low if the experiments are routine – e.g., lead optimization research in drug
discovery or fee-for-service studies conducted using well-established standardized
methods.

Efficiency of assumed blinding is enhanced if there is a sufficient time gap
between application of a treatment and the outcome recording/assessment. It is
also usually helpful if the access to the blinding codes is intentionally made more
difficult (e.g., blinding codes are kept in the study design assistant or in a file on an
office computer that is not too close to the lab where the outcomes will be recorded).

If introduced properly, assumed blinding can guard against certain unwanted
practices such as remeasurement, removal, and reclassification of individual
observations or data points (three evil Rs according to Shun-Shin and Francis
2013). In preclinical studies with small sample sizes, such practices have particularly
deleterious consequences. In some cases, remeasurement even of a single subject
may skew the results in a direction suggested by the knowledge of group allocation.
One should emphasize that blinding is not necessarily an instrument against the
remeasurement (it is often needed or unavoidable) but rather helps to avoid risks
associated with it.

3.1.2 Partial Blinding
There are various situations where blinding (with no access to the blinding codes) is
implemented not for the entire experiment but only for a certain part of it, e.g.:
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• No blinding during the application of experimental treatment (e.g., injection of a
test drug) but proper blinding during the data collection and analysis

• No blinding during the conduct of an experiment but proper blinding during
analysis

For example, in behavioral pharmacology, there are experiments where subjects’
behavior is video recorded after a test drug is applied. In such cases, blinding is
applied to analysis of the video recordings but not the drug application phase.
Needless to say, blinded analysis has typically to be performed by someone who
was not involved in the drug application phase.

A decision to apply partial blinding is based on (a) the confidence that the risks of
bias are properly controlled during the unblinded parts of the experiment and/or
(b) rationale assessment of the risks associated with maintaining blinding throughout
the experiment. As an illustration of such decision-making process, one may imagine
a study where the experiment is conducted in a small lab (two or three people) by
adequately trained personnel that is not under pressure to deliver results of a certain
pattern, data collection is automatic, and data integrity is maintained at every step.
Supported by various risk reduction measures, such an experiment may deliver
robust and reliable data even if not fully blinded.

Importantly, while partial blinding can adequately limit the risk of some forms of
bias, it may be less effective against the performance bias.

3.1.3 Full Blinding
For important decision-enabling studies (including confirmatory research, see chap-
ter “Resolving the Tension Between Exploration and Confirmation in Preclinical
Biomedical Research”), it is usually preferable to implement full blinding rather than
to explain why it was not done and argue that all the risks were properly controlled.

It is particularly advisable to follow full blinding in the experiments that are for
some reasons difficult to repeat. For example, these could be studies running over
significant periods of time (e.g., many months) or studies using unique resources or
studies that may not be repeated for ethical reasons. In such cases, it is more rational
to apply full blinding rather than leave a chance that the results will be questioned on
the ground of lacking research rigor.

As implied by the name, full blinding requires complete allocation concealment
from the beginning until the end of the experiment. This requirement may translate
into substantial costs of resources. In the ideal scenario, each study should be
supported by at least three independent people responsible for:

• (De)coding, randomization
• Conduct of the experiment such as handling of the subjects and application of test

drugs (outcome recording and assessment)
• (Outcome recording and assessment), final analysis

The main reason for separating conduct of the experiment and the final analysis is
to protect against potential unintended unblinding (see below). If there is no risk of
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unblinding or it is not possible to have three independent people to support the
blinding of an experiment, one may consider a single person responsible for every
step from the conduct of the experiment to the final analysis. In other words, the
study would be supported by two independent people responsible for:

• (De)coding, randomization
• Conduct of the experiment such as handling of the subjects and application of test

drugs, outcome recording and assessment, and final analysis

3.2 Implementation of Blinding

Successful blinding is related to adequate randomization. This does not mean that
they should always be performed in this sequence: first randomization and then
blinding. In fact, the order may be reversed. For example, one may work with an
offspring of the female rats that received experimental and control treatments while
pregnant. As the litter size may differ substantially between the dams, randomization
may be conducted after the pups are born, and this does not require allocation
concealment to be broken.

The blinding procedure has to be carefully thought through. There are several
factors that are listed below and that can turn a well-minded intention into a waste of
resources.

First, blinding should as far as possible cover the entire experimental setup – i.e.,
all groups and subjects. There is an unacceptable practice to exclude positive
controls from blinding that is often not justified by anything other than an intention
to introduce a detection bias in order to reduce the risk of running an invalid
experiment (i.e., an experiment where a positive control failed).

In some cases, positive controls cannot be administered by the same route or
using the same pretreatment time as other groups. Typically, such a situation would
require a separate negative (vehicle) control treated in the same way as the positive
control group. Thus, the study is only partially blinded as the experimenter is able to
identify the groups needed to “validate” the study (negative control and positive
control groups) but remains blind to the exact nature of the treatment received by
each of these two groups. For a better control over the risk of unblinding, one may
apply a “double-dummy” approach where all animals receive the same number of
administrations via the same routes and pretreatment times.

Second, experiments may be unintentionally unblinded. For example, drugs may
have specific, easy to observe physicochemical characteristics, or drug treatments
may change the appearance of the subjects or produce obvious adverse effects.
Perhaps, even more common is the unblinding due to the differences in the appear-
ance of the drug solution or suspension dependent on the concentration. In such
cases, there is not much that can be done but it is essential to take corresponding
notes and acknowledge in the study report or publication. It is interesting to note that
the unblinding is often cited as an argument against the use of blinding (Fitzpatrick
et al. 2018); however, this argument reveals another problem – partial blinding
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schemes are often applied as a normative response without any proper risk of bias
assessment.

Third, blinding codes should be kept in a secure place avoiding any risk that the
codes are lost. For in vivo experiments, this is an ethical requirement as the study
will be wasted if it cannot be unblinded at the end.

Fourth, blinding can significantly increase the risk of mistakes. A particular
situation that one should be prepared to avoid is related to lack of accessibility of
blinding codes in case of emergency. There are situations when a scientist
conducting a study falls ill and the treatment schedules or outcome assessment
protocols are not available or a drug treatment is causing disturbing adverse effects
and attending veterinarians or caregivers call for a decision in the absence of a
scientist responsible for a study. It usually helps to make the right decision if it is
known that an adverse effect is observed in a treatment group where it can be
expected. Such situations should be foreseen and appropriate guidance made avail-
able to anyone directly or indirectly involved in an experiment. A proper study
design should define a backup person with access to the blinding codes and include
clear definition of endpoints.

Several practical tips can help to reduce the risk of human-made mistakes. For
example, the study conduct can be greatly facilitated if each treatment group is
assigned its own color. Then, this color coding would be applied to vials with the test
drugs, syringes used to apply the drug, and the subjects (e.g., apply solution from a
green-labeled vial using a green-labeled syringe to an animal from a green-labeled
cage or with a green mark on its tail). When following such practice, one should not
forget to randomly assign color codes to treatment conditions. Otherwise, for
example, yellow color is always used for vehicle control, green for the lowest
dose, and so forth.

To sum up, it is not always lacking resources that make full blinding not possible
to apply. Further, similar to what was described above for randomization, there are
clear exception cases where application of blinding is made problematic by the very
nature of the experiment itself.

4 Concluding Recommendations

Most, if not all, guidelines, recommendations, and other texts on Good Research
Practice emphasize the importance of blinding and randomization (chapters
“Guidelines and Initiatives for Good Research Practice”, and “General Principles
of Preclinical Study Design”). There is, however, very limited specific guidance on
when and how to apply blinding and randomization. The present chapter aims to
close this gap.

Generally speaking, experiments should be blinded and randomized if:

• This is a confirmatory research (see chapter “Resolving the Tension Between
Exploration and Confirmation in Preclinical Biomedical Research”) that has a
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major impact on decision-making and that cannot be readily repeated (for ethical
or resource-related reasons).

• No other measures can be applied to protect against existing and potential risks
of bias.

There are various sources of bias that affect the outcome of experimental studies
and these sources are unique and specific to each research unit. There is usually no
one who knows these risks better than the scientists working in the research unit, and
it is always up to the scientist to decide if, when, and how blinding and randomiza-
tion should be implemented. However, there are several recommendations that can
help to decide and act in the most effective way:

• Conduct a risk assessment for your research environment, and, if you do not
know how to do that, ask for a professional support or advice.

• Involve your team in developing and implementing the blinding/randomization
protocols, and seek the team members’ feedback regarding the performance of
these protocols (and revise them, as needed).

• Provide training not only on how to administer blinding and randomization but
also to preempt any questions related to the rationale behind these measures (i.e.,
experiments are blinded not because of the suspected misconduct or lack of trust).

• Describe blinding and randomization procedures in dedicated protocols with as
many details as possible (including emergency plans and accident reporting, as
discussed above).

• Ensure maximal transparency when reporting blinding and randomization (e.g.,
in a publication). When deciding to apply blinding and randomization, be maxi-
mally clear about the details (Table 4). When deciding against, be open about the
reasons for such decision. Transparency is also essential when conducting multi-
laboratory collaborative projects or when a study is outsourced to another labora-
tory. To avoid any misunderstanding, collaborators should specify expectations
and reach alignment on study design prior to the experiment and communicate all
important details in study reports.

Blinding and randomization should always be a part of a more general effort to
introduce and maintain research rigor. Just as the randomization increases the
likelihood that blinding will not be omitted (van der Worp et al. 2010), other
Good Research Practices such as proper documentation are also highly instrumental
in making blinding and randomization effective.

To conclude, blinding and randomization may be associated with some effort and
additional costs, but, under all circumstances, a decision to apply these research rigor
techniques should not be based on general statements and arguments by those who
do not want to leave their comfort zone. Instead, the decision should be based on the
applicable risk assessment and careful review of potential implementation burden. In
many cases, this leads to a relieving discovery that the devil is not so black as he is
painted.
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