
 

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 66 – 77, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Coordinated Co-allocator Model for Data Grid in  
Multi-sender Environment  

R.S. Bhuvaneswaran, Yoshiaki Katayama, and Naohisa Takahashi 

Department of Computer Science and Engineering, 
Graduate School of Engineering, Nagoya Institute of Technology, Japan 

{bhuvan, katayama, naohisa}@moss.elcom.nitech.ac.jp 

Abstract. We propose a model, which simultaneously allocates a data block re-
quest to the multiple sites, termed as co-allocation, to enable parallel data trans-
fer in a grid environment. The model comprises of co-allocator, monitor and 
control mechanisms. The co-allocation scheme adapts well to the highly incon-
sistent network performances of the sites concerned. The scheme initially ob-
tains the bandwidth parameter from the monitor module to fix the partition size 
and the data transfer tasks are allocated onto the servers in duplication. The 
scheme is found to be tolerant despite the situation that the link to servers under 
consideration is broken or become idle. We used Globus toolkit for our frame-
work and utilized the partial copy feature of GridFTP.  We compared our 
schemes with the existing schemes and the results show notable improvement in 
overall completion time of data transfer.  
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1   Introduction 

Applications designed to execute on grids frequently require the simultaneous co-
allocation of multiple resources in order to meet performance requirements [7][1][5]. 
For instance, several computers and network elements may be required in order to 
achieve real-time re-construction of experimental data, while a large numerical simu-
lation may require simultaneous access to multiple supercomputers. Motivated by 
these concerns, several researchers [1][5][3][8] developed general resource manage-
ment architecture for Grid environments, in which resource co-allocation is an inte-
gral component.  Data store is one of the important resources and this paper deals 
about it.  Several applications considered distributed data stores as resources [8][9].  
Most of these data grid applications are executed simultaneously and access a large 
number of data files in a grid, termed as data grid. The data grid infrastructure is to 
integrate the data storage devices and data management service into the grid envi-
ronment.  Data grid consists of scattered computing and storage resources located 
dispersedly in the global network accessible to the users.  These large sized data sets 
are replicated in more than one site for the better availability to the other nodes in  
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a grid. For instance, in the multi tiered data grid architecture high energy physics 
experiments[9], replicated data stores are considered.  Hence, any popular dataset is 
likely to have replicas located in multiple sites. 

Instead of downloading the entire high volume dataset from a single server, the 
technique of downloading the data set parts from multiple servers in parallel that are 
consolidated at the client end, is of more theoretical and practical interest.  This co-
allocation of data transfer has alleviated most of the bottlenecks in downloading and 
improves the performance compared to the single server selection one.  Many re-
searchers realized this factor, discussed its advantages and proposed variety of tech-
niques in different contexts [14][3][15].  We propose a model, which simultaneously 
allocates a data block request to the multiple sites, termed as co-allocation, to enable 
parallel data transfer in a grid environment. The model comprises of co-allocator, 
monitor and control mechanisms, naturally blended with feedback loop. The co-
allocator scheme adapts well to the highly inconsistent network performances of the 
sites concerned. 

We have experimented our schemes with Globus toolkit as the middleware and 
GridFTP. The results are compared with the existing approaches and the initial results 
outlast the existing ones performance.  The rest of the paper is organized as follows: 
the problem is defined with the co-allocation model in section 2 and the related works 
in the same area are discussed in Section 3. We presented our proposed algorithm in 
Section 4 with assumptions and the experiments. Section 5 describes the analyses and 
Section 6 concludes the paper. 

 

Fig. 1. Integrated Co-allocation Model of Data Grid with replicated multiservers 

2   Co-allocation Model with Globus  

The integrated coallocation model  comprises of  coallocation, monitoring and control 
components, discussed in detail in the subsequent sections. 

S S S S S S S S S 

MM MM MM 
CM CM CM 



68 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi 

 

2.1   Coallocation Mechanism and the Overall Architecture  

The dynamic collacotor module integrated with monitor is shown in Fig.1. The model 
is presented from the client perspective. Each client has a coallocator agent (CM) and 
the periodical execution of monitor agent (MM).We used Globus Toolkit [11] which 
is an open source software toolkit used for building grid. The major component of a 
globus tool kit is GIS (Globus Information Service) which provide necessary infor-
mation about the data stores in a grid. With help of GIS, the co-allocator adopted 
dynamic strategy to transfer data from multiple servers to the intended client. Fig. 2 
depicts a single client point of view. The agent accepts the request from an application 
about the data solicited and its description is passed on to the co-allocator.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The Co-allocation Model of Data Grid with replicated multiservers 

The co-allocator, identifies multiple servers with the help of GIS, initiated the data 
transfer in parallel in parts. After all the parts of a data set are received, they will be 
assembled and give it back to the application through the agent.  The file transfer is 
handled by GridFTP[11] service of a globus tool kit. We exploit the partial file trans-
fer feature of GridFTP in our work and presenting a dynamic co-allocation strategy to 
enable the transfer of replicated data from multiple data servers, to a single client. 

The outline of our strategy is spelled out as follows:  The application (of client) re-
quests the data with its description to co-allocator agent. Based on the information 
provided by GIS, the dataset is replicated and available in the servers scattered in the 
network.  The dataset to be downloaded is divided into blocks.  The co-allocator 
sends multiple requests to the server and the download process taken place in parallel. 
At the beginning, every server is assigned to transfer exactly one block respectively.  
When the requested block is received from a server, then, one of the yet unassigned 
blocks is assigned to the server. Co-allocator repeats this process until all the blocks 
of the dataset are assigned.  Obviously, good performance servers transfer more  
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blocks than the slow servers.  There may be duplication of blocks among the servers 
thereby reducing the waiting time from the slower servers and thus the fault tolerant 
factor can also be achieved.  

2.2   Monitoring and Control Mechanisms 

The allocation and configuration phases of the coallocation process result in the data 
transfer tasks on set of servers. During the data transfer, it is desirable to monitor and 
control the ensemble as a collective unit. The monitoring and control operations that 
we defined have this property. Monitoring operations allow a client program to re-
ceive notification when the resource set changes state. In addition to the obvious 
global state transitions of failure and termination, the complex failure modes encoun-
tered in Grid applications lead to a need to support and respond to individual process 
state transitions as well. Hence, the interface should allow for signaling operation 
(algorithm in Sec. 4) to the monitoring program, which can then act upon this transi-
tion in a manner that is appropriate for the coallocation. Similarly, control operations 
allow for the manipulation of the resource set as a whole. One required control opera-
tion is to check whether the received data is corrupted or not and the other one is 
killing the duplicate processes, which will be discussed in Sec. 4. Before we discuss 
about our strategy in detail, let us present the related works in this aspect. 

3   Related Works 

Few research works have been reported in the literature about parallel data transfer for 
the grid environment. They can be categorized into static and dynamic based on the 
allocation strategy. Once the allocation is made, it can never be changed during exe-
cution is termed as static, whereas, in dynamic allocations the allocations may be 
altered based on bandwidth or other performance criteria. t al [15] used past history of 
data to forecast the current data transfer speed.  The same authors [14] proposed co-
allocation architecture for grid data transfers across multiple connections. They pro-
vided brute-force, history-based and other techniques. Brute force works by dividing 
the file size equally among available flows. It does not address the bandwidth differ-
ences among the various client-server links.  Past history-based co-allocation schemes 
not exhibit consistent performance, since performance (speed) of the each processor 
varies over time [13].  Many algorithms and schemes found in the literature 
[3][7][14][15] make the decision based on the past history, heuristics, performance in 
the first allocation, etc. But, in practical, server and network performance cannot be 
forecasted in full guarantee. Hence, several researchers proposed dynamic strategies 
[14][3][13].   

The dynamic co-allocation mechanisms of [14] were noteworthy. In the conser-
vative load balancing, the dataset requested is divided into disjoint blocks of equal 
size.  Each available server is assigned one block to deliver in parallel.  Once the 
server finishes delivering the block, another block is requested and so on, till the  
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entire file is downloaded.  There exists a shortcoming of the faster servers that must 
wait for the slower server to deliver the final block. Another strategy by the same 
authors is the aggressive load balancing, which progressively increase the amount of 
data requested from faster servers and reduce the amount of data requested from 
slower servers or stop requesting data altogether.  These schemes are calculating 
bandwidth at the time of delivering the block and thereby allocating the next block 
under the motive of utilizing faster servers. But, the idle time of faster servers await-
ing the slowest server to deliver the last block is one of factor, which affects total 
efficiency.  The other technique, Recursive Adjustment co-allocation [3] was de-
signed under the objective of reducing the waiting time.   

In all these techniques, the data set is divided into block size according to each 
server’s bandwidth and the co-allocator assigns the blocks to each server for transfer-
ring.  But, after assigning the block size, there is no guarantee that the bandwidth of 
the server remains constant. In other words, this technique does not cope up with the 
highly dynamic performance behavior of the multiple servers and their networks.  
Moreover, when any one of the servers becomes idle or link is broken, the alternative 
is not suggested in none of the existing methods.  

Our proposed scheme takes care of all these factors. It neither uses predictions nor 
heuristics, instead dynamically co-allocate with duplication assignments and coping up 
nicely with the changing speed performance of the servers.  The idea of duplication in 
allocation has already been used in multiprocessor scheduling in the yester years and 
applied in computational grid environments in recent years [13]. But, there are quite 
number of variations between computational grid and data grid, where the former one 
is constrained by precedence constraints, task partitioning, dependency, interprocess 
communication, resource reservation & allocation, process control, etc.  The next sec-
tion describes our strategy which alleviates the problems mentioned afore. 

4   Dynamic Co-allocation Scheme with Duplicate Assignments 
(DCDA) 

Let D be the dataset, k be the number of blocks of a dataset of fixed block size and m 
be the available number of servers having replicated data content.  First, D is divided 
into k disjoint blocks (Bi) of equal size and each one of the available server is assigned 
to deliver, in parallel, in other words, D = {B1, B2, …, Bk}. The strategy for partitioning 
the dataset into data blocks is analyzed in section 5. When the requested block is re-
ceived from a server, one of the yet unassigned blocks is assigned to the server.  Co-
allocator repeats this process until all the blocks of a dataset are assigned.  Hence, good 
performance servers transfer more blocks than the slow servers, which take more time 
deliver. In this case, the block assigned to that server is again assigned to the faster 
server; In other words, there may be duplication of blocks among the servers and 
thereby reducing the waiting time from the slower servers. Moreover, when the server 
becomes idle or the link to the server is broken, the entire data process is safeguarded  
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from disruption. A data structure of circular queue is maintained here, with k (number 
of blocks) as the size of the queue. The complete scheme is presented here: 
_____________________________________________________________________ 

coalloc(m, k, D) 
1. [Initialization]  

1a) Partition the dataset D into k equal sized blocks Bj, j = [1..k].  
1b) All the blocks are numbered and placed in a circular queue CQ(k).  
1c) CQ pointer p is initialized with 1 so as to point to its first element.   

2.  [Initial allocation of blocks on to the servers]  
for (i = 1 to m) 

2a) fetch block Bp from CQ and assign to server Si 
2b) p = (p + 1) mod k 

3. When a block Bj (any j, 1 ≤ j ≤ k) is delivered by the server Sl (any l, 1 ≤ l ≤ 
m),  

3a) remove block Bj from CQ, k = k -1 
3b) signal the servers to stop processing of  
block Bj 
3c) fetch block Bp from CQ and assign to server Sl 

    If CQ is empty, Go to step 6. 
3d) p = (p + 1) mod k 

4. When a server Sl (1 ≤ l ≤ m) is signalled,  
4a) fetch block Bp from CQ and assign to server Sl 

    If CQ is empty, Go to Step 6. 
4b) p = (p + 1) mod k 

5. [Waiting for delivery or free signal from servers] 
    Go to Step 3 

6. [At the completion of transfer of dataset] 
       When the CQ is empty, kill all the assigned data  

transfer processes in other servers. 

For the purpose of explaining the scheme, initially, let us consider the constant rate 
of transfer and the data set is divided equally into k disjoint blocks. The scheme is 
illustrated as follows: Let us consider the example of data set of size 100 MB repli-
cated in five servers (s1 to s5) and hence the block size is 20 MB. Also assume that 
the speeds of the data transfer of the five servers are 200, 70, 150, 80, 200 Kbps, re-
spectively. Note that, when same blocks are received by co-allocator, it considers the 
one with the earliest timestamp and discards other.  

Note that in this first example, k = m, for simplicity.   Initially, a block numbered 1 
to 5 is assigned to each server, respectively in the same order. Naturally, servers 1 and 
5 delivered data much faster than  others. After the blocks 1 and 5 are received, blocks 
2 and 3 are assigned to servers 1 and 5.  In due course, block 3 is delivered by server 3 
and hence the block request to the server 5 is cancelled and block 4 is assigned to 
server 3 and block 2 is assigned to server 5. Note that the block 2 is duplicated in serv-
ers 1, 2 and 5. Finally, block 4 is assigned duplicated in all the sites. This is illustrated 
in the Gantt chart (Fig. 3a).  The total time taken is 273.0 seconds. The allocation of  
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blocks on to the servers, for every reception of delivery signal in succession is shown 
as  in  Fig. 4a along with the status of the queue. At the end of the execution, the 
blocks delivered by the servers are shown in  Fig. 4b. 
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Fig. 3. Gantt Chart showing Co-allocated Behavior with  a)Constant and b) varying bandwidth 

The allocation of blocks on to the servers, for every reception of delivery signal in 
succession is shown below (Fig. 4a) along with the status of the queue. At the end of 
the execution, the blocks delivered by the servers are shown in  Fig. 4b. 

             
            
B1  B2  B3 B4 B5 CQ(5)                  
B2 B3 B4                 CQ(3)
B2 B4                      CQ(2)                  
B4                    CQ(1)                  

                (a)                                                                                                  (b) 
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B2 B2 B3 B4 B3

B2 B2 B4 B4 B2

B4 B4 B4 B4 B4

B1 B2 B3 B4 B5

S1 S1 S3 S1 S5

 

Fig. 4.  Status of the circular queue during execution and the final allocation 

5   Experiment and Analysis 

5.1   General Analysis  

In order to analyze the scheme, let us consider the next case (case 2) of change in 
network performance. Let the data transfer rate, be represented as a pair (a, b) where, 
a is the rate of transfer in the first 100 seconds and b represents after first 100 sec-
onds. In this way, rate of transfer for five servers are considered as (200,200), 
(70,50),(150,200),(80,0), and (200,150)  respectively. Rate of transfer 0 specifies nil 
or no data transfer, which may be due to the broken link or idle server (here, site 4 
detoriate, after 100 seconds).  In this case, the total time taken will be 229.8. Note that 
the performance can further be improved, when the frequency of change-in-transfer 
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rate is more. Now, consider the same case with more number of blocks. In the same 
example cited above, partition the data set into ten blocks, each of size 10 MB. The 
total completion time is drastically reduced to 204.8 and the blocks delivered by the 
appropriate servers are tabulated as Table 1. 

Table 1. Performance of Dynamic Duplicate Assignment Scheme with k > m 

Sites Rate of transfer 
(interval of 100 secs) 

Blocks 
assigned 

Blocks 
delivered 

1 200, 200 1, 6, 9, 4 1, 6, 9, 4 
2 50, 70 2, 4 - 

3 150, 200 3, 8, 2, 10 3, 8, 2 

4 70, 0 4 --- 

5 200, 150 5, 7, 10, 4 5, 7, 10 

The performances of the three cases mentioned above are shown as bar chart in the 
Fig. 5. Numbers of blocks considered are mentioned along with the case. Thus, from the 
figure, it is apparent that the varying speed performances of the replicated sites are util-
ized which results in minimal completion time of the download process of a data set. 
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Fig. 5. Performances of Static and Dynamic bandwidth for 100M & 500M file sizes 

We used Globus toolkit 2.4 in our experiment, and in order to study the perform-
ance of our scheme in varying network performance, we conducted our experiment by 
changing the network and server loads, apart from normal traffic. In order to evaluate 
our scheme in dynamic environment, we used frequency table of data transfer rate. 
For example, Table 2 shows one such frequency table when the case 2 above is ex-
tended with more frequency of data transfer in the interval of  20 seconds. 



74 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi 

 

We can study the behavior of our algorithm with frequency tables like this. We 
used several file sizes as  2GB, 1.5 GB, 1GB, 500MB, 100MB and 10MB and the 
expected completion time threshold is assumed as 5 minutes, which is required by the 
3 schemes mentioned above. We fixed a constant L=5 in the formula of finding k. 
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Fig. 6. Comparative Performance with k > m 

We assumed that the overhead latency in assigning, delivering and killing of dupli-
cate assignments are negligible since, in practice, while transferring giga, peta or tera 
bytes of sizes, these delays will not affect the overall completion time. We have 
evaluated our scheme with other static and dynamic schemes, separately. When the 
bandwidth is assumed static, it has been compared with brute force[14] and our pro-
posed dynamic scheme is compared with other dynamic strategies of conservative 
load balancing scheme[14] and recursive co-allocation[3].  We analyzed the perform-
ance of each scheme by comparing their completed transfer time, shown in Fig. 6. 
When comparing the static schemes, we assumed constant rate of transfer (as in case 
1), as in Fig. 6a. From this figure it is clear that our scheme has marginal improve-
ment over others. In comparing with other dynamic schemes, Fig. 6b, our scheme 
outperforms others. Furthermore, the other schemes are not fault tolerant, and the 
expected completion time is specified here, for the purpose of comparison. 

The blocks and the servers delivered by them in the order of arrival (left to right) 
for the case 2 are :  

B1 B5 B3 B6 B7 B8 B9 B10 B4 B2 
S1 S5 S3 S1 S7 S3 S1 S3 S1 S3 

Fig. 7. Final Allocation of Blocks on to servers 

One of the factors, which influence the scheme, is data set portioning; that is the 
manner in which the data set is partitioned. The question now is whether to have 
small number of blocks with greater size or more number of blocks with smaller size. 
The later one is better since more number of blocks may brighten the scope of  
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dynamicity; in other words, there is a possibility of assigning more blocks to the faster 
servers.  But, at the same time, more number of blocks may have the overhead of 
communication latency and the block management. Next subsection discusses about 
fixing the block size k. 

5.2   Finding the Optimal Number of Blocks 

One of the factors, which influence the overall performance, is data set portioning; 
that is the manner in which the data set is partitioned. The question now is whether to 
have small number of blocks with greater size or more number of blocks with smaller 
size. The later one is better since more number of blocks may brighten the scope of 
dynamicity; in other words, there is a possibility of assigning more blocks to the faster 
servers.  But, at the same time, more number of blocks may have the overhead of 
communication latency and the block management. The partitioning factor in turn 
based on block size and the number of replicated sites available. Choosing the optimal 
block may yield significant performance with our scheme.  In general, smaller num-
ber of blocks may yield poor completion time and on the other hand, more number of 
blocks results in switchover overheads and thereby showing poor completion time. 

Hence, it is highly important to partition the data set into optimal number of 
blocks.  The specialty of the algorithm is independent of any estimating measures 
under the motive of adapting to the natural dynamicity of network behavior. Without 
compromising this objective let us fix the number of blocks, based on the function of 
bandwidth. Before executing the algorithm, assume that the bandwidths of all the 
servers are known from the client perspective.  These metrics can easily be obtained 
from the monitoring module, which is executing periodically by using the tools such 
as iperf [12].   

Let the ratio of coefficient of variation of set of bandwidths be, Cv
  =  (σ / μ)*100, 

where, σ is the standard deviation and μ is the average of the bandwidths from client 
to all the sites having replicated data. Further, the set of bandwidths in a network of 
multisender scenario aggregates normal distribution [10]. Hence, if set of bandwidth 
values aggregates normal distribution, Cv can be used to compare the amount of 
variance between populations with different means.Based on the basic statistics, it can 
be interpreted that, the lower percentage is closer to the average and the higher per-
centage depicts the farther distance from average.  The number of fixed sized blocks 
can be fixed as,     k =  m *([Cv / [100/L] ] + 1),  (or can be simplified as  k = m ([σ L/ 
μ] + 1)) for any constant L (> 0) which is used to divide the range of distributions. For 
example, for normal distribution curve with μ=140 and σ=2.007638, the entire range 
of distribution is divided in to 4(=L) portions. Note that, for this example,  k = 2m. 

5.3   Improvement of the Algorithm 

Note that the sequentiality is not maintained in this method. In other words, the blocks 
are not received in the partitioning order. For example, the blocks and the servers 
delivered by them in the order of arrival (left to right) for the case 2 as in Fig.7 is not 
block sequential. This may not be the problem with the applications considering in-
sensitive with    sequentiality. On the other hand, for the applications like streaming, 
the sequential delivery of partitioned blocks is matters a lot. Hence the algorithm is 
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modified to ensure the sequential delivery to the client and at the same time exploiting 
the parallel feature enriched in the co-allocated model. 

The data file is divided into blocks and each block is further partitioned into sub-
blocks to exploit the parallelism in downloading. This is illustrated in the Fig. 8. The 
dashed lines indicate the sub-blocks.  

Block 1       Block 2                     Block k  

Fig. 9. Partitioning of a Data file 

For each block, the basic algorithm in section 4 is executed as, coalloc(m, s, Bi), 
where s is the number of  sub-blocks and Bi is the block i of the dataset D, for  any i,  
1 ≤ i ≤ k. After all the sub-blocks of a block are delivered, rearranged the sub-blocks, 
execute for the next block coalloc(m, s, Bi+1)  and this process is repeated for all the 
blocks of a dataset. Hence, the blocks will be received in the sequential order. 

Table 2. Sample Frequency Table of Data Transfer Rate  

 Rate of transfer in K/Second in the interval 20 seconds 
S1 200 200  80 190 210 220 205 180 150 120 180 185 200 
S2 50 50 80 80 90 70 70 80 80 90 70 80 80 
S3 150 160 50 150 170 180 200 210 210 190 200 210 200 
S4 70 80 70 60 40 60 50 0 0 0 0 0 0 
S5 200 210 190 200 200 190 170 160 150 160 150 140 150 

For example, consider the simple example of case 2, discussed in section 5.1. Let 
the number of blocks as 4 and each block has 5 sub-blocks. Thus, the size of sub-
block is 5MB. Only 4 servers S1, S2, S3 & S5 are considered, eliminating server S4.  
For the purpose  of explanation, we  denote  the sub-block with double index, as SBij, 
where j refers to the sub-block number within a block i. Now, with the improved se-
quential algorithm, the sub-blocks will be delivered in the following order, (from left 
to right).  SB11,SB15,SB13,SB12,SB14,SB21,SB25,SB23,SB22,SB24...SB41,SB45,SB43,SB42,SB44 

Note that there is a necessity of rearrangement of sub-blocks, before the next itera-
tion of a block. This scheme ensures the ordered delivery of data file and thus highly 
suitable for the applications like streaming. 

6   Conclusion  

We have designed a dynamic co-allocation model, to enable parallel download of 
replicated data from multiple servers. The coallocation scheme is presented which 
initially fix the number of data blocks based on bandwidth obtained from monitor. 
Our scheme uses neither past history nor heuristics but fully compliant with high 
dynamicity in the network / server performance. The scheme works fine,  even when 
the link to servers is broken (or servers become idle) during the process, whereas, 
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none of the existing algorithms considered this situation.  It is compared with the 
existing schemes and shows significant improvement in overall completion time of 
data transfer. The scheme may yield significant performance when choosing optimal 
block size.  
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