
A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 569 – 580, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards Facilitating Development of SOA Application
with Design Metrics

Wei Zhao, Ying Liu, Jun Zhu, and Hui Su

IBM China Research Lab,
Beijing 100094, P.R. China

{weizhao, aliceliu, junzhu, suhui}@cn.ibm.com

Abstract. Applications based on service-oriented architecture (SOA) are
intended to be built with both high cohesion and low coupling. The loosely
coupled services bring forth the lower costs of development and maintenance as
well as the higher reusability and extensibility. To implement each SOA
application with such intention, designs play an important role for the success
of the whole project. The services and the relationships among them
represented in a design are two critical factors to decide the quality of an SOA
application in terms of modularity. At the mean while, they are valuable
indicators for guiding the following development and maintenance phases to
progress in a cost-effective way. In this paper, we present that measurement of
designs for SOA applications can objectively judge the quality and further
facilitate the development and maintenance of SOA applications through
employing two specific metrics. We also performed an experimental study on
an ongoing SOA project. In this study, we applied these two metrics to the
design of this project to acquire judgments and make estimations. The data in
CVS were retrieved to reflect the genuine project situations. The analysis on
these data shows that adopting the measurement in the early stage of SOA
projects may avoid wasting efforts and delaying schedule as well as acquire a
deep grasp and an effective control on the issues in the following phases.

Keywords: SOA, modular design, service design measurement, metrics.

1 Introduction

Modular architectures solve the problem of complexity of the business by
decomposing complex services into modules so that service providers can design and
deliver them independently [1]. These business service modules are implemented by
the corresponding service modules and components (within the implementation
context, service components are programming entities with finer granularity than
service modules) at IT level under the service-oriented architecture (SOA) and the
supporting programming model (e.g. service component architecture, SCA) as an
SOA application. The descriptions of which service modules and components
construct an SOA application and how they are interrelated to provide the business
services are regarded as the architecture design of an SOA application. Accordingly,
these service modules and components at IT level should hold the similar modular

570 W. Zhao et al.

properties in finer granularity to satisfy the modular design of business services. That
is to say, SOA applications consisting of various service modules and components are
intended to be built by showing both high cohesion and low coupling [2]. The
architecture of an SOA application with higher cohesion as well as lower coupling
indicates a better design in terms of modularity. A well-modularized design of an
SOA application brings forth potential benefits in multiple aspects, such as
acceleration of development, reduction of maintenance cost, as well as the enhanced
flexibility and reusability.

The quality of the modular designs for SOA applications often heavily relies on the
experiences and expertise of specific designers. In addition, the best practices and
design patterns as well as frameworks, which are summarized from accumulated
experiences, can be a useful guidance for a better design. However, these facilities are
still kinds of informal aids to modular design and the achieved effectiveness from
them still heavily depends on the experiences and expertise of individual designers to
some extent.

There are no any practical reports in industry to employ measurement technologies
to evaluate whether a certain design of an SOA application is well modularized than
another or to guide the activities in the following development and maintenance
phases through design metrics. Actually, to employ measurement to judge the
modularity of software designs is not new. Many efforts have been dedicated to judge
and reorganize the structural designs of software systems according to the
modularized degrees (e.g. [3] and [4]). However, with the intention to acquire the
loosely coupled SOA applications, service-oriented architecture does provide a
framework to model the constructive entities (i.e. interfaces, service components, and
service data objects) and their interrelationships more explicitly at a higher abstract
level, but it does not mean that any application based on SOA holds the loose
coupling and tight cohesion inherently.

In this paper, we report an initial exploration of measurement on SOA designs. We
present that measurement of designs for SOA applications can quantitatively evaluate
the quality of modular designs through a comparative way and also can facilitate the
development and maintenance of applications.

We performed an experimental study on an ongoing SOA project. In this study, we
employed two metrics on the design of this project to acquire judgments and make
estimations. The corresponding data in CVS were retrieved to reflect the genuine
project situations. The analysis on these data shows that adopting the design metrics
in the early stage of SOA projects may avoid wasting efforts and delaying the
schedule as well as acquire an early grasp and effective control on the issues in the
following phases.

The remainder of this paper is organized as follows. Section 2 introduces the goals
we want to achieve through measuring designs for SOA applications and the
corresponding design metrics we used. An experimental study on an ongoing SOA
application is presented in section 3 to validate the effectiveness of the metrics and
imply their indicating and aiding roles. Section 4 summarizes this paper.

 Towards Facilitating Development of SOA Application with Design Metrics 571

2 Goals and Design Metrics

2.1 Goals

A measurement program identifies and defines metrics to support an organization’s
business goals [5]. These metrics provide insights into the critical quality and
management issues that the organization concerns for its success. During the
establishment of a measurement program, the organization selects metrics traceable to
its business goals. This “goal-driven” approach assures that measurement activities
stay focused on the organization’s objectives.

Because the well modularized designs of SOA applications bring multiple benefits
such as reducing the development and maintenance cost and increasing the reusability
as mentioned above, one of our goals is to quantify the modular designs of SOA
applications in terms of the estimated relative development cost and maintenance cost
in an early stage (i.e. right after acquiring the designs of applications). The design
metrics in this paper refer to these quantitatively estimated indicators for the costs of
following development and maintenance activities based on the design information.
Although we aim to acquire the quantitative insights on how well a modular design is,
it should be noted that we examine such merit through a comparative way. That is to
say, we cannot claim that a specific SOA application is well designed enough in terms
of modularity even with the quantitative metrics. However, given the two candidate
designs for a certain application, we can quantitatively judge that one is better (or
worse) than the other in terms of modularity and make a choice for lower
development and maintenance costs.

In addition to the quantitative evaluation of the whole design, the comparison
based on the design metrics can also be carried out within a specific SOA application
design to pinpoint the modular characteristics of each service module and component.
For a determined design of an SOA application, further scrutinizing each service
module and component based on the design metrics provides the valuable insights to
the following development and maintenance phases. This is the other goal we expect
to pursue through the design metrics.

2.2 Metrics Definition

We adopt a technique called Design Structure Matrix (DSM) [6] to analyze the
designs of SOA applications. A DSM is a tool that highlights the inherent structure of
a design by examining the dependencies that exist between its component elements
using a symmetric matrix.

The component elements in the design of an SOA application are service
components. As service modules are composed of service components, the metrics of a
service module can be acquired through calculating the service components belonging
to it. As a result, the service modules’ corresponding metrics will not be omitted
although they are not explicitly represented in the design structure matrix. To construct
the design structure matrix based on the service components of an SOA application’s
design, we follow Parnas’s “information hiding” criterion [7] to mark the dependencies
among the service components which are further used to measure and judge the
modularity of an SOA application’s design. In more detail, for the design of an SOA

572 W. Zhao et al.

application, each service component may operate (i.e. create, update, read and delete)
some data objects. Due to the dependent operations on the same data objects, the
service components are interrelated among others. These dependencies are the key
factors to identify how well the investigated design is modularized according to the
“information hiding” principle from the perspective of the operated data.

Based on the constructed design structure matrix presented above, we employ two
DSM-based metrics originally proposed by MacCormack et. al. to estimate the
phenomena with which the design structure of software are associated [3].
MacCormack et. al.’s work focuses on the predication through an overall design to
compare the modularity of two candidate designs. Since we aim at not only providing
a quantitative cognition of a current modular design but also facilitating the
subsequent development and maintenance activities, we further employ these two
metrics to scrutinize the designs in the finer granularity. The definitions of these two
metrics, change cost and coordination cost, are introduced as follows:

Change Cost
Change cost is a metric which determines the impact of a change to each service
component, in terms of the percentage of other service components that are
potentially affected. It is an indicator of the efforts needed for the maintenance
activities of an SOA project. Obviously, the higher the change cost, the worse the
design is modularized. In MacCormack et. al.’s work, this metric is computed only for
the overall design of software. We also scrutinize this metric for each service
component of a specific design. Actually, change cost of the overall design is an
average of all service components’ change costs.

 A B C D E F

A 0 1 1 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

Fig. 1. An example design structure matrix

To acquire the change cost of a service component or an SOA application (change
cost of a service module consisting of service components can be acquired through
the same way as the SOA application), a matrix is constructed firstly to represent the
structure of the design of an SOA application as described above. If an SOA
application is composed of n service components, the size of the matrix is n×n. Each
cell of this matrix indicates the modular dependency between the service components
in the corresponding column and row based on the “information hiding” principle
from the perspective of the operated data as mentioned above.

The computation of change cost is illustrated by the following example.
Considering the relationships among service components displayed in the design
structure matrix in Fig. 1, it can be seen that service component A depends on service

 Towards Facilitating Development of SOA Application with Design Metrics 573

component B and C. Therefore any change to service component B may have a direct
impact on service component A. Similarly, service component B and C depend on
service component D and service component E respectively. Consequently, any
change to service component D may have a direct impact on service component B,
and may have an indirect impact on service component A, with a “path length” of 2.

Obviously, the technique of matrix multiplication can be used to identify the
impacted scope of any given service component for any given path length.
Specifically, by raising the matrix to successive powers of n, the results show the
direct and indirect dependencies that exist for successive path lengths. By summing
these matrices together, the matrix V (which is called as the visibility matrix) can be
derived, showing the dependencies that exist for all possible path lengths up to n. It
should be noted that this calculating process includes the matrix for n=0 (i.e., a path
length of zero) when calculating the visibility matrix, implying that a change to a
service component will always affect itself. Fig. 2 illustrates the calculation of the
visibility matrix for the above example.

M0 A B C D E F M1 A B C D E F M2 A B C D E F
A 1 0 0 0 0 0 A 0 1 1 0 0 0 A 0 0 0 1 1 0
B 0 1 0 0 0 0 B 0 0 0 1 0 0 B 0 0 0 0 0 0
C 0 0 1 0 0 0 C 0 0 0 0 1 0 C 0 0 0 0 0 1
D 0 0 0 1 0 0 D 0 0 0 0 0 0 D 0 0 0 0 0 0
E 0 0 0 0 1 0 E 0 0 0 0 0 1 E 0 0 0 0 0 0
F 0 0 0 0 0 1 F 0 0 0 0 0 0 F 0 0 0 0 0 0

M3 A B C D E F M4 A B C D E F V A B C D E F
A 0 0 0 0 0 1 A 0 0 0 0 0 0 A 1 1 1 1 1 1
B 0 0 0 0 0 0 B 0 0 0 0 0 0 B 0 1 0 1 0 0
C 0 0 0 0 0 0 C 0 0 0 0 0 0 C 0 0 1 0 1 1
D 0 0 0 0 0 0 D 0 0 0 0 0 0 D 0 0 0 1 0 0
E 0 0 0 0 0 0 E 0 0 0 0 0 0 E 0 0 0 0 1 1
F 0 0 0 0 0 0 F 0 0 0 0 0 0 F 0 0 0 0 0 1

Fig. 2. Successive powers of the design structure matrix and visibility matrix

From the visibility matrix, the change cost metric can be acquired to give the
insight for each service component and the whole SOA application. Firstly, for each
service component, the change cost is obtained by summing along the column of the
visibility matrix, and dividing the result by the total number of service components. A
service component with higher change cost possibly affects more service components
while changing it. In the above example, service component F has a change cost of
4/6 (or 66.67%) which means a change on it may affect other 4 service components in
the system.

The average change cost of all service components need to be computed for the
whole design. The resulting metric is the change cost for the overall design of a given
SOA application. Intuitively, this metric reflects the percentage of service components
affected on average when a change is made to a certain service component in the

574 W. Zhao et al.

application. In the example above, we can calculate the change cost of the overall
design as [1/6+2/6+2/6+3/6+3/6+4/6] divided by 6 service components = 41.67%.

Coordination Cost
Coordination cost is a metric to evaluate how well the proposed design of an SOA
application in terms of the coordinating efforts needed in the procedure of developing
it in the future. It is an indicator of the efforts needed for the development activities of
an SOA project. The higher the coordination cost, the worse the design is
modularized. Different from the change cost, the coordination cost is not only
determined by the dependencies between the constructing service components but
also affected by how these service components are organized into different service
modules. The calculation of coordination cost metric operates by allocating a cost to
each dependency between service components firstly. Specifically, for an SOA
application, when considering a dependency between service components A and B,
the cost of the dependency takes one of following two forms:

CoordCost (A→B|in same module) = (A→B)cost_dep×size of modulecost _ cs (1)

CoordCost (A→B|not in same module) = (A→B)cost_dep×sum size of two modulescost _ cs (2)

Where (A→B) represents the strength of the dependency (that is, the number of
correlations between service component A and B) and cost_dep and cost_cs are user-
defined parameters that reflect the relative weights given to the strength of
dependencies versus the size of the modules.

For each service component, the corresponding coordination cost is determined
through summing up all CoordCost between it and all its dependent service
components. The coordination cost of the overall design of an SOA application can be
acquired from summarizing the coordination costs of all the service components in
the design.

3 Experimental Study

3.1 Experimental Method

Rifkin and Cox performed case studies on software measurement programs of
different corporations and reported that the most successful programs they observed
supported experimentation and innovation [8]. Following the similar point of view,
we performed a pilot experimental study to validate effects of adopted metrics and
initiate the measurement program on the designs of SOA applications for some
particular project goals.

The subject system in our study is an SOA project as a proof of concept for early
convincing the customers. The specific requirements on this project include
implementing the basic functionalities as customer needed within a short time as well
as low cost. Although the scope of this project is not big enough as a real SOA
project, it does represent the key factors and characteristics of an SOA application. It
should be noted that we did the experimental study not through applying the design
metrics we introduced above to guide the development and maintenance activities of
this project. We adopted a way using the project data without affected by the design
metrics to provide the evidences whether the design metrics make the right estimates

 Towards Facilitating Development of SOA Application with Design Metrics 575

and whether the estimates can provide the effective advices for the following stages to
help achieve the goals of this project.

3.2 Data Analysis and Observations

The subject SOA project is composed of five service modules each of which are further
implemented by service components. Due to the confidential consideration, we use
ModuleA, ModuleB, ModuleC, ModuleD and ModuleE designating these five service
modules. An overall implementation situation of the subject system is listed in Table 1.
As we can see, ModuleA includes 6 service components which provide services (each
service component implements one service) to be consumed by end users directly or by
other services. Each service component is implemented by an entrance class as well as
other related classes. All these 6 services have 11 operations to perform the specific
tasks provided by these services. Methods of entrance class correspond to each service’s
operations. ModuleA is implemented by 13 Java files including 6 entrance classes for 6
services respectively and 7 related classes (We do not further include those supporting
classes since they are not the interferential factors for the analysis).

Table 1. Modules, services, operations and Java files of subject system

Modules Services Operations Java files
ModuleA 6 11 13
ModuleB 2 4 10
ModuleC 3 10 3
ModuleD 6 13 33
ModuleE 18 26 47

Fig. 3. Design structure matrix of subject system

576 W. Zhao et al.

According to the descriptions of the construction of the design structure matrix in
section 2, we acquired the DSM of the subject system which can be seen in Fig. 3.
The dependencies among the service components of the subject system were picked
out and filled in the matrix through the analysis on the dependent operations on data

Table 2. Change cost and coordination cost of service components and the overall system

Service components Change cost (%) Coordination cost
ServiceA1 60 229
ServiceA2 9 18
ServiceA3 29 123
ServiceA4 9 18
ServiceA5 9 18
ServiceA6 20 44
ServiceB1 31 101
ServiceB2 23 99
ServiceC1 9 12
ServiceC2 3 12
ServiceC3 26 181
ServiceD1 49 197
ServiceD2 26 84
ServiceD3 37 152
ServiceD4 46 196
ServiceD5 29 99
ServiceD6 26 68
ServiceE1 6 90
ServiceE2 6 42
ServiceE3 6 42
ServiceE4 6 42
ServiceE5 54 358
ServiceE6 11 108
ServiceE7 46 315
ServiceE8 6 406
ServiceE9 37 279

ServiceE10 20 126
ServiceE11 17 108
ServiceE12 17 108
ServiceE13 20 126
ServiceE14 6 36
ServiceE15 46 334
ServiceE16 6 36
ServiceE17 14 90
ServiceE18 14 108

Overall 24 4405

 Towards Facilitating Development of SOA Application with Design Metrics 577

objects based on the “information hiding” principle. It can be seen from this figure
that ServiceA1 of ModuleA depends on ServiceA2, A3, A4, A5 and A6 of ModuleA,
ServiceB1, B2 of ModuleB, ServiceC3 of ModuleC, ServiceD1, D3, D4 and D5 of
ModuleD, and ServiceE5, E7, E8, E9 and E15 of ModuleE. According to the
definitions of two metrics presented in section 2.2, change costs and coordination
costs of the overall SOA application and each service component in this application
were acquired correspondingly in Table 2. The change cost of the overall SOA
application is 24% and the coordination cost is 4405. We assigned the value “1” to the
cost_dep and cost_cs just for the simplicity of the calculation. Although we do not
have another candidate design of the subject system as a counterpart to validate the
metrics for the overall design, the following analysis based on each service
component does validate the metrics and present the potential spaces where the
measurement of design could help for the development and maintenance.

As introduced above, ModuleA includes 6 service components which implement 6
services. Fig. 4 shows the development data of each service component in ModuleA
acquired from the project’s CVS database, where Axis-X indicates the working days
passed while the project progresses and Axis-Y indicates the working efforts
consumed until a particular working day. We simply use the lines of code (LOC) to
denote the working efforts since the subject system of our experimental study was at
its initial stage and the complexity of components does not affect much on working
efforts. As a result, in Fig. 4, each service component in ModuleA has a corresponding
pillar when its implementation source code was checked in the CVS database. The
height of a pillar means how many lines of code have been added, deleted or modified
since the beginning rather than the lines of code of current source files checked in for
each service component.

Fig. 4. Development data of ModuleA acquired from CVS

Combining the spent working days and working efforts we can acquire the
cognition of the development cost and the schedule of each service component in
ModuleA. As we can see that the implementations of all service components in
ModuleA began at the same day. Except ServiceA1 and ServiceA3, the other service

578 W. Zhao et al.

Table 3. Sizes of service components in ModuleA

Services in ModuleA Size (LOC)
ServiceA1 213
ServiceA2 54
ServiceA3 134
ServiceA4 110
ServiceA5 157
ServiceA6 54

components in ModuleA finished the initial versions in 9 days. The working efforts on
ServiceA4 at the 15th day as well as ServiceA2 and ServiceA6 at the 17th day were
due to fixing the bugs discovered through the integration testing. ServiceA1 and
ServiceA3 spent 6 more days than others to accomplish their initial versions at the
15th day. Although the size of ServiceA1 (the lines of code of the finally implemented
service component) is larger than other service components as shown in Table 3, the
differentiation at such order of magnitude is not a critical factor for the additional six
working days. Moreover, the size of ServiceA3 is even less than ServiceA5, but it still
costs more. Actually, such situation was caused by the average assignment of
resources for each service component since the different working efforts were not
carefully taken into considered for the schedule. However, as we can see from the
acquired metrics of service components in ModuleA in Table 2, due to ServiceA1 and
ServiceA3 hold the dependencies to the service components in all the other modules
(which can be seen in Fig. 3), the implementation of ServiceA1 and ServiceA3 has to
coordinate with the implementation of other service components and therefore the
higher development cost for ServiceA1 and ServiceA3 (229, 123 respectively) can be
estimated through the design information. Consequently, through the above analysis,
we firstly validate the effectiveness of the coordination cost metric. It does present a
correct estimation of development cost in early stage. Such early indication can help
service designers discover the problems of current service modular design in time. In
addition, in case that the dependencies between services can not be easily resolved
due to some constraints, we also state that the comparative analysis of coordination
costs of the service components can help acquire a reasonable and cost-effective
resource assignment and working schedule. If the coordination cost was taken into
consideration right after the design was acquired, ServiceA1 and ServiceA3 would be
assigned more resources than other service components to avoid wasting the efforts
due to simply average assignment as well as to shorten the working days.

Continuing to investigate the development data of ModuleD in Fig. 5, the
effectiveness and merits of change cost metric can be further discovered. After
finishing the first version of ModuleD (at the 17th working day), there was a change
request to ServiceD4 from customers. However, the individual developers did not
know that ServiceD1 and ServiceD3 depend on ServiceD4 and the change was
performed to ServiceD4 only at first. The modifications on ServiceD1 and D3 were
only accomplished two days later triggered by the testing. From the acquired change
cost metric in Table 2, potential change impacts are estimated for each service
component. Although current project data does not provide the proof to validate this
metric through comparing the costs due to changes on two different service

 Towards Facilitating Development of SOA Application with Design Metrics 579

Fig. 5. Development data of ModuleD acquired from CVS

components, change cost metric does provide a quantitative and conservative estimate
for potentially affected service components according to the case of a change request
to ServiceD1. It is obvious that such metric is an effective aid for the maintenance
activities. Besides, we can further acquire the specific service components potentially
affected through checking the service design structure and therefore provide the
effective guidance for specific change requests to service components.

4 Summary

In this paper, we present that measurement of the designs for SOA applications can
evaluate the quality of modularity and facilitate the development and maintenance of
SOA applications with high efficiency. We performed an experimental study on an
ongoing SOA project. In this study, we employed two metrics (change cost and
coordination cost) on the design of this project to acquire judgments and make
estimations. The project data in CVS was retrieved to reflect the genuine situations of
its implementation, integration and testing. The analysis on these data shows that
adopting the design metrics in early stage of SOA projects may avoid wasting efforts
and delaying the schedule as well as acquire a deep grasp and effective control on the
issues in following phases.

References

1. Bohmann, T. and Loser, K.U.: Towards a service agility assessment - Modeling the
composition and coupling of modular business services. In Proceedings of the 7th IEEE
International Conference on E-Commerce Technology Workshops, 2005: 140-148.

2. Brocke, J. and Lindner, M.A.: Service portfolio measurement: a framework for evaluating
the financial consequences of out-tasking decisions. In Proceedings of 2nd International
Conference on Service-Oriented Computing, November 15-19, 2004: 203-211.

3. MacCormack, A., Rusnak, J. and Baldwin, C.: Exploring the structure of complex software
designs: an empirical study of open source and proprietary code. Harvard Business School
Working Paper, Number 05-016, 2004.

580 W. Zhao et al.

4. Schwanke, Robert W.: An intelligent tool for re-engineering software modularity. In
Proceedings of the 13th International Conference on Software Engineering. Washington,
DC: IEEE Computer Society Press, May 1991: 83-92.

5. Park, R.E., Goethert, W.B., and Florac, W.A.: Goal-driven software measurement - a
guidebook. (CMU/SEI-96-HB-002, ADA313946). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996. http://www.sei.cmu.edu/publications
/documents/96.reports/96.hb.002.html

6. Steward, Donald V.: The design structure system: a method for managing the design of
complex systems. IEEE Transactions on Engineering Management, vol. 28, pp. 71-74,
1981.

7. Parnas, D.: On the criteria to be used in decomposing system into modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

8. Rifkin, S. and Cox, C.: Measurement in practice. Technical report of CMU SEI, TR16.91,
July, 1991.

	Introduction
	Goals and Design Metrics
	Goals
	Metrics Definition

	Experimental Study
	Experimental Method
	Data Analysis and Observations

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

