
Light-Weight Semantic Service Annotations
Through Tagging

Harald Meyer and Mathias Weske

Hasso-Plattner-Institute for IT-Systems-Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany
{harald.meyer, mathias.weske}@hpi.uni-potsdam.de

Abstract. Discovering and composing services is a core functionality of
a service-oriented software system. Semantic web services promise to sup-
port and (partially) automate these tasks. But creating semantic service
specifications is a difficult, time-consuming, and error prone task which
is typically performed by service engineers. In this paper, we present a
community-based approach to the creation of semantic service specifica-
tions. Inspired by concepts from emergent semantics and folksonomies,
we introduce semantic service specifications with restricted expressive-
ness. Instead of capturing service functionality through preconditions and
effects, services are tagged with categories. An example illustrates the
pragmatic nature of our approach in comparison to existing approaches.

1 Introduction

The goal of service orientation is the alignment of the IT infrastructure to the
business goals of a company [1,2,3]. Service-oriented architecture (SOA) defines
the elements and relations of such an IT infrastructure. Two of the core tasks in
a SOA are discovering services and composing services into new services to fulfill
complex tasks [4,5]. In the presence of hundreds or thousands of services, both
tasks become challenging. Semantic web services [6] are a promising approach
to find services based on functionality. Service functionality is described through
preconditions and effects. Creating them and writing queries to find services
according to preconditions and effects is a complex task.

In this paper, we present a novel approach towards service semantics for ser-
vice discovery and composition. Instead of assuming fully automated discovery
and composition, we want to assist users with these tasks. For this, preconditions
and effects are not necessary. Service users (process designers, etc.) tag services
with keywords. These tags enable them to find services. While a service engineer
can provide an initial categorization for a service, users can refine categoriza-
tions incrementally. This helps capturing real world aspects of service usage and
bridging the gap between service description and real world service usage.

The approach presented is similar to service categories in OWL-S [7] and
WSDL-S [8]. But service categories are static. During development, the service
engineer assigns suitable service categories to the new service. A strict separa-
tion between service development and service usage prevents changes by people

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 465–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 H. Meyer and M. Weske

other than the service engineer. Systems like NAICS (North American Indus-
try Classification System), UNSPSC (United Nations Standard Products and
Services Code), or RosettaNet have defined processes for changes to their tax-
onomies. Adding new concepts may take up to 5 years (for NAICS). Categories
are statically assigned: it rarely makes sense to change a service categorization
in UNSPSC from 4410260214 (Retail of Printers) to 4410310314 (Retail of Ton-
ers). Instead one would remove the existing service and publish a new one.

Our work is inspired by the recent advent of emergent semantics and folk-
sonomies. Both approaches do not depend on a-priori semantical commitments.
Instead, semantic commitment is achieved incrementally. In the next section we
go into more details of emergent semantics and present a formalization for tags.
This formalization serves as the foundation for our application of emergent se-
mantics to service discovery in Section 3. The paper concludes with a summary
and an outlook on future work.

2 Emergent Semantics

Technologies for semantic annotation originate in the annotation of documents.
Recently, these technologies are also used to specify service functionality [6]. When
annotatingdocuments, annotations are created either bydedicatedprofessionals or
the authors of the documents [9,10]. Professionally created annotations are of high-
quality, but their creation is costly and rarely scales for large amounts ofdocuments.
Author-created annotations overcome this problem. But in both approaches the
actual users are detached from the creation of the annotations. Annotations might
therefore not match the actual usage of the documents. If the usage of document
changes or it is used in unintended ways, the annotations cannot reflect this.

Emergent semantics [11] replaces a-priori agreements by incremental, local
agreements. The recent rise in folksonomies can be seen as an application of
emergent semantics. The term folksonomy is a composition of folk and taxonomy.
In a folksonomy annotations for documents are created by the users of the system
through tagging. The most prominent examples for systems based on folksonomy
are del.icio.us (http://del.icio.us/) and flickr (http://flickr.com/) book-
mark and photo management systems. When adding a bookmark in del.icio.us
you can add multiple tags or categories to the bookmark. Later, tags can be
used to find the bookmark again. Another feature of folksonomies is their com-
munity orientation. Bookmarks and tags are shared among all users. Hence, a
user cannot only find all the bookmarks he tagged with a given tag, but he can
also find all the bookmarks tagged with the same tag by all other users.

The freedom resulting from the usage of tags leads to problems illustrated by
Golder and Huberman [12]. It is possible that a tag has multiple homonymous or
polysemous meanings. Synonyms can appear as well. Such synonyms can be espe-
cially complicated in a tagging-based system as user using one tag, will not find
documents tagged with the other tag. User do not need to adhere to a naming
convention. This is problematic as it is unclear whether a tag should be in sin-
gular (e.g. book) or in plural (e.g. books). How tags consisting of more than one

http://del.icio.us/
http://flickr.com/

Light-Weight Semantic Service Annotations Through Tagging 467

words are composed is also undefined: write them as one word, separate them with
underscore, or two tags. Similar problems occur on the level of message-level het-
erogeneities when Web services exchange data [13,14] and in multidatabase sys-
tems [15,16]. Michlmayer [17] identifies spamming as an additional problem. The
assumption why these problems do not interfere with the actual usability of exist-
ing systems, is that most of them do not matter if only enough users participate.
For example, the problems with synonyms is that two different tags for the same
meaning lead to separated document landscapes. But if enough users participate,
chances are high that most documents get tagged with both tags.

As a last point in this section we describe a formalization for emergent seman-
tics introduced by Mika [18]. This formalization will later serve us as the basis for
our formalization of emergent semantics for service annotation. A folksonomy:

Definition 1. A folksonomy F ⊆ A × T × O is hypergraph G(F)=(V,E) with

– V = A ∪ T ∪ O as the vertices. The disjoint sets A = {a1, ..., ak}, T =
{t1, ..., tm}, O = {o1, ..., on} are the set of actors, the set of tags, and the set
of objects.

– E = {{a, t, o}|(a, t, o) ∈ F} as the hyperedges connecting an actor a who
tagged an object o with the tag t.

3 Emergent Semantics for Service Annotation

To find services it is important to annotate them with a description of their
functionality. Existing author-created or professionally created semantic anno-
tations, are costly to produce and have the risk of not matching the actual usage
of the service. Hence, we will apply the concept of tagging in this section as a
light-weight approach towards semantic service annotations. As a first step we
introduce service landscapes:

Definition 2. A service is a discrete business functionality. It is described by a
service description. A service landscape is the set of available services described
by service descriptions S = {s1, s2, ..., sn}.

In the upcoming semantic web service standards OWL-S [7] and WSMO [19]
services are described through preconditions and effects. WSMO also introduces
assumptions and postconditions. It distinguishes between information space and
world space. SAWSDL [20] explicitly excludes ”expression of Web services con-
straints and capabilities, including precondition and effect”. The precondition
defines if a service is invokable in the current state. A formal specification of
the functional description of services can be found in [21]. If the precondition
is satisfiable by the current state, the service is invokable. The effect describes
the changes to the current state that result from invoking the service. With our
approach preconditions and effects are no longer necessary. Instead tagging is
applied to semantic services:

Definition 3. A tagging-based semantic service system with a service landscape
S is a folksonomy where the objects are the service landscape: F ⊆ A × T × S.

468 H. Meyer and M. Weske

This means service descriptions are tagged to express service functionality. The
actors in such an environment are for example process designers, service land-
scape managers, and service engineers.

3.1 Example

This example will from now on serve as an illustration for our findings. The
example is about leave requests by employees. Two different kinds of leave re-
quests can be distinguished: vacation and sabbatical. Figure 1 shows the service
landscape S = {s1, s2, s3, s4, s5, s6}. On the left side of each service the input pa-
rameters and on the right side the output parameters are denoted. The services
s1, s2, and s3 deal with vacation requests. After requesting a vacation (s1), the
request’s validity (e.g. whether enough vacation days are left) is checked (s2),
and finally the vacation is approved or rejected (s3).

Services s4 and s5 are the respective services for sabbatical requests. In con-
trast to vacation requests, no automated validity check is performed. Instead
the supervisor needs to manually check the eligibility of the employee to go on
a sabbatical. Finally, service s6 is used to update the information about sab-
baticals and vacations of employees in the human resources system. The human
resources system then publishes the information to the project planning tools so
that no work is planned for employees, who are on leave.

s1 s2 s3

s5s4

EID

Duration

EID

Duration

Vacation
Request

Sabbatical
Request

Vacation
Request

Sabbatical
Request

Vacation
Request

Vacation
Request

Sabbatical
Decision

Vacation
Decision

s6

Vacation
Decision /
Sabbatical
Decision

Fig. 1. Employee leave request: service landscape

Pete and Mary are process designers. Pete is the first one to model a process.
He wants to model a process for vacation request approval. As no tags exist, he
needs to browse the service landscape to find the required services s1, s2, s3, and
s6. To help him and other persons in finding these services in the future, he tags
them with the new tag vacation. This leads to the following folksonomy: F =
{(Pete, vacation, s1), (Pete, vacation, s2), (Pete, vacation, s3), (Pete, vacation,
s6)}. Mary works in another department that currently not tracks spent vaca-
tion days in the human resources system. Instead, the head of department uses a
spreadsheet for this purpose. Hence, she does not need to use service s2. As she
sees Pete’s vacation tag, she can easily figure out all useful services. The system
does not store relations between services, so Mary has to model the process man-
ually without the usage of s2. While she found Pete’s tags useful, she thinks fine
granular tags are better. Hence, she introduces vacation request to tag s1, vaca-
tion approval to tag s3, and update leave info to tag s6. She also models a new

Light-Weight Semantic Service Annotations Through Tagging 469

process for sabbatical requests using services s4, s5, and s6. The folksonomy now is
(Figure 2): F = {(Pete, vacation, s1), (Pete, vacation, s2), (Pete, vacation, s3),
(Pete, vacation, s6), (Mary, vacation request, s1), (Mary, vacation approval,
s3), (Mary, update leave info, s6), (Mary, sabbatical request, s4), (Mary,
sabbatical approval, s5).

Pete

vacation

Mary

A T S

s1

s2

s3

s4

s5

s6

vacation_
request

vacation_
approval

update_
leave_info

sabbatical_
request

sabbatical_
approval

Fig. 2. Service Folksonomy

4 Conclusion

In this paper we presented a novel approach to service semantics. Instead of
modeling service semantics up-front by service engineers, they are incrementally
refined by the users. Existing Folksonomy implementations like del.icio.us are
positive examples how the problems of community-based tagging can be solved.
Systems like del.icio.us overcome these problems through their large user base.
In comparison to several thousand users using such web-based system, we have
to deal with a significantly smaller user base. In an intra-enterprise scenario
maybe only a few dozen users use the system. While the user group is smaller,
it is also of higher quality. Users have a direct gain in their daily work and have
responsibility for their doings.

We already implemented a preliminary prototype for the displayed function-
ality. The next step is to integrate this functionality into an existing BPM suite
and UDDI repository. As a part of this work, experiments will be conducted to
prove the applicability and usefulness in real world process modeling.

References

1. Burbeck, S.: The tao of e-business services. IBM developerWorks (2000)
2. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction.

Communications of the ACM 46 (2003) 24–28

470 H. Meyer and M. Weske

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer
(2004)

4. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The next step in
web services. Communications of the ACM 46 (2003) 29–34

5. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing 8 (2004) 51–59

6. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent
Systems 16 (2001) 46–53

7. http://www.daml.org/services/owl-s/1.0/: OWL-S 1.0 Release. (2003)
8. http://www.w3.org/Submission/WSDL-S/: WSDL-S. (2005)
9. Rowley, J., Farrow, J.: Organizing Knowledge: Introduction to Access to Informa-

tion. Gower Publishing Limited (2000)
10. Mathes, A.: Folksonomies - cooperative classification and communication through

shared metadata. (2004)
11. Aberer, K., et al.: Emergent Semantics Principles and Issues. In: 9th International

Conference on Database Systems for Advanced Applications. (2004) 25–38
12. Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Jour-

nal of Information Science (2005)
13. Sheth, A.P.: Changing focus on interoperability in information systems: From

system, syntax, structure to semantics. In: Interoperating Geographic Information
Systems, Kluwer Academic Publishers (1998) 5–30

14. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J.A., Lathem, J.: Semantic inter-
operability of web services – challenges abd experiences. In: Proceedings of the 4th
IEEE Intl. Conference on Web Services. (2006) (to appear).

15. Sheth, A.P., Kashyap, V.: So far (schematically) yet so near (semantically). In:
Conference on Semantics of Interoperable Database Systems. (1992) 283–312

16. Kim, W., Choi, I., Gala, S.K., Scheevel, M.: On resolving schematic heterogeneity
in multidatabase systems. Distributed and Parallel Databases 1 (1993) 251–279

17. Michlmayr, E.: A Case Study on Emergent Semantics in Communities. In: Pro-
ceedings of the Workshop on Social Network Analysis, International Semantic Web
Comference (ISWC). (2005)

18. Mika, P.: Ontologies are us: A unified model of social networks and semantics.
In: Proceedings of the 4th International Semantic Web Conference (ISWC2005).
Number 3729 in LNCS, Springer (2005) 522–536

19. http://wsmo.org: Web Service Modeling Ontology. (2005)
20. http://www.w3.org/2002/ws/sawsdl/: SAWSDL Working Group. (2006)
21. Keller, U., Lausen, H., Stollberg, M.: On the semantics of functional descriptions

of web services. In: Proceedings of the 3rd European Semantic Web Conference
(ESWC2006) (to appear). (2006)

http://www.daml.org/services/owl-s/1.0/
http://www.w3.org/Submission/WSDL-S/
http://wsmo.org
http://www.w3.org/2002/ws/sawsdl/

	Introduction
	Emergent Semantics
	Emergent Semantics for Service Annotation
	Example

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

