

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 66 – 77, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Coordinated Co-allocator Model for Data Grid in
Multi-sender Environment

R.S. Bhuvaneswaran, Yoshiaki Katayama, and Naohisa Takahashi

Department of Computer Science and Engineering,
Graduate School of Engineering, Nagoya Institute of Technology, Japan

{bhuvan, katayama, naohisa}@moss.elcom.nitech.ac.jp

Abstract. We propose a model, which simultaneously allocates a data block re-
quest to the multiple sites, termed as co-allocation, to enable parallel data trans-
fer in a grid environment. The model comprises of co-allocator, monitor and
control mechanisms. The co-allocation scheme adapts well to the highly incon-
sistent network performances of the sites concerned. The scheme initially ob-
tains the bandwidth parameter from the monitor module to fix the partition size
and the data transfer tasks are allocated onto the servers in duplication. The
scheme is found to be tolerant despite the situation that the link to servers under
consideration is broken or become idle. We used Globus toolkit for our frame-
work and utilized the partial copy feature of GridFTP. We compared our
schemes with the existing schemes and the results show notable improvement in
overall completion time of data transfer.

Keywords: Data grid, co-allocation, parallel data transfer, GridFTP.

1 Introduction

Applications designed to execute on grids frequently require the simultaneous co-
allocation of multiple resources in order to meet performance requirements [7][1][5].
For instance, several computers and network elements may be required in order to
achieve real-time re-construction of experimental data, while a large numerical simu-
lation may require simultaneous access to multiple supercomputers. Motivated by
these concerns, several researchers [1][5][3][8] developed general resource manage-
ment architecture for Grid environments, in which resource co-allocation is an inte-
gral component. Data store is one of the important resources and this paper deals
about it. Several applications considered distributed data stores as resources [8][9].
Most of these data grid applications are executed simultaneously and access a large
number of data files in a grid, termed as data grid. The data grid infrastructure is to
integrate the data storage devices and data management service into the grid envi-
ronment. Data grid consists of scattered computing and storage resources located
dispersedly in the global network accessible to the users. These large sized data sets
are replicated in more than one site for the better availability to the other nodes in

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 67

a grid. For instance, in the multi tiered data grid architecture high energy physics
experiments[9], replicated data stores are considered. Hence, any popular dataset is
likely to have replicas located in multiple sites.

Instead of downloading the entire high volume dataset from a single server, the
technique of downloading the data set parts from multiple servers in parallel that are
consolidated at the client end, is of more theoretical and practical interest. This co-
allocation of data transfer has alleviated most of the bottlenecks in downloading and
improves the performance compared to the single server selection one. Many re-
searchers realized this factor, discussed its advantages and proposed variety of tech-
niques in different contexts [14][3][15]. We propose a model, which simultaneously
allocates a data block request to the multiple sites, termed as co-allocation, to enable
parallel data transfer in a grid environment. The model comprises of co-allocator,
monitor and control mechanisms, naturally blended with feedback loop. The co-
allocator scheme adapts well to the highly inconsistent network performances of the
sites concerned.

We have experimented our schemes with Globus toolkit as the middleware and
GridFTP. The results are compared with the existing approaches and the initial results
outlast the existing ones performance. The rest of the paper is organized as follows:
the problem is defined with the co-allocation model in section 2 and the related works
in the same area are discussed in Section 3. We presented our proposed algorithm in
Section 4 with assumptions and the experiments. Section 5 describes the analyses and
Section 6 concludes the paper.

Fig. 1. Integrated Co-allocation Model of Data Grid with replicated multiservers

2 Co-allocation Model with Globus

The integrated coallocation model comprises of coallocation, monitoring and control
components, discussed in detail in the subsequent sections.

S S S S S S S S S

MM MM MM
CM CM CM

68 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

2.1 Coallocation Mechanism and the Overall Architecture

The dynamic collacotor module integrated with monitor is shown in Fig.1. The model
is presented from the client perspective. Each client has a coallocator agent (CM) and
the periodical execution of monitor agent (MM).We used Globus Toolkit [11] which
is an open source software toolkit used for building grid. The major component of a
globus tool kit is GIS (Globus Information Service) which provide necessary infor-
mation about the data stores in a grid. With help of GIS, the co-allocator adopted
dynamic strategy to transfer data from multiple servers to the intended client. Fig. 2
depicts a single client point of view. The agent accepts the request from an application
about the data solicited and its description is passed on to the co-allocator.

Fig. 2. The Co-allocation Model of Data Grid with replicated multiservers

The co-allocator, identifies multiple servers with the help of GIS, initiated the data
transfer in parallel in parts. After all the parts of a data set are received, they will be
assembled and give it back to the application through the agent. The file transfer is
handled by GridFTP[11] service of a globus tool kit. We exploit the partial file trans-
fer feature of GridFTP in our work and presenting a dynamic co-allocation strategy to
enable the transfer of replicated data from multiple data servers, to a single client.

The outline of our strategy is spelled out as follows: The application (of client) re-
quests the data with its description to co-allocator agent. Based on the information
provided by GIS, the dataset is replicated and available in the servers scattered in the
network. The dataset to be downloaded is divided into blocks. The co-allocator
sends multiple requests to the server and the download process taken place in parallel.
At the beginning, every server is assigned to transfer exactly one block respectively.
When the requested block is received from a server, then, one of the yet unassigned
blocks is assigned to the server. Co-allocator repeats this process until all the blocks
of the dataset are assigned. Obviously, good performance servers transfer more

Client

Co-allocator

Agent

GASS GASS GASS GASS GASS

(Local Storage Systems accessed through Global Access to Secondary Storage)

GIS

Parallel Data Transfer using GridFTP

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 69

blocks than the slow servers. There may be duplication of blocks among the servers
thereby reducing the waiting time from the slower servers and thus the fault tolerant
factor can also be achieved.

2.2 Monitoring and Control Mechanisms

The allocation and configuration phases of the coallocation process result in the data
transfer tasks on set of servers. During the data transfer, it is desirable to monitor and
control the ensemble as a collective unit. The monitoring and control operations that
we defined have this property. Monitoring operations allow a client program to re-
ceive notification when the resource set changes state. In addition to the obvious
global state transitions of failure and termination, the complex failure modes encoun-
tered in Grid applications lead to a need to support and respond to individual process
state transitions as well. Hence, the interface should allow for signaling operation
(algorithm in Sec. 4) to the monitoring program, which can then act upon this transi-
tion in a manner that is appropriate for the coallocation. Similarly, control operations
allow for the manipulation of the resource set as a whole. One required control opera-
tion is to check whether the received data is corrupted or not and the other one is
killing the duplicate processes, which will be discussed in Sec. 4. Before we discuss
about our strategy in detail, let us present the related works in this aspect.

3 Related Works

Few research works have been reported in the literature about parallel data transfer for
the grid environment. They can be categorized into static and dynamic based on the
allocation strategy. Once the allocation is made, it can never be changed during exe-
cution is termed as static, whereas, in dynamic allocations the allocations may be
altered based on bandwidth or other performance criteria. t al [15] used past history of
data to forecast the current data transfer speed. The same authors [14] proposed co-
allocation architecture for grid data transfers across multiple connections. They pro-
vided brute-force, history-based and other techniques. Brute force works by dividing
the file size equally among available flows. It does not address the bandwidth differ-
ences among the various client-server links. Past history-based co-allocation schemes
not exhibit consistent performance, since performance (speed) of the each processor
varies over time [13]. Many algorithms and schemes found in the literature
[3][7][14][15] make the decision based on the past history, heuristics, performance in
the first allocation, etc. But, in practical, server and network performance cannot be
forecasted in full guarantee. Hence, several researchers proposed dynamic strategies
[14][3][13].

The dynamic co-allocation mechanisms of [14] were noteworthy. In the conser-
vative load balancing, the dataset requested is divided into disjoint blocks of equal
size. Each available server is assigned one block to deliver in parallel. Once the
server finishes delivering the block, another block is requested and so on, till the

70 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

entire file is downloaded. There exists a shortcoming of the faster servers that must
wait for the slower server to deliver the final block. Another strategy by the same
authors is the aggressive load balancing, which progressively increase the amount of
data requested from faster servers and reduce the amount of data requested from
slower servers or stop requesting data altogether. These schemes are calculating
bandwidth at the time of delivering the block and thereby allocating the next block
under the motive of utilizing faster servers. But, the idle time of faster servers await-
ing the slowest server to deliver the last block is one of factor, which affects total
efficiency. The other technique, Recursive Adjustment co-allocation [3] was de-
signed under the objective of reducing the waiting time.

In all these techniques, the data set is divided into block size according to each
server’s bandwidth and the co-allocator assigns the blocks to each server for transfer-
ring. But, after assigning the block size, there is no guarantee that the bandwidth of
the server remains constant. In other words, this technique does not cope up with the
highly dynamic performance behavior of the multiple servers and their networks.
Moreover, when any one of the servers becomes idle or link is broken, the alternative
is not suggested in none of the existing methods.

Our proposed scheme takes care of all these factors. It neither uses predictions nor
heuristics, instead dynamically co-allocate with duplication assignments and coping up
nicely with the changing speed performance of the servers. The idea of duplication in
allocation has already been used in multiprocessor scheduling in the yester years and
applied in computational grid environments in recent years [13]. But, there are quite
number of variations between computational grid and data grid, where the former one
is constrained by precedence constraints, task partitioning, dependency, interprocess
communication, resource reservation & allocation, process control, etc. The next sec-
tion describes our strategy which alleviates the problems mentioned afore.

4 Dynamic Co-allocation Scheme with Duplicate Assignments
(DCDA)

Let D be the dataset, k be the number of blocks of a dataset of fixed block size and m
be the available number of servers having replicated data content. First, D is divided
into k disjoint blocks (Bi) of equal size and each one of the available server is assigned
to deliver, in parallel, in other words, D = {B1, B2, …, Bk}. The strategy for partitioning
the dataset into data blocks is analyzed in section 5. When the requested block is re-
ceived from a server, one of the yet unassigned blocks is assigned to the server. Co-
allocator repeats this process until all the blocks of a dataset are assigned. Hence, good
performance servers transfer more blocks than the slow servers, which take more time
deliver. In this case, the block assigned to that server is again assigned to the faster
server; In other words, there may be duplication of blocks among the servers and
thereby reducing the waiting time from the slower servers. Moreover, when the server
becomes idle or the link to the server is broken, the entire data process is safeguarded

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 71

from disruption. A data structure of circular queue is maintained here, with k (number
of blocks) as the size of the queue. The complete scheme is presented here:

coalloc(m, k, D)
1. [Initialization]

1a) Partition the dataset D into k equal sized blocks Bj, j = [1..k].
1b) All the blocks are numbered and placed in a circular queue CQ(k).
1c) CQ pointer p is initialized with 1 so as to point to its first element.

2. [Initial allocation of blocks on to the servers]
for (i = 1 to m)

2a) fetch block Bp from CQ and assign to server Si
2b) p = (p + 1) mod k

3. When a block Bj (any j, 1 ≤ j ≤ k) is delivered by the server Sl (any l, 1 ≤ l ≤
m),

3a) remove block Bj from CQ, k = k -1
3b) signal the servers to stop processing of
block Bj
3c) fetch block Bp from CQ and assign to server Sl

 If CQ is empty, Go to step 6.
3d) p = (p + 1) mod k

4. When a server Sl (1 ≤ l ≤ m) is signalled,
4a) fetch block Bp from CQ and assign to server Sl

 If CQ is empty, Go to Step 6.
4b) p = (p + 1) mod k

5. [Waiting for delivery or free signal from servers]
 Go to Step 3

6. [At the completion of transfer of dataset]
 When the CQ is empty, kill all the assigned data

transfer processes in other servers.

For the purpose of explaining the scheme, initially, let us consider the constant rate
of transfer and the data set is divided equally into k disjoint blocks. The scheme is
illustrated as follows: Let us consider the example of data set of size 100 MB repli-
cated in five servers (s1 to s5) and hence the block size is 20 MB. Also assume that
the speeds of the data transfer of the five servers are 200, 70, 150, 80, 200 Kbps, re-
spectively. Note that, when same blocks are received by co-allocator, it considers the
one with the earliest timestamp and discards other.

Note that in this first example, k = m, for simplicity. Initially, a block numbered 1
to 5 is assigned to each server, respectively in the same order. Naturally, servers 1 and
5 delivered data much faster than others. After the blocks 1 and 5 are received, blocks
2 and 3 are assigned to servers 1 and 5. In due course, block 3 is delivered by server 3
and hence the block request to the server 5 is cancelled and block 4 is assigned to
server 3 and block 2 is assigned to server 5. Note that the block 2 is duplicated in serv-
ers 1, 2 and 5. Finally, block 4 is assigned duplicated in all the sites. This is illustrated
in the Gantt chart (Fig. 3a). The total time taken is 273.0 seconds. The allocation of

72 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

blocks on to the servers, for every reception of delivery signal in succession is shown
as in Fig. 4a along with the status of the queue. At the end of the execution, the
blocks delivered by the servers are shown in Fig. 4b.

B2

B3

B4

B5

B1 B2

B3 B2

B4

B4

B4

B4

B2 B
4

B3 B4

B4

B5
3

B2

0 102.4 127.4 204.8 229.8

B2 B
4

B
4

B1

0 102.4 136.5 204.8 273

S1

S2

S3

S4

S5

Fig. 3. Gantt Chart showing Co-allocated Behavior with a)Constant and b) varying bandwidth

The allocation of blocks on to the servers, for every reception of delivery signal in
succession is shown below (Fig. 4a) along with the status of the queue. At the end of
the execution, the blocks delivered by the servers are shown in Fig. 4b.

B1 B2 B3 B4 B5 CQ(5)
B2 B3 B4 CQ(3)
B2 B4 CQ(2)
B4 CQ(1)

 (a) (b)

S1 S2 S3 S4 S5

B1 B2 B3 B4 B5

B2 B2 B3 B4 B3

B2 B2 B4 B4 B2

B4 B4 B4 B4 B4

B1 B2 B3 B4 B5

S1 S1 S3 S1 S5

Fig. 4. Status of the circular queue during execution and the final allocation

5 Experiment and Analysis

5.1 General Analysis

In order to analyze the scheme, let us consider the next case (case 2) of change in
network performance. Let the data transfer rate, be represented as a pair (a, b) where,
a is the rate of transfer in the first 100 seconds and b represents after first 100 sec-
onds. In this way, rate of transfer for five servers are considered as (200,200),
(70,50),(150,200),(80,0), and (200,150) respectively. Rate of transfer 0 specifies nil
or no data transfer, which may be due to the broken link or idle server (here, site 4
detoriate, after 100 seconds). In this case, the total time taken will be 229.8. Note that
the performance can further be improved, when the frequency of change-in-transfer

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 73

rate is more. Now, consider the same case with more number of blocks. In the same
example cited above, partition the data set into ten blocks, each of size 10 MB. The
total completion time is drastically reduced to 204.8 and the blocks delivered by the
appropriate servers are tabulated as Table 1.

Table 1. Performance of Dynamic Duplicate Assignment Scheme with k > m

Sites Rate of transfer
(interval of 100 secs)

Blocks
assigned

Blocks
delivered

1 200, 200 1, 6, 9, 4 1, 6, 9, 4
2 50, 70 2, 4 -

3 150, 200 3, 8, 2, 10 3, 8, 2

4 70, 0 4 ---

5 200, 150 5, 7, 10, 4 5, 7, 10

The performances of the three cases mentioned above are shown as bar chart in the
Fig. 5. Numbers of blocks considered are mentioned along with the case. Thus, from the
figure, it is apparent that the varying speed performances of the replicated sites are util-
ized which results in minimal completion time of the download process of a data set.

0

200

400

600

800

1000

1200

1400

1600

100M 500M

File Size

C
o
m
p
le
t
io
n
 t
im
e
 i
n
 S
e
c
s

Constant 5 Dynamic 5 Dynamic 10

Fig. 5. Performances of Static and Dynamic bandwidth for 100M & 500M file sizes

We used Globus toolkit 2.4 in our experiment, and in order to study the perform-
ance of our scheme in varying network performance, we conducted our experiment by
changing the network and server loads, apart from normal traffic. In order to evaluate
our scheme in dynamic environment, we used frequency table of data transfer rate.
For example, Table 2 shows one such frequency table when the case 2 above is ex-
tended with more frequency of data transfer in the interval of 20 seconds.

74 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

We can study the behavior of our algorithm with frequency tables like this. We
used several file sizes as 2GB, 1.5 GB, 1GB, 500MB, 100MB and 10MB and the
expected completion time threshold is assumed as 5 minutes, which is required by the
3 schemes mentioned above. We fixed a constant L=5 in the formula of finding k.

0

1000

2000

3000

4000

5000

6000

100M 500M 1G 2G

File Size

C
o
m
p
le
t
io
n
 T
im
e

Brute Force History Based DCDA

a) with Static schemes

0

1000

2000

3000

4000

5000

6000

100M 500M 1G 2G

File Size

C
o
m
p
le
t
io
n
 T
im
e

Conservative Recursive DCDA

b) with Dynamic schemes

Fig. 6. Comparative Performance with k > m

We assumed that the overhead latency in assigning, delivering and killing of dupli-
cate assignments are negligible since, in practice, while transferring giga, peta or tera
bytes of sizes, these delays will not affect the overall completion time. We have
evaluated our scheme with other static and dynamic schemes, separately. When the
bandwidth is assumed static, it has been compared with brute force[14] and our pro-
posed dynamic scheme is compared with other dynamic strategies of conservative
load balancing scheme[14] and recursive co-allocation[3]. We analyzed the perform-
ance of each scheme by comparing their completed transfer time, shown in Fig. 6.
When comparing the static schemes, we assumed constant rate of transfer (as in case
1), as in Fig. 6a. From this figure it is clear that our scheme has marginal improve-
ment over others. In comparing with other dynamic schemes, Fig. 6b, our scheme
outperforms others. Furthermore, the other schemes are not fault tolerant, and the
expected completion time is specified here, for the purpose of comparison.

The blocks and the servers delivered by them in the order of arrival (left to right)
for the case 2 are :

B1 B5 B3 B6 B7 B8 B9 B10 B4 B2
S1 S5 S3 S1 S7 S3 S1 S3 S1 S3

Fig. 7. Final Allocation of Blocks on to servers

One of the factors, which influence the scheme, is data set portioning; that is the
manner in which the data set is partitioned. The question now is whether to have
small number of blocks with greater size or more number of blocks with smaller size.
The later one is better since more number of blocks may brighten the scope of

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 75

dynamicity; in other words, there is a possibility of assigning more blocks to the faster
servers. But, at the same time, more number of blocks may have the overhead of
communication latency and the block management. Next subsection discusses about
fixing the block size k.

5.2 Finding the Optimal Number of Blocks

One of the factors, which influence the overall performance, is data set portioning;
that is the manner in which the data set is partitioned. The question now is whether to
have small number of blocks with greater size or more number of blocks with smaller
size. The later one is better since more number of blocks may brighten the scope of
dynamicity; in other words, there is a possibility of assigning more blocks to the faster
servers. But, at the same time, more number of blocks may have the overhead of
communication latency and the block management. The partitioning factor in turn
based on block size and the number of replicated sites available. Choosing the optimal
block may yield significant performance with our scheme. In general, smaller num-
ber of blocks may yield poor completion time and on the other hand, more number of
blocks results in switchover overheads and thereby showing poor completion time.

Hence, it is highly important to partition the data set into optimal number of
blocks. The specialty of the algorithm is independent of any estimating measures
under the motive of adapting to the natural dynamicity of network behavior. Without
compromising this objective let us fix the number of blocks, based on the function of
bandwidth. Before executing the algorithm, assume that the bandwidths of all the
servers are known from the client perspective. These metrics can easily be obtained
from the monitoring module, which is executing periodically by using the tools such
as iperf [12].

Let the ratio of coefficient of variation of set of bandwidths be, Cv
 = (σ / μ)*100,

where, σ is the standard deviation and μ is the average of the bandwidths from client
to all the sites having replicated data. Further, the set of bandwidths in a network of
multisender scenario aggregates normal distribution [10]. Hence, if set of bandwidth
values aggregates normal distribution, Cv can be used to compare the amount of
variance between populations with different means.Based on the basic statistics, it can
be interpreted that, the lower percentage is closer to the average and the higher per-
centage depicts the farther distance from average. The number of fixed sized blocks
can be fixed as, k = m *([Cv / [100/L]] + 1), (or can be simplified as k = m ([σ L/
μ] + 1)) for any constant L (> 0) which is used to divide the range of distributions. For
example, for normal distribution curve with μ=140 and σ=2.007638, the entire range
of distribution is divided in to 4(=L) portions. Note that, for this example, k = 2m.

5.3 Improvement of the Algorithm

Note that the sequentiality is not maintained in this method. In other words, the blocks
are not received in the partitioning order. For example, the blocks and the servers
delivered by them in the order of arrival (left to right) for the case 2 as in Fig.7 is not
block sequential. This may not be the problem with the applications considering in-
sensitive with sequentiality. On the other hand, for the applications like streaming,
the sequential delivery of partitioned blocks is matters a lot. Hence the algorithm is

76 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

modified to ensure the sequential delivery to the client and at the same time exploiting
the parallel feature enriched in the co-allocated model.

The data file is divided into blocks and each block is further partitioned into sub-
blocks to exploit the parallelism in downloading. This is illustrated in the Fig. 8. The
dashed lines indicate the sub-blocks.

Block 1 Block 2 Block k

Fig. 9. Partitioning of a Data file

For each block, the basic algorithm in section 4 is executed as, coalloc(m, s, Bi),
where s is the number of sub-blocks and Bi is the block i of the dataset D, for any i,
1 ≤ i ≤ k. After all the sub-blocks of a block are delivered, rearranged the sub-blocks,
execute for the next block coalloc(m, s, Bi+1) and this process is repeated for all the
blocks of a dataset. Hence, the blocks will be received in the sequential order.

Table 2. Sample Frequency Table of Data Transfer Rate

 Rate of transfer in K/Second in the interval 20 seconds
S1 200 200 80 190 210 220 205 180 150 120 180 185 200
S2 50 50 80 80 90 70 70 80 80 90 70 80 80
S3 150 160 50 150 170 180 200 210 210 190 200 210 200
S4 70 80 70 60 40 60 50 0 0 0 0 0 0
S5 200 210 190 200 200 190 170 160 150 160 150 140 150

For example, consider the simple example of case 2, discussed in section 5.1. Let
the number of blocks as 4 and each block has 5 sub-blocks. Thus, the size of sub-
block is 5MB. Only 4 servers S1, S2, S3 & S5 are considered, eliminating server S4.
For the purpose of explanation, we denote the sub-block with double index, as SBij,
where j refers to the sub-block number within a block i. Now, with the improved se-
quential algorithm, the sub-blocks will be delivered in the following order, (from left
to right). SB11,SB15,SB13,SB12,SB14,SB21,SB25,SB23,SB22,SB24...SB41,SB45,SB43,SB42,SB44

Note that there is a necessity of rearrangement of sub-blocks, before the next itera-
tion of a block. This scheme ensures the ordered delivery of data file and thus highly
suitable for the applications like streaming.

6 Conclusion

We have designed a dynamic co-allocation model, to enable parallel download of
replicated data from multiple servers. The coallocation scheme is presented which
initially fix the number of data blocks based on bandwidth obtained from monitor.
Our scheme uses neither past history nor heuristics but fully compliant with high
dynamicity in the network / server performance. The scheme works fine, even when
the link to servers is broken (or servers become idle) during the process, whereas,

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 77

none of the existing algorithms considered this situation. It is compared with the
existing schemes and shows significant improvement in overall completion time of
data transfer. The scheme may yield significant performance when choosing optimal
block size.

Acknowledgment

This research was partially supported by the Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for JSPS Fellows 1604285, Scientific Re-
search on Priority Areas 18049038 and Scientific Research (C) 18500050.

References

1. Allcock B, Bester J, et al, “Data Management and Transfer in High Performance Computa-
tional Grid Environments”, Parallel Computing, May 2002.

2. Bhuvaneswaran R.S, Katayama Y, Takahashi N ,“Dynamic Co-allocation Scheme for Par-
allel Data Transfer in Grid Environment”, Semantics, Knowledge and Grid, Beijing, pp
178-188, 2005.

3. Chao-Tung Yang, I Hsien Yang, Chun Hsiang Chen, “Improve Dynamic Adjustment
Mechanism in Co-allocation data Grid Environments”, Proceedings of the 11th Workshop
on Compiler Techniques for High-Performance Computing (CTHPC 05), 189-194, 2005

4. Chervenak A, et al ,”A Framework for Constructing Scalable Replica Location Services”,
Proceedings of Super Computing Conference 2002, Baltimore, 2002.

5. Chervenak A, Foster I, et al, “The Data Grid: Towards an Architecture for the Dis-
tributed Management and Analysis of Large Scientific Datasets,” Journal of Network and
Computer Applications, 23:187-200, 2001.

6. Chun Hsiang Chen, Chao-Tung Yang, Chuan-Lin Lai, “Towards an Efficient Replica se-
lection for Data Grid”, Workshop on Grid Technologies and Applications, Dec 2004.

7. Czakowski K, Foster I, Kesselman C, “Resource Co-allocation in Computational Grids”,
Proc. IEEE International Symposium on High Performance Distributed Computing 1999.

8. Data Grid Project (EU Data Grid), http://www.eu-datagrid.org
9. GridPhyN project (Grid Physics Network), http://www.griphyn.org

10. Hui,S.C and Jack Y. B. Lee, "Modeling of Aggregate Available Bandwidth in Many-to-
One Data Transfer," Proc. of the Fourth International Conference on Intelligent Multimedia
Computing and Networking, July 21-26, 2005, Utah.

11. Introduction to Grids and the Globus Toolkit, The Globus Project, http://www.globus.org.
12. Iperf Homepage : http://dast.nlanr.net/Projects/Iperf/ .
13. Noriyuki Fujimoto, Kenichi Hagihara, “Near Optimal Dynamic Task Scheduling of Inde-

pendent Coarse Grained Tasks onto a Computational Grid”, International Conference on
Parallel Processing (ICPP-03), pp.391-398, October 6-9, 2003.

14. Vazhkudai S, “Enabling the Co-allocation of Grid Data Transfers”, International Workshop
on Grid Computing, Nov 2003, pp 44-51.

15. Vazhkudai S, Tuecke S, Foster I, “Replica Selection in the Globus Data Grid”, IEEE/ACM
International Symposium on Cluster Computing and the Grid, May 2001, pp 106-113

	Introduction
	Co-allocation Model with Globus
	Coallocation Mechanism and the Overall Architecture
	Monitoring and Control Mechanisms

	Related Works
	Dynamic Co-allocation Scheme with Duplicate Assignments (DCDA)
	Experiment and Analysis
	General Analysis
	Finding the Optimal Number of Blocks
	Improvement of the Algorithm

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

