Skip to main content

Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain

  • Chapter
  • First Online:
Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Abstract

Chronic pain patients are often left with insufficient treatment as the pathophysiology especially of neuropathic pain remains enigmatic. Recently, genetic variations in the genes of the voltage-gated sodium channels (Navs) were linked to inherited neuropathic pain syndromes, opening a research pathway to foster our understanding of the pathophysiology of neuropathic pain. More than 10 years ago, the rare, inherited pain syndrome erythromelalgia was linked to mutations in the subtype Nav1.7, and since then a plethora of mutations and genetic variations in this and other Nav genes were identified. Often the biophysical changes induced by the genetic alteration offer a straightforward explanation for the clinical symptoms, but mutations in some channels, especially Nav1.9, paint a more complex picture. Although efforts were undertaken to significantly advance our knowledge, translation from heterologous or animal model systems to humans remains a challenge. Here we present recent advances in translation using stem cell-derived human sensory neurons and their potential application for identification of better, effective, and more precise treatment for the individual pain patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett DL, Woods CG (2014) Painful and painless channelopathies. Lancet Neurol 13(6):587–599

    Article  CAS  Google Scholar 

  • Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22(23):10277–10290

    Article  CAS  PubMed  Google Scholar 

  • Blanchard JW, Eade KT, Szucs A, Lo Sardo V, Tsunemoto RK, Williams D et al (2015) Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci 18(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Brouwer BA, Merkies IS, Gerrits MM, Waxman SG, Hoeijmakers JG, Faber CG (2014) Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst 19(2):53–65

    Article  CAS  PubMed  Google Scholar 

  • Burma NE, Leduc-Pessah H, Fan CY, Trang T (2017) Animal models of chronic pain: advances and challenges for clinical translation. J Neurosci Res 95(6):1242–1256

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC, Bean BP (2010) Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies. J Clin Invest 120(1):80–83

    Article  CAS  PubMed  Google Scholar 

  • Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJ et al (2016) Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci Transl Med 8(335):335ra356

    Article  CAS  Google Scholar 

  • Cazzato D, Lauria G (2017) Small fibre neuropathy. Curr Opin Neurol 30(5):490–499

    Article  CAS  PubMed  Google Scholar 

  • Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L et al (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444(7121):894–898

    Article  CAS  Google Scholar 

  • Dabby R (2012) Pain disorders and erythromelalgia caused by voltage-gated sodium channel mutations. Curr Neurol Neurosci Rep 12(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Davidson S, Copits BA, Zhang J, Page G, Ghetti A, Gereau RW (2014) Human sensory neurons: membrane properties and sensitization by inflammatory mediators. Pain 155(9):1861–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dib-Hajj SD (2014) Human pain in a dish: native DRG neurons and differentiated pluripotent stem cells. Pain 155(9):1681–1682

    Article  PubMed  Google Scholar 

  • Dib-Hajj SD, Yang Y, Black JA, Waxman SG (2013) The Na(V)1.7 sodium channel: from molecule to man. Nat Rev Neurosci 14(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Drenth JP, Waxman SG (2007) Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 117(12):3603–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardt M, Nakajima J, Klinger AB, Neacsu C, Huhne K, O’Reilly AO et al (2014) Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation. J Biol Chem 289(4):1971–1980

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt E, Havlicek S, Schmidt D, Link AS, Neacsu C, Kohl Z et al (2015) Pattern of functional TTX-resistant sodium channels reveals a developmental stage of human iPSC- and ESC-derived nociceptors. Stem Cell Rep 5(3):305–313

    Article  CAS  Google Scholar 

  • Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS et al (2012a) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS et al (2012b) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109(47):19444–19449

    Article  PubMed  PubMed Central  Google Scholar 

  • Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B et al (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52(5):767–774

    Article  CAS  Google Scholar 

  • Gold MS, Dastmalchi S, Levine JD (1996) Co-expression of nociceptor properties in dorsal root ganglion neurons from the adult rat in vitro. Neuroscience 71(1):265–275

    Article  CAS  PubMed  Google Scholar 

  • Goral RO, Leipold E, Nematian-Ardestani E, Heinemann SH (2015) Heterologous expression of NaV1.9 chimeras in various cell systems. Arch Eur J Physiol 467(12):2423–2435

    Article  CAS  Google Scholar 

  • Habib AM, Wood JN, Cox JJ (2015) Sodium channels and pain. Handb Exp Pharmacol 227:39–56

    Article  CAS  PubMed  Google Scholar 

  • Han C, Estacion M, Huang J, Vasylyev D, Zhao P, Dib-Hajj SD et al (2015) Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. J Neurophysiol 113(9):3172–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han C, Yang Y, Te Morsche RH, Drenth JP, Politei JM, Waxman SG et al (2017) Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry 88(3):233–240

    Article  PubMed  Google Scholar 

  • Hoeijmakers JG, Faber CG, Lauria G, Merkies IS, Waxman SG (2012) Small-fibre neuropathies – advances in diagnosis, pathophysiology and management. Nat Rev Neurol 8(7):369–379

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG, Gerrits MM et al (2014) Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain J Neurol 137(Pt 6):1627–1642

    Article  Google Scholar 

  • Huang J, Vanoye CG, Cutts A, Goldberg YP, Dib-Hajj SD, Cohen CJ et al (2017) Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J Clin Invest 127(7):2805–2814

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarecki BW, Piekarz AD, Jackson JO 2nd, Cummins TR (2010) Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 120(1):369–378

    Article  CAS  PubMed  Google Scholar 

  • Kankel J, Obreja O, Kleggetveit IP, Schmidt R, Jorum E, Schmelz M et al (2012) Differential effects of low dose lidocaine on C-fiber classes in humans. J Pain 13(12):1232–1241

    Article  CAS  PubMed  Google Scholar 

  • Kist AM, Sagafos D, Rush AM, Neacsu C, Eberhardt E, Schmidt R et al (2016) SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing. PLoS One 11(9):e0161789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleggetveit IP, Namer B, Schmidt R, Helas T, Ruckel M, Orstavik K et al (2012) High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153(10):2040–2047

    Article  CAS  Google Scholar 

  • Lampert A, O’Reilly AO, Reeh P, Leffler A (2010) Sodium channelopathies and pain. Arch Eur J Physiol 460(2):249–263

    Article  CAS  Google Scholar 

  • Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 221:91–110

    Article  CAS  PubMed  Google Scholar 

  • Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45(11):1399–1404

    Article  CAS  Google Scholar 

  • Leipold E, Hanson-Kahn A, Frick M, Gong P, Bernstein JA, Voigt M et al (2015) Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat Commun 6:10049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Santos S, Padilla K, Printzenhoff D, Castle NA (2016) Biophysical and pharmacological characterization of Nav1.9 voltage dependent sodium channels stably expressed in HEK-293 cells. PLoS One 11(8):e0161450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy PW, Lawson SN (1997) Differing action potential shapes in rat dorsal root ganglion neurones related to their substance P and calcitonin gene-related peptide immunoreactivity. J Comp Neurol 388(4):541–549

    Article  CAS  PubMed  Google Scholar 

  • Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH et al (2015) Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 6:8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10(4):283–294

    Article  CAS  PubMed  Google Scholar 

  • Pan A, Wu H, Li M, Lu D, He X, Yi X et al (2012) Prenatal expression of purinergic receptor P2X3 in human dorsal root ganglion. Purinergic Signal 8(2):245–254

    Article  CAS  PubMed  Google Scholar 

  • Phatarakijnirund V, Mumm S, McAlister WH, Novack DV, Wenkert D, Clements KL et al (2016) Congenital insensitivity to pain: fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone 84:289–298

    Article  CAS  PubMed  Google Scholar 

  • Ritter AM, Mendell LM (1992) Somal membrane properties of physiologically identified sensory neurons in the rat: effects of nerve growth factor. J Neurophysiol 68(6):2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Rolyan H, Liu S, Hoeijmakers JG, Faber CG, Merkies IS, Lauria G et al (2016) A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels. Mol Pain 12:1744806916674472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostock C, Schrenk-Siemens K, Pohle J, Siemens J (2017) Human vs. mouse nociceptors – similarities and differences. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.11.047

  • Schrenk-Siemens K, Wende H, Prato V, Song K, Rostock C, Loewer A et al (2015) PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat Neurosci 18(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Schwarz MG, Namer B, Reeh PW, Fischer MJM (2017) TRPA1 and TRPV1 antagonists do not inhibit human acidosis-induced pain. J Pain 18(5):526–534

    Article  CAS  PubMed  Google Scholar 

  • Serra J (2010) Microneurography: an opportunity for translational drug development in neuropathic pain. Neurosci Lett 470(3):155–157

    Article  CAS  PubMed  Google Scholar 

  • Serra J, Bostock H, Sola R, Aleu J, Garcia E, Cokic B et al (2012) Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 153(1):42–55

    Article  CAS  PubMed  Google Scholar 

  • Serrano A, Mo G, Grant R, Pare M, O’Donnell D, Yu XH et al (2012) Differential expression and pharmacology of native P2X receptors in rat and primate sensory neurons. J Neurosci 32(34):11890–11896

    Article  CAS  PubMed  Google Scholar 

  • Shi TJ, Liu SX, Hammarberg H, Watanabe M, Xu ZQ, Hokfelt T (2008) Phospholipase C{beta}3 in mouse and human dorsal root ganglia and spinal cord is a possible target for treatment of neuropathic pain. Proc Natl Acad Sci U S A 105(50):20004–20008

    Article  PubMed  PubMed Central  Google Scholar 

  • Sittl R, Lampert A, Huth T, Schuy ET, Link AS, Fleckenstein J et al (2012) Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc Natl Acad Sci U S A 109(17):6704–6709

    Article  PubMed  PubMed Central  Google Scholar 

  • Stucky CL, Lewin GR (1999) Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci 19(15):6497–6505

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    Article  CAS  PubMed  Google Scholar 

  • Theile JW, Jarecki BW, Piekarz AD, Cummins TR (2011) Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navbeta4 peptide-mediated resurgent sodium currents. J Physiol 589(Pt 3):597–608

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  • Valensi-Kurtz M, Lefler S, Cohen MA, Aharonowiz M, Cohen-Kupiec R, Sheinin A et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallbo AB, Hagbarth KE (1968) Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Exp Neurol 21(3):270–289

    Article  CAS  PubMed  Google Scholar 

  • Vanoye CG, Kunic JD, Ehring GR, George AL Jr (2013) Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. J Gen Physiol 141(2):193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega JA, Humara JM, Naves FJ, Esteban I, Del Valle ME (1994) Immunoreactivity for phosphorylated 200-kDa neurofilament subunit is heterogeneously expressed in human sympathetic and primary sensory neurons. Anat Embryol 190(5):453–459

    Article  CAS  PubMed  Google Scholar 

  • Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A et al (2017) NaV1.7 as a pain target – from gene to pharmacology. Pharmacol Ther 172:73–100

    Article  CAS  PubMed  Google Scholar 

  • Wainger BJ, Buttermore ED, Oliveira JT, Mellin C, Lee S, Saber WA et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG (2013) Painful Na-channelopathies: an expanding universe. Trends Mol Med 19(7):406–409

    Article  CAS  PubMed  Google Scholar 

  • Wehrfritz A, Namer B, Ihmsen H, Mueller C, Filitz J, Koppert W et al (2011) Differential effects on sensory functions and measures of epidermal nerve fiber density after application of a lidocaine patch (5%) on healthy human skin. Eur J Pain 15(9):907–912

    Article  CAS  PubMed  Google Scholar 

  • WHO-Guidelines (2008) Scoping document for WHO treatment guideline on non-malignant pain in adults. In: Adopted in WHO Steering Group on Pain Guidelines, 14 Oct 2008

    Google Scholar 

  • Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41(3):171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Atack TC, Stroud DM, Zhang W, Hall L, Roden DM (2012) Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ Res 111(3):322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young GT, Gutteridge A, Fox H, Wilbrey AL, Cao L, Cho LT et al (2014) Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol Ther 22(8):1530–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH et al (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93(5):957–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Lampert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schrenk-Siemens, K., Rösseler, C., Lampert, A. (2018). Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2017_91

Download citation

Publish with us

Policies and ethics