BPEL-Unit: JUnit for BPEL Processes

Zhong Jie Li and Wei Sun

IBM China Research Lab, Beijing 100094, China

{lizhongj, weisun}@cn.ibm.com

Abstract. Thanks to unit test frameworks such as JUnit, unit testing
has become a common practice in object-oriented software development.
However, its application in business process programming is far from
prevalent. Business process unit testing treats an individual process as
the unit under test, and tests its internal logic thoroughly by isolating
it from the partner processes. This types of testing cannot be done by
current web service testing technologies that are black-box based. This
paper proposes an approach to unit testing of Business Process Execution
Language for Web services (BPEL4WS, or WS-BPEL as the new name),
and introduces a tool prototype named BPEL-Unit, which extends JU-
nit. The key idea of this approach is to transform process interaction via
web service invocations to class collaboration via method calls, and then
apply object-oriented test frameworks. BPEL-Unit provides the following
advantages: allow developers simulate partner processes easily, simplify
test case writing, speed test case execution, and enable automatic re-
gression testing. With BPEL-Unit, BPEL process unit testing can be
performed in a standardized, unified and efficient way.

1 Introduction

Over the last decade, businesses and governments have been giving increasing
attention to the description, automation, and management of business processes
using IT technologies. This interest grows out of the need to streamline business
operations, consolidate organizations, and save costs, reflecting the fact that the
process is the basic unit of business value within an organization.

The Business Process Execution Language for Web Services [I] (BPEL4WS,
or WS-BPEL as the new name, abbr. BPEL) is an example of business process
programming language for web service composition. Other languages include:
BPMN, WfXML, XPDL, XLANG, WSFL [2], etc. They all describe a business
process by composing web services. Generally speaking, a business process is
defined in terms of its interactions with partner processes. A partner process may
provide services to the process, require services from the process, or participate
in a two-way interaction with the process.

Mission-critical business solutions need comprehensive testing to ensure that
it performs correctly and reliably in production. However, in current industrial
practice, business process testing focuses on system and user acceptance testing,
whereas unit testing [3] has not gained much attention. This is strange, given the
fact that unit testing has been prevalent in object-oriented software development

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 415-F2Z6] 2006.
© Springer-Verlag Berlin Heidelberg 2006

416 7.J. Li and W. Sun

[4]. We expect that business process, e.g. BPEL process, unit testing will draw
more attention along with the maturation and adoption of SOA and BPEL
specification. BPEL unit testing treats an individual BPEL process as the unit
under test, and tests its internal logic thoroughly.

Current web service testing methods and tools like [5][6] (open source) and
[7[8] (commercial) are not applicable to business process unit testing, as they are
black-box based, and only deal with simple request-response interaction patterns
between a web service and its client. [9] presents a BPEL unit test framework
that uses a proprietary approach, specially, a self-made test specification format
in xml and the associated test execution.

We show in this paper how to use, adapt and extend current object-oriented
unit test frameworks (specially, JUnit [I0] and MockObjects [I1]) to support
BPEL process unit testing. The key idea is to transform process interaction via
web service invocations to class collaboration via method calls, and then apply
object-oriented test framework and method. The proposed method has been
implemented in a tool prototype named BPEL-Unit, an extension of JUnit.

This paper is organized as follows. Section] introduces some preliminary
knowledge, including JUnit, MockObjects and a BPEL process example. Section
describes BPEL unit test method in an abstract view. Section [presents the
BPEL-Unit tool implementation in detail. Section [l concludes the paper with
future work prediction.

2 Preliminaries

2.1 JUnit

JUnit is an open source Java testing framework used to write and run repeat-
able tests. Major JUnit features include: assertions for testing expected results,
test fixtures for sharing common test data, test suites for easily organizing and
running tests, graphical and textual test runners. For a quick tour, please go to
http://junit.sourceforge.net/doc/faq/faq.htm.

2.2 MockObjects

MockObjects is a generic unit testing framework that supports the test-first
development process. It is used to simulate the collaborator class or interface
dynamically in order to test a class in isolation from its real collaborators. A
mock implementation of an interface or class mimics the external behavior of a
true implementation. It also observes how other objects interact with its methods
and compares actual behavior with preset expectations. Any discrepancy will be
reported by the mock implementation. EasyMock [12] is a specific MockObjects
implementation that is adopted in BPEL-Unit.

2.3 Example BPEL Process

Through this paper, we’ll use the purchase process in the BPEL specification as
the running example. It is shown graphically in Figure [l

BPEL-Unit: JUnit for BPEL Processes 417

PurchaseProcess

N
sendPurchaseOrder
{shippingpmvider} —Cinvo;cer’mvider} schedulingProvider

\ N
requeslProguc‘lionScheduling

‘ assign ‘ initiatePriceCalculation

L=
=)

sendShippingSchedule
sendSchedule sendInvoice

reply

Fig. 1. Purchase process example

The purchase process runs as follows. On receiving a purchase order from
a customer (sendPurchaseOrder), the process communicates with three part-
ner processes - ShippingProvider, InvoiceProvider and SchedulingProvider - to
carry out the work. It initiates three tasks concurrently: requesting for shipment
(requestShipping), calculating the price for the order (initiatePriceCalculation),
and scheduling the production and shipment for the order (requestProduction-
Scheduling). While some of the processing can proceed concurrently, there are
control and data dependencies between the three tasks. In particular, the ship-
ping price is required to finalize the price calculation (as is indicated by the link
between requestShipping and sendShippingPrice), and the shipping date is re-
quired for the complete fulfillment schedule (as is indicated by the link between
sendSchedule and sendShippingSchedule). When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the customer (reply).

[——<process>
Customer
[
T
i
|
! | sendPurchaseOrder()

ShippingCallback
e ——— sendSchedule() InvoiceCallback
‘ f\pn;e.ss ’ sendInvoice()
hip p--------2 o———
P & q ' [<process>>
| Invoice
—

ComputePriceService

| initiatePriceCalculation()
i
i

SchedulingService sendShippingPrice()

requestProductionScheduling()
sendShippingSchedule()

<<process™ — O
Schedule Provided Requested
_'7 interface interface

Fig. 2. Service contract between the purchase process and its partners

418 7.J. Li and W. Sun

Interfaces that are provided by the purchase process and its partner processes
are defined in WSDL documents as a set of portType definitions. They are visu-
alized in Figure [2I The purchase process provides three interfaces: Purchasing,
ShippingCallback and InvoiceCallback, each with one operation. Each partner
process - Ship, Invoice and Schedule - provides one interface: ShippingService,
ComputePriceService and SchedulingService, respectively.

3 BPEL Unit Test Method

A BPEL process could interact with several partner processes (partners, for
short), which in turn interact with other partners, resulting in a network of
processes. Figure Bh only shows a process and its direct neighbors. The Process
Under Test is abbreviated as PUT, and its Partner Process is abbreviated as
PP. A partner may be a simple stateless web service, or a complex process that
choreographs several web services / processes and exposes one or several web
service interfaces to the caller process. Treating a partner as a generic process
makes the method applicable for general cases.

c) a variation of the basic
test method

b) basic test method

Legend PUT Process Under Test —— Service/method invocation

PP Partner Process Activity synchronization
TP Test Process

Fig. 3. Process composition model and test methods

A conversational relationship between two processes is defined in a partner
link. Each partner link defines up to two role names and lists the web service
interfaces that each role provides to the other in this conversation. Thus we use
arrow lines to connect two processes, indicating the service invocation from the
consumer to the provider. Note that the arrow lines do not specify the type of
the web service operations, which may either be 1-way or 2-way. For the present,
let’s ignore the circled numbers beside the arrow lines.

Figure[3b shows a basic unit test method for the process composition model in
Figure 3 A Test Process (TPi, i=1,2,3) is used to simulate the behavior of each

BPEL-Unit: JUnit for BPEL Processes 419

Partner Process (PPi). A variation of this method is used in [3] and implemented
in a tool prototype named B2B, where test processes are specified in BPEL and
executed in a BPEL engine.

Comparatively, this paper uses a different variation of the basic test method
as shown in Figure Bk, wherein test processes are simulated by mock objects in
Java code and executed in any Java runtime. In this method, each test process
(TP1i) only describes one direction of interactions - service invocation from the
PUT to its partners. This fact can be seen from the direction of the arrow lines
between the PUT and TPi. The other direction of invocation - service invocation
from the partner processes to the PUT - is delegated to a Service Proxy. Thus
the invocations of PUT services that are originally made in partner processes are
now made in the Service Proxy to execute in testing. This decision is made based
on the fact that a mock object can only specify how its methods are invoked,
but not how it calls other methods. There is a special test process named TPO,
which describes the expected service invocations into the PUT and its expected
responses. The requests and responses are used by the service proxy to actually
invoke PUT services and verify the actual responses. In addition, the dashed lines
between test processes indicate activity synchronization between test processes.
This will be explained in more detail later.

4 BPEL-Unit Implementation

The implementation of BPEL-Unit is centered around the following idea: trans-
form process interaction using web service invocations to class collaboration
using method calls, then apply object-oriented testing techniques.

Web service definitions are described in WSDL files and optionally XSD files.
The structure of a typical WSDL file is shown in Figure @ which contains the
following elements: type, message, port Type, binding, and service. The portType
groups a set of operations that can be invoked by a service requester, type
and message definitions provide the data model of the operation. Binding gives
protocol and data format specification for a particular portType, and service
declares the addressing information associated with defined bindings.

Figure [also shows the implementation details: how to map web service ele-
ments to Java equivalents, how to simulate partner interfaces with mock objects,
how to use partner stubs to connect the PUT to the simulated partners, and how
to write the test logic inside mock objects based on the PUT behavior. Each is
described in a separate section below.

4.1 Web Service to Java Interface Mapping

For the purpose of writing Java tests, firstly the WSDL elements should be
mapped to Java language equivalents. Specially, each web service interface de-
finition of the involved processes is mapped to a Java interface definition. As
Figure [4 shows, this consists of two parts: a web service interface (denoted as
A) maps to a Java interface (denoted as C); and web service types and messages

420 7.J. Li and W. Sun

WSDL Document Java equivalents
definition
type 1 " PUT
L pped 1o type classes <«—— @
message { provide test logic
Abstract service | | porlType® N interface ’ﬂmoc ed as| mock object @
interface definition > X
operation method @
. _|mapped to .
input input) ot &
output output %’% get
fault exception %, invoke
(‘”’é
How to interact <«
with the service — [binding binding (local)
Location of service (replace | service 77_[%" partner stub @
the service port for port point to
testing

test specific binding and
service

Fig. 4. Method details

map to Java data type classes. Java data type classes will be used to define test
data. A Java interface will be used to generate a mock object (or simply called
mock, denoted as E) of the interface, and a partner stub of the interface (de-
noted as F, introduced later). Each WSDL operation (denoted as B) will have a
correspondent Java method (denoted as D).

The following code snippet illustrates the mapping between the ShippingSer-
vice portType of the purchase process example and a Java interface.

<portType name="ShippingService">
<operation name="requestShipping">
<input message="wsdl:ShippingRequest"/>
<output message="wsdl:ShippingInfo"/>
<fault message="wsdl:ShippingFault" name="fault"/>
</operation>
</portType>
-=>
public interface ShippingService {
public ShippingInfo requestShipping(ShippingRequest
shippingRequest) throws java.lang.Exception;

4.2 Mock Objects

With a mapped Java interface (denoted as C in Figure[]), a mock implementation
(a mock control and a mock object, denoted as E in Figure []) can be created to
simulate that interface, as exemplified in Section

Each portType (defining a web service interface) of the PUT and its partner
processes has a mock implementation. Therefore, a process may correspond to
several mock objects, one for each portType. For the purchase process example,
there will be six mock objects: three for the purchase order process (Purchasing,
InvoiceCallback and ShippingCallback), one for each partner process - Ship-
pingService, ComputePriceService and SchedulingService.

BPEL-Unit: JUnit for BPEL Processes 421

A mock object for a process sets the expected invocations on the process
as well as the return values, and verifies at runtime that the expected invoca-
tions occur with the correct parameters. For example, say that mockShip is the
mock object of ShippingService, we use mockShip.requestShipping(ship Request)
to set the expectation of the invocation of requestShipping with a parameter
shipRequest, and use setReturn Value(“ShippingService”, shipInfo) to set the re-
turn value shipInfo of the invocation. Therefore, a mock object simulates the
services provided by a non-existent partner process. The mock objects for part-
ner processes will be called by the PUT at run time by relay of partner stubs.

However, mock objects for the PUT are handled differently. We use mock
objects for the PUT not to simulate its behavior, but to tell the service proxy
to make an invocation to the PUT and then check if the return value of the
invocation is correct. Let’s see the following example. mockPurchasing is the
mock object of the PUT Purchasing interface. The first statement tells the service
proxy that it should invoke the sendPurchaseOrder operation with the specified
parameters, and the second statement tells the service proxy to check that the
PUT should return invoice as the response.

mockPurchasing.sendPurchaseOrder(po, customerInfo);
setReturnValue ("Purchasing", invoice);

The service proxy does so on behalf of the relevant partner process which
makes the invocation originally, because the MockObjects framework does not
allow specifying outgoing call behavior in a mock object. The service proxy also
invokes the mock object when it invokes the PUT. This is a unified way of ex-
pressing test logic, allowing all the interactions to be verified by the MockObjects
built-in verification function, no matter it is from the PUT to a partner process
or reverse. Nevertheless, this may bring in some confusion on the semantics of
mock objects. A simple cure for this problem is to treat the PUT as nonexistent
process too in writing test cases.

4.3 Partner Stubs

In a process execution, how to interact with a service, and the address of that
service are described in the WSDL binding and service elements. The original
WSDL binding and service definitions of a partner process may be varied: SOAP,
JMS, EJB, etc. For unit testing, all the partner processes will be simulated as
local services implemented in Java. So we should define test-specific WSDL Java
binding and service endpoints.

In testing, each service endpoint of a partner process should be a Java class. As
we know, mock objects are dynamically created Java artifacts and cannot serve
this purpose. So we decide to define a separate stub Java class for each web ser-
vice interface and name it “partner stub”. A partner stub class (denoted as F in
Figure M) implements an interface (C). The implementation of each method (D)
in a stub class is simple: it dynamically gets the mock object (E) that simulates

422 7.J. Li and W. Sun

the service and calls the mock object’s correspondent method (D), collects the
return value (if not void) and returns that value. In this way, the partner stub
is essentially a simple wrapper of the real service provider implementation in
mock (E), and doesn’t contain any test logic. The exact behavior of the mock
objects can be defined dynamically in test cases. The partner stubs are stateless
and independent of test behaviors, and can be automatically generated. For the
purchase process example, the ShippingServiceStub is shown below.

public class ShippingServiceStub implements ShippingService{
public ShippingInfo requestShipping(ShippingRequest
shippingRequest) {
ShippingService service = MockUtil.getMockObject ("ShippingService");
ShippingInfo result = service.requestShipping(shippingRequest);
return result; 7}

The address of the partner stubs will be referenced in the correspondent
WSDL service endpoint definition so that the invocation of a web service op-
eration (B) will go to the correct method (D) of a correct partner stub (F).
In this way, a partner stub and its associated mock object collectively imple-
ment a simulated partner process. For the purchase process example and the
ShippingServiceStub, the service endpoint information is shown below.

<service name="ShippingServiceJavaService">

<port binding="ShippingServiceJavaBinding" name="ShippingServiceJavaPort">
<java:address className="ShippingServiceStub"/>

</port>

</service>

The java:address specifies that ShippingServiceStub is the service endpoint.
Note that this binding and service information should replace the original one
in deploying the process under test to test it. Therefore, these artifacts should
be taken as part of the test resource and thus managed as such in the project.

This is different from current use of stub processes in that stub processes
contain the real test logic, and are connected to the process under test directly,
so that we have to write and maintain a lot of stub processes, redeploy and restart
the processes for each test scenario. Through a separation of responsibilities onto
a partner stub and a mock object, only one partner stub is needed, and also
dynamic changing of test logic without redeploying and restarting is supported.

4.4 Test Logic Specification

Test logic specifies the behavior of the process under test and the simulated
partner processes. As aforementioned, test logic will be written in the mock
objects that simulate the partner processes.

The first question is where to get the behavior of each partner process. The
answer is the process under test. It may have many execution scenarios that

BPEL-Unit: JUnit for BPEL Processes 423

are resulted from different decision-making in the control flow. Each of these
execution scenarios consists of a set of activities, which are either internal or
external. The external activities are those related to service invocation, includ-
ing invoke, receive, reply and so on. These external activities form a service
invocation sequence, which can be used as a test scenario. From a test scenario,
interactions with different partners can be separated and used to specify the
partner behaviors in mock objects.

Then in a test case, in each mock object of a partner, we record a sequence
of calls that the correspondent partner process is expected to receive from the
PUT, and prescribe the return values. If the PUT makes a wrong invocation at
runtime (including method call with wrong parameters, wrong call numbers or
sequencing), the verification mechanism of MockObjects will report the error.

Concurrency and synchronization. In a BPEL process, the service compo-
sition follows certain sequencing, which is expressed using programming con-
trol structures. BPEL defines the following control structures among others:
sequence, flow, while and switch. A flow construct creates a set of concurrent ac-
tivities directly nested within it. It further enables expression of synchronization
dependencies between activities that are nested within it using link.

Therefore, in test processes that simulate real processes, we need similar con-
trol structures to express the original activity ordering constraints. Note that
complex test logic is not encouraged in unit testing, whereas fast-written, simple,
correct, and easy to read/maintain test logic is favored. Applying this principle
in BPEL unit testing, a piece of test logic should simply describes an execu-
tion path of the PUT; complex behaviors like branching should be avoided as
far as possible. However, concurrency and synchronization is a common kind of
ordering constraints put on an execution path, so it’s unavoidable and must be
supported in test behavior description. In Figure Bk, activity synchronization is
denoted by dashed lines. It only shows synchronization dependencies between
test processes. Actually, the synchronization can also occur inside a test process.
Figure Bl shows both cases. Figure Bh specifies: opl, op3, op6 are concurrent ac-
tivities; opl must be invoked before op4; opb must be invoked after op2 and op4.
Figure Bb specifies: opl must be invoked before op5; otherwise is a violation.

With such synchronization capabilities provided, the service interaction or-
dering indicated in Figure [Bh is supported in the test logic as Figure Bk shows.
For example, the logic “firstly a PUT service is invoked, then a TP3 service is
invoked” could be supported.

Test logic support in MockObjects implementations. Usually a MockOb-
jects implementation provides some flexible behavior description and verification
mechanism. For example, EasyMock has three types of MockControl. The nor-
mal one will not check the order of expected method calls. Another strict one will
check the order of expected method calls. For these two types, an unexpected
method call on the mock object will lead to an AssertionFailedError. The re-
maining nice one is a more loose version of the normal one, it will not check the

424 7.J. Li and W. Sun

L3 % [

a) inner process synchronization b) inter process synchronization

Fig. 5. Activity synchronization

order of expected method calls, and an unexpected method call will return an
empty value (0, null, false).

These preset and special MockControl types could be used to express two
basic types of control logic / method call ordering: sequence and random (un-
ordered). Take the purchase process as an example. If we want to ensure that
several service invocations from the PUT to another process occur in the right
sequential order as specified, the strict MockControl could be used to create the
mock implementation of that process. Besides sequence and random, there is
generic control logic such as alternative (switch), timer operations (start, can-
cel, timeout), and concurrency that probably haven’t been supported by existing
MockObjects implementations. Ideally, the testing of business processes requires
the MockObjects implementation to support generic control logic. Practically,
the MockObjects implementation should support the concurrency and synchro-
nization logic described previously.

For this purpose, extension to current MockObjects implementation may be
necessary. For example, a possible extension is to allow testers specify a succes-
sive relation on several methods, say, by an API syncMethods(m1, m2, ...) that
specifies the occurrence order of the methods ml, m2, etc. This extension has
been implemented on EasyMock in BPEL-Unit.

Then for inner-process concurrency and synchronization shown in Figure Bh,
the logic could be expressed as follows: use normal MockControl to create the
mock implementation so that the method calls will be unordered, then the or-
dering constraints are expressed by the syncMethods() API like this: syncMeth-
ods(opl, op2, opd); syncMethods(op3, op4, opd); syncMethods(opl, op4).

For inter-process concurrency and synchronization shown in Figure Bb, the
logic could be expressed as follows: use strict MockControl to create the mock
implementations for TP1 and TP2 so that the method calls on each mock object
will be checked for their correct ordering, e.g. opl before op2 before op3, then
use syncMethods(opl, op5) to designate the synchronization between TP1 and
TP2. Note that different mock objects are independently invoked at run time so
their behaviors are pure concurrent unless explicit synchronization is specified.

BPEL-Unit: JUnit for BPEL Processes 425

4.5 BUTestCase

BUTestCase extends JUnit TestCase class. It is implemented to add business
process testing specific APIs and override JUnit APIs to facilitate business
process unit test case design. For example, the tearDown() method is overrode
to include MockObjects verification logic. For each test method of a test case,
tearDown() will be automatically called after the test method is run, thus saving
the tester’s effort to write verification logic in each test method.

The code below shows a test case for the example purchase process, named
PurchaseTest, which extends BUTestCase. In the test case, firstly variables for
mock objects and test data objects are declared. Then the variables are initial-
ized in the setUp() method. There can be many test methods defined in a test
case, one for each test scenario. The example test method testNormal() checks
a complete execution of the purchase process: from the submission of a pur-
chase order to the reply of an invoice. In this method, firstly we set the process
input and predict the output. Note that mockPurchasing is a mock object of
the PUT. The sendPurchaseOrder() operation tells the service proxy to start
the process, and the invoice specified in setReturnValue() is used to verify the
response of the PUT. Then mockShip, mockPrice and mockSchedule object will
receive method calls in parallel. If the method has a return, the return value
is set using the setReturnValue() method. Finally, the possible synchronization
relationship between activities are expressed using the syncMethods() APIL.

public class PurchaseTest extends BUTestCase {

// variables for mock objects and data objects

public void setUp() {
// get mock objects & read Process Data Objects

}

public void testNormal() throws Exception {
// Process Input/Output
mockPurchasing.sendPurchaseOrder (po, customerInfo);
setReturnValue ("Purchasing", invoice);
// Interaction with Shipping Provider
mockShip.requestShipping(shipRequest);
setReturnValue ("ShippingService", shipInfo);
mockShipCallBack.sendSchedule (scheduleInfo) ;
//Interaction with Invoice Provider
mockPrice.initiatePriceCalculation(po, customerInfo);
mockPrice.sendShippingPrice(shipInfo);
mockInvoiceCallBack.sendInvoice(invoice);
// Interaction with Scheduling Provider
mockSchedule.requestProductionScheduling(po, customerInfo);
mockSchedule. sendShippingSchedule (scheduleInfo) ;

// Synchronization
MethodSynchronizer.syncMethods (new String[] {
"ShippingService.requestShipping(ShippingRequest)",
"ShippingCallback.sendSchedule (ScheduleInfo)" });
.

426 7.J. Li and W. Sun

5 Conclusion and Future Works

With the increasing attention to business processes in the e-business age, busi-
ness process testing is becoming more and more important. Lack of unit test
tools has resulted in inefficient practices in developing, testing and debugging
of automated business processes, e.g. BPEL processes. To address this problem,
this paper proposed a BPEL test framework - BPEL-Unit that extends JUnit.
BPEL-Unit has several advantages in supporting BPEL process unit testing.

1. Does not rely on the availability of partner processes. BPEL-Unit provides
an easy way to simulate partner processes using mock objects. Thus a single
process can be easily tested in isolation.

2. Simplify test case writing. Most developers are already familiar with the JU-
nit test framework. BPEL-Unit allows process interaction to be programmed
in object-oriented flavor. With this tool, developers will no longer be con-
cerned with XML document manipulation, interface, binding and service
details in testing.

3. Speed test execution. BPEL-Unit allows “one-deploy, multiple tests”. The
process under test is deployed only once to run all the test cases associated
with this process. This is compared to those methods using stub processes
to simulate the partner processes, in which any modification of the stub
processes mandates the process redeployment and server restart.

4. Enable automatic regression testing. Process testing is automated by encap-
sulating all the required test logic and data in formal JUnit test cases. Each
time the process under test is modified, its test cases can be re-run (after
possible modification) to detect potential function break due to modification.

Currently, we are working on automatic unit test case generation for BPEL
processes, which includes searching various execution scenarios, and giving proper
test data to enable the execution scenario. The generated BPEL tests can be con-
cretized into BUTestCase format and run in BPEL-Unit.

References

—_

http://www.ibm.com/developerworks/library /ws-bpel

Process Markup Languages. http://www.ebpml.org/status.htm

Z. J. Li, W. Sun, Z. B. Jiang, and X. Zhang. Bpeldws unit testing: framework and
implementation. ICWS2005, volume 1, pages 103 C 110, 11-15 July 2005.

Test Driven Development. http://www.testdriven.com

WS-Unit. The Web Service Testing Tool. https://wsunit.dev.java.net/
ANTEater. Ant based functional testing. http://aft.sourceforge.net/
WebServiceTester. http://www.optimyz.com

SOAPtest. http://www.parasoft.com/soaptest

Philip Mayer and Daniel Lubke. Towards a BPEL unit testing framework. TAV-
WEB’06, Pages: 33-42.

10. JUnit. http://www.junit.org

11. MockObjects. http://www.mockobjects.com

12. EasyMock Projects.

http://www.easymock.org/EasyMockl 2 Javal 3 Documentation.html

w

	Introduction
	Preliminaries
	JUnit
	MockObjects
	Example BPEL Process

	BPEL Unit Test Method
	BPEL-Unit Implementation
	Web Service to Java Interface Mapping
	Mock Objects
	Partner Stubs
	Test Logic Specification
	BUTestCase

	Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

