
Licensing Services: Formal Analysis and
Implementation

G.R. Gangadharan and Vincenzo D’Andrea

Department of Information and Communication Technology,
University of Trento,

Via Sommarive, 14, Trento, 38050 Italy
gr@dit.unitn.it, dandrea@dit.unitn.it

Abstract. The distribution of services spanning across organizational
boundaries raises problems related to intellectual value that are less ex-
plored in service oriented research. Being a way to manage the rights
between service consumers and service providers, licenses are critical to
be considered in services. As the nature of services differs significantly
from traditional software and components, services prevent the direct
adoption of software and component licenses. We propose a formalisa-
tion of licensing clauses specific to services for unambiguous definition
of a license. We extend Open Digital Rights Language to implement the
clauses of service licensing, making a service license compatible with all
the existing service standards.

1 Introduction

Service oriented computing (SOC) is an emerging distributed systems paradigm
referring to systems structured as networks of loosely coupled, communicating
services [1]. While software behaves as a stand-alone application, services intend
making network-accessible operations available anywhere and anytime.

In contrast to traditional software components [2], the functionality of a ser-
vice resides and runs at the provider’s host in a distributed way beyond organi-
zational boundaries, and consumers are not required to download the service
executable for consuming the service. While components encapsulate coarse
grained functionalities, the granularity of services could range from finer to
coarse. Further, services allow the applications to be constructed on-the-fly and
to be reused everywhere.

As service oriented applications are rapidly penetrating the society, there
arises a need for governing their access and distribution. Although services are
software fragments, the distinguishing characteristics of services preclude them
to be licensed under traditional software / component licenses. While we do not
intend to discuss the similarities and differences between services and compo-
nents in general, we explicate the significant differences of services with respect
to the components from the perspective of licensing. In case of components,
the provider of a component is responsible for functionality of the component.
Components are downloaded and executed in the environment of clients, within

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 365–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

366 G.R. Gangadharan and V. D’Andrea

an organization. Services could span across different participating organizations.
Services run through provider and the responsibility for operations of a service is
more complex than that of components. We have explored in [3] the dimensions
of services inducing a new paradigm of licensing. Nevertheless, being services
accessed and consumed in a number of ways, there is the need to carefully define
a set of licenses suitable for services.

Researches focusmainly on the expression of functional aswell as non-functional
properties of services. There exists an obvious paucity of licensing clauses for a
service and embedding a license within a service. In order to fulfill this gap, we
study the strategy of implementing licenses within a service. The salient features
of our approach are:

– Formal representation of licensing clauses to unambiguously describe a ser-
vice license.

– Extension of Open Digital Rights Language (ODRL) to encompass the ser-
vice licensing clauses.

As licenses form the basis for distribution of services, in this paper, we
elucidate a formal analysis of service licenses together with an implementation
scenario of expressing the licensing terms in services. We describe by presenting
various examples how a service interface and realization could be exploited by
other services in Section 2. Section 3 compares various languages illustrating
functional and non-functional properties of services as complementary to WSDL
and elucidates their lack of expressiveness in describing the clauses of licensing.
The formal description of licenses are presented in Section 4. We implement
some of the service licensing clauses by extending ODRL in Section 5. Finally,
we illustrate licensing of a service by extended ODRL in Section 6.

2 Exploring Service Licensing Clauses

A service is represented by an interface part defining the functionality visible to
the external world and an implementation part realizing the interface [4]. In this
section, we will analyze some of the prominent combinations of reproduction
(or not) of the service interface, relationship between services (compositional
properties), and derivation (or not) from the source code.

As service interfaces (WSDL) together with bindings are publicly available, sev-
eral services could be created with the same interface. These services can vary in
their performance and Quality of Service (QoS) issues. However, copying and us-
ing the interface with or without modifications are twined with intellectual values.

By the following example, we show how a service could simply be reused by
an other service copying the interface directly: Let SA be a service providing a
spell checking operation for words, say, Spell(word). Consider SA provides this
service by wrapping a proprietary word processor (PWP) spell checker API. As
the WSDL interface of this service is publicly available, any service, say SB could
copy this interface and the interface of SA could be used by SB with or without
modifications. Thus, SB is an another independent service, wrapping an other

Licensing Services: Formal Analysis and Implementation 367

proprietary word processor (QWP) spell checker API, created by replicating the
WSDL of the SA. Albeit SA and SB are performing spell checking, SA and SB

are two different services, executed separately.
The prominent scenarios on reproduction of interface with modifications are

as follows:

1. The interface of a service could be modified by changing the name of some
operations such as for translation i.e. the expression of a service in a language
other than that of the original version.

2. The interface of a service could be modified by some changes in the service
parameters such as for data translation or by some pre-processing and/or
post-processing of the service.

Following the styles of [5] for representing figures, services are denoted by the
shadowed rectangular boxes. An operation of a service interface is represented
as an Unified Modeling Language package marked by a stereotype << desc >>.
The wrapped application for the service is shown on the left side of the service.

The reproduction by interface translation is illustrated in Figure 1. The in-
terface of SA is translated by SB to provide a spell checking operation in Italian
language, say Ortografia(parole). In this case, SB translates the interface of
SA and results in the Italian version of SA as an independent service.

We refer to composition as the federation of a service with other remote
services. In other words, the operations of a composite service relies on the
availability of services being composed [6].

Let SB be a service providing a spell checking operation Spell(sentence) for
sentences, that could compose internally operations for spelling of words with
a parser. SB could be designed in such a way (See Figure 2) that Spell(word)
of SB directly invokes the operation of SA, executing on the host of SA. In the
absence of SA, SB fails to perform.

A service could deny or allow to use and/or modify the service realization. A
service could allow to use its realization as an executable in an other service. For
example, a service SA could allow its realization to be used as an executable by
an other service SB. However, SA could restrict SB not to modify the operations
of SA.

Fig. 1. Reproduction Fig. 2. Composition of Services

368 G.R. Gangadharan and V. D’Andrea

A service could allow to modify its realization by other service. The modifica-
tion of a service realization, termed as derivation of a service, is an inspiration
by Free1 and Open Source2 Software (FOSS) movement.

Consider a service SA providing Spell(word) operation for spell checking of a
word. A new service SB, performing spell checking for a sentence, could be
derived from SA. The derived service SB contains an operation for parsing
Parser() in addition to the operation of SA. In this case (See Figure 3), SB

significantly modifies the operation of SA and thus SB is a derivative service
of SA.

Fig. 3. Normal Derivation Fig. 4. Replica Derivation

Making replica of a service uses the service realization and service interface.
If the WSDL interface as well as realization of a service allows copying, replica
services (See Figure 4) are created. Consider SB as an independent service cre-
ated by replicating/mirroring the source code of realization and WSDL of SA.
Though SA and SB are performing the same operations, SA and SB are two
different services, executed separately. Theoretically, there will be no differences
(may include network delays!) in performances of both the services. Thus, de-
rived service is a manifestation of ‘Free Culture’.

Beyond these aspects, a service may expect certain moral rights [7] to be
satisfied. A service, SA, could expect the service, say SB, being composed /
derived / reproducing the interface to reflect the same terms and condi-
tions of the SA (Similar to ‘Sharealike’ of CreativeCommons [8] or Copyleft
of GNU3).

A service may expect the attribution for its use by the other service in
any of the forms. As attribution is considered a basic requirement, a service
should give the proper credit for the service that it uses. In case of composition,
the composite service could be required to give attribution for every level of
composition as in a BSD license4.

Further, a service could allow/deny the other service depending on the usage
either for non-commercial purposes or for commercial purposes.
1 http://www.fsf.org/
2 http://www.opensource.org/
3 http://www.gnu.org/copyleft/
4 http://www.openbsd.org/policy.html

Licensing Services: Formal Analysis and Implementation 369

3 Licensing Clauses in Service Descriptions Languages

WSDL is the standard way to describe what a service does. Researches focusing
on languages to enhance and to complete the description provided by WSDL are
continually in progress. These languages being complementary to WSDL address
functional/non-functional properties and business/management information of
services with varying levels of details.

Web Service Level Agreement (WSLA):The WSLA framework [9] describes
the complete life cycle of a Service Level Agreement (SLA) including SLA es-
tablishment by negotiation (signing of a SLA by signatory parties for a given
service offering), SLA deployment (checking the validity of the SLA and dis-
tributing it), Service level measurement and reporting (configuring the run-time
system to meet a set of SLAs and comparing measured SLA parameters against
the thresholds defined in the SLA), Management actions (determining SLA
violations and corrective management actions to be taken), and SLA termina-
tion (specifying the conditions for termination). The WSLA framework enables
to specify and monitor a wide variety of SLAs for web services. Based on XML,
the WSLA language defines a type system for the various SLA artifacts. A SLA
in WSLA is comprised of parties (identifying all the contractual parties), service
description (specifying the characteristics of service and the observable para-
meters like service availability, throughput, or response time), and obligations
(defining various guarantees and constraints to be imposed on SLA parame-
ters).

The WSLA language is a general purpose way to express performance char-
acteristics of web services.WSLA encompasses the agreed performance
characteristics and the way to evaluate and measure them. However, WSLA
does not focus on the rights to be associated with service provider and service
consumer.

SLA Notation generator (SLAng): SLAng [10] is a XML based language,
for describing Service Level Specifications in the domain of distributed systems
and e-business. This language has been modeled by Object Constraints Lan-
guage (OCL) and Unified Modeling Language (UML) in order to define SLA
precisely. SLAng formally defines SLA vocabulary in terms of the behaviour of
the services and clients involved in service usage, with reference to a model of
service usage. A SLA described in SLAng comprises information on parties in-
volved (end point description of contractors), contractual statements (defining
the agreement), and QoS description with the associated metrics (service level
specifications). Further, SLAng supports the inter-service composition of SLAs
as a description of relationship between possible service behaviors.

Although SLAng has a broader scope beyond web services enabling different
types of SLAs, SLAng is silent about the intellectual rights associated with
services.

Web Service Offering Language (WSOL):WSOL [11], a language for speci-
fying constraints, management information, and service offering, provides

370 G.R. Gangadharan and V. D’Andrea

different service levels defined by several classes of services. The same WSDL
description with differing constraints (functional, non-functional, and access
right) and managerial statements (price, penalty, and responsibility) is referred
as ‘classes of service’ of a web service in WSOL. Consequently, different classes of
services could vary in prices and payment models. WSOL offers several reusabil-
ity elements to enable easier derivation of a new service offering from the existing
offerings.

The value of WSOL lies in the simplicity of the negotiation process and the
simplified management infrastructure of WSOL.However, WSOL misses the syn-
tax of business and legal contents of contracts.

WS-Policy: WS-Policy [12] provides a general framework to specify and com-
municate (publish) policies for web services. It is a model for expressing the
capabilities, requirements, and general characteristics of a web service as poli-
cies. WS-Policy provides a base set of constructs that can be used and extended
by other web services specifications to describe a broad range of service require-
ments, preferences, and capabilities.

WS-Policy defines a policy as a collection of policy alternatives. In turn, each
policy alternative comprises a collection of policy assertions. Each policy as-
sertion indicates an individual requirement, capability or other property of a
behaviour. WS-policy is one of the fundamental works for specifying policies for
web services. However, WS-Policy does not detail the specification of functional
constraints, QoS policies, and other related management information.

We have analysed the current attempts by some of the web service languages
to describe functional and/or non-functional properties and managerial infor-
mation of services. Every language describes certain properties of services en-
tirely. Generally, all the standards focus on the QoS and the terms and condi-
tions agreed by the provider and consumer. However, in our view, none of them
intensively describe the distribution aspects and the ownership clauses of licens-
ing. The business and legal contractual information are not focused in detailed
level by the services research community. The issues of copyrights and moral
rights [13] are unexplored by the currently available service description stan-
dards. We think, there is a need to be considered to enable a broad usage of
service that preserves certain rights of the owner and presents certain rights to
the consumer.

From a different perspective, few languages and models capable of expressing
a range of licenses are existing in the domain of Digital Rights Management
(DRM) [14] for digital contents and multimedia. In the pioneering work of [15],
a mathematical model for describing payment and rendering events is described.
In [16], the properties of licenses are stated and proved by using deontic logic.
LicenseScript [17] based on multi-set rewriting, expresses dynamic conditions of
audio/video contents. As these models and languages restrict themselves within
the domain of digital contents and multimedia, they could not be adaptable for
describing services. Copyrights and other related rights are also not formalised
in all these models.

Licensing Services: Formal Analysis and Implementation 371

4 Formalising the Service Licenses

A service could allow/deny itself to be used by other services. Further, a service
could allow/deny to reuse its interface with or without modification. Allowing
or denying composition and derivation influences reuse of services significantly.
For drafting a family of machine readable licenses, the clauses of a service license
should be unambiguous. We will formalise the clauses of rights detailed in Section
2 to avoid ambiguity in describing service licenses.

Let {op(SA)} be the set of operations offered by a service SA. We refer to
each clause (C) of the license for service SA as CSA .

We define Interface Expressive Power (E) as the degree to which a service
interface is explainable, described by the number of operations involved and the
number and type of parameters of operations5. We define E as,

E = n +
∑n

i=1

(�m
j=1 δj

m

)

where n is the number of operations of an interface and for each operation,
m is the number of parameters. δj is the measure of the complexity of the data
type. Following WSDL definitions, we consider the values for simple, derived,
and complex data types as 1, 2, and 3 respectively.

Derivation (D): Derivation of a service, inspired by FOSS, is a new aspect of
creating a new service from existing service, modifying the WSDL interface and
implementation. We define a service as a Free/Open Service [18] if the service
provides its WSDL interface as well as source code freely available for creat-
ing a new and independent service. The open service allows the new service to
use a modified version of the original source code. A service SB is said to be
derived from SA if {op(SB)} ⊇ {op(SA)} on satisfying the following two condi-
tions: (i) To exist SB, SA should be a Free/Open Service and (ii) SA and SB

are independent in execution. Normal Derivation (See Figure 3) is represented
formally as {op(SB)} ⊃ {op(SA)}. Replica Derivation (See Figure 4) is repre-
sented by {op(SB)} ≡ {op(SA)}. In any case of derivation, the E of the derived
service is always higher than or equal to the E of the service used for derivation.
Thus, E(SB) ≥ E(SA). However, network latency issues in delivery of SA and
SB could exist.

Reproduction (R): Reproduction signifies making a new independent service
from an existing service interface. If a service SA is reproduced as an other inde-
pendent service SB, then {op(SB)} �= {op(SA)} and SA and SB are independent
in execution.

Weyuker’s property number 8 of software complexity [19] explicitly states that
if a program is a straight renaming of another program, its complexity would be

5 The interface expressive power of services could be defined based on several metrics.
We have considered a few relevant metrics and we do not claim this as an optimal
solution. Nevertheless, our general line of thought is not affected by the interface
expressive power computation.

372 G.R. Gangadharan and V. D’Andrea

same as the original program. Observing this property for a reproduction that
unmodifies the interface, the E of the reproduced service remains unchanged:
E(SB) = E(SA). In case of a reproduced service changing the interface, the E of
the reproduced service could differ from the service being reproduced: E(SB) �=
E(SA).

Composition (C): Composition is a form of integration of services with value
addition provided a composite service could be further composable [20]. Compo-
sition of services specifies the participating services, the invocation sequence of
services and the methods for handling exceptions [21]. A service S is said to be
composite if {op(S)} ⊃ {Of : Of ε {op(Si)}} and ∃ S | Si, i = [1, .., n]. Of could
be a single operation or a set of operations adding value addition by combining
all or some of the operations of Si.

Based on Weyuker’s properties (property numbers 5 and 9) of software com-
plexity, we propose the E of a composite service differing from the E of the
composing services obviously. Thus, E(S) �= E(Si, Sj). Though the underlying
assumption of SOC is composition, a service can deny or limit other services to
use itself in a composition.

Attribution (A): Attribution means to ascribe a service to the entity respon-
sible for its creator. If a service SB uses a service SA, then the attribution to SA

could be formally represented as ASB ⊃ ASA . The levelled attribution as in BSD
styled service licensing is represented by ASC ⊃ ASB ⊃ ASA where the service
SC uses SB and SB uses SA.

Similar Terms (T): A service SB may expect another service SA (which uses
SB) to have the same terms as of SB. In other words, L(SA) = L(SB) where SB

uses SA and L(S) is the service license defined as below.

Non-Commercial Use (N): A service SB could deny its use for commercial
purposes. NSB = 1 implies that an other service SA could use SB if SA is not
commercial.

Now, we define the license L of a service S as6

L(S) = (D, R, C, A, T, N).
The combinations of these licensing clauses define a family of licenses for

services ranging from the most restrictive to the most unrestrictive.

5 Implementing Licenses in Services

Instead of proposing a new language for describing the licensing aspects of ser-
vices, we could draft the terms and agreements of license using existing rights
expression languages. XrML [23] is a comprehensive right expression language,

6 Further, a service license comprises the financial terms, warranties, indemnification
and limitation of warranties, and other clauses [22]. These terms are integral for a
legally enforceable license. In this paper, we are primarily concerned with the clauses
directly associating the scope of rights of a service license.

Licensing Services: Formal Analysis and Implementation 373

created by the ContentGuard Inc.7, currently the basis of MPEG-218. Content-
Guard has a portfolio of patented technologies, covering the distribution and use
of digital works and the use of a grammar in connection with the distribution
of digital works. Though the terms are not specific to XrML, XrML is restricted
to be used for a context covered by the patents. Hence, to obviate any kinds of
patent infringements, we avoid XrML for implementing the terms of licenses in
services.

Open Digital Rights Language (ODRL) [24] is an open standard language
for the expressions of terms and conditions over assets, in open and trusted en-
vironments. The models for the ODRL language and data dictionary contain
the structure and core semantics for the expressions. These models provide the
overall framework for the expressions into which elements can be applied. The
core entities of ODRL are as follows:

• Assets: a resource being licensed (to be identified uniquely), for instance, a
web service.

• Rights: rules concerning permissions (the actual usages or activities allowed
over the assets), constraints (limits to these permissions), requirements (the
obligations needed to exercise the permission), and conditions (the specifi-
cations of exceptions that, if become true, expire the permissions and re-
negotiation may be required).

• Parties: information regarding the service provider, consumer, broker etc.,

With these three entities, ODRL expresses offers (proposals from rights holders
for specific rights over their assets) and agreements (contracts or deals between
the parties, with specific offers). These core entities together allow for a wide
and flexible range of ODRL expressions to be declared.

Our motivations for ODRL as an appropriate rights expression language for
describing machine readable licensing agreements for services are as follows:

• ODRL is an open standard language, for expressing rights information.
• Being defined in XML, ODRL provides syntactic and semantic interoper-

ability.
• ODRL is extensible and capable of incorporating specific clauses related to

service licenses.
• Several business scenarios across various domains are expressable in ODRL.
• Being published in the World Wide Web Consortium (W3C), ODRL has a

wide acceptance
• ODRL is supported by several industries and consortia like the Dublin Core

Metadata Initiative (DCMI)9 and the Open Mobile Alliance (OMA)10.

With this proposal, we extend ODRL to define the clauses of a service li-
cense L(S), by creating a new data dictionary that imports the ODRL expres-
sion language schema (See Table 1) to describe the scope of rights of services.
7 http://www.contentguard.com/
8 http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm
9 http://dublincore.org/

10 http://www.openmobilealliance.org/

374 G.R. Gangadharan and V. D’Andrea

Table 1. ODRL/L(S) Data Dictionary Semantics and Schema

ODRL Element Identifier Description
Permission Derivation (D) The service may be derived.
<xsd:element name="Derivation" type="o-ex:permissionType"
substitutionGroup="o-ex:permissionElement"/>

Permission Reproduction (R) The service may be reproduced.
<xsd:element name="Reproduction" type="o-ex:permissionType"
substitutionGroup="o-ex:permissionElement"/>

Permission Composition (C) The service may be composed.
<xsd:element name="Composition" type="o-ex:permissionType"
substitutionGroup="o-ex:permissionElement"/>

Requirement Attribution (A) The use of service must always include
attribution of the service.

<xsd:element name="Attribution" type="o-ex:requirementType"
substitutionGroup="o-ex:requirementElement"/>

Constraints SimilarTerms (T) The license terms should be same with
out changed when used/reused.

<xsd:element name="SimilarTerms" type="o-ex:constraintType"
substitutionGroup="o-ex:constraintElement"/>

Constraints NonCommercialUse
(N)

The service is for non-commercial pur-
poses.

<xsd:element name="NonCommercialUse" type="o-ex:constraintType"
substitutionGroup="o-ex:constraintElement"/>

ODRL/L(S)11 Data Dictionary Semantics expresses the core L(S) semantics in
the ODRL.

6 A Scenario of Service Licensing

In order to illustrate our approach, we consider a simple scenario where R
is a restaurant service providing the following operations (and parameters):
R0, information on location and opening hours (address : complex; hours :
complex); R1, the facility for reserving table (seats : simple; name : simple;
reservedTable : simple); R2, a catalogue of specialty cuisines (menuType :
simple; listing : complex); R3, a daily recipe for one of the specialty cuisine
(ingredients : complex; difficulty : simple; timeforPreparation : simple;
preparation : complex). In this scenario, the interface expressive power (E) of

11 Though few semantics of ODRL/L(S) resembles to the ODRL Creative Commons
Profile [25], the underlying clauses of a service license and the proposal of implemen-
tation within the WSDL of a service differ entirely. The meanings and motivations
of ODRL/L(S) data dictionary are related to the field of SOC. To the best of our
knowledge, there exists no previous works on the aspects of service licenses using
ODRL.

Licensing Services: Formal Analysis and Implementation 375

R is given by,

E = n +
∑n

i=1

(�m
j=1 δj

m

)

= 4 + ((3+3)
2 + (1+1+1)

3 + (1+3)
2 + (3+1+1+3)

4) = 12

Consider R having the following clauses of licensing:

1. The license clauses of R may deny the provision of R3 to other services
intended for providing recipe information exclusively that means the service
R denies reproduction.

2. R requires a service to be licensed same as R.
3. R allows composite works for noncommercial purposes.

The above clauses could be represented in ODRL/L(S) as follows:

<!-- Namespace Declarations -->
1 <o-ex:offer>
2 <o-ex:asset>
3 <o-ex:context>
4 <o-dd:uid>............</o-dd:uid>
5 </o-ex:context>
6 </o-ex:asset>
7 <o-ex:permission>
8 <ls:Composition/>
9 </o-ex:permission>
10 <o-ex:constraint>
11 <ls:NonCommercialUse/>
12 <ls:SimilarTerms/>
13 </o-ex:constraint>
14 <o-ex:requirement>
15 <o-dd:attribution/>
16 </o-ex:requirement>
17 </o-ex:offer>

From the given licensing clauses of R, it is perceptible that R denies re-
production. A new service could not be created by directly using R. How-
ever R allows composition. Assuming R as a non-open service, R forbids
derivation.

Another service, F , a restaurant finder service uses R, for the following op-
erations: F1, a restaurant locator giving a list of restaurants close to a given
location and using R0 (as well as similar operations for other restaurants); F2,
for intermediating table reservation, using R1; F3, a daily recipe randomly se-
lected among the recipes provided by the restaurants listed using F (in the case
of R, it will use operation R3). F can use R in a composition even the repro-
duction is prohibited. R expects SimilarTerms license for F that is using R. In
this case, the license terms of F will have to comply with R, for the request and
deny provision of F3 to other services intended to provide the recipe information
exclusively (See Table 2).

376 G.R. Gangadharan and V. D’Andrea

Table 2. ODRL/L(S) Clauses and Values for Service R

Identifier Value Line numbers in ODRL/L(S)
listing

Derivation (D) No (Denied)
Composition (C) Yes 7 - 9
Reproduction (R) No (Denied)
Attribution (A) Yes 14 - 16
SimilarTerms (T) Yes 10 - 13
NonCommercialUse (N) Yes 10 - 13

7 Concluding Remarks

Being a way to enable widespread use of services and to manage the rights
between service consumers and service providers, licenses are critical to be con-
sidered in services. We have proposed a formal representation of licensing clauses
to describe the licenses in machine understandable form that would be recog-
nizable by services. We have extended ODRL to define the licensing clauses of
services, as ODRL licenses are compatible with all service standards. We have
focused on the aspects of copyrights and moral rights in this paper, introducing
a free culture of services.

As composition federates independently developed services into a more com-
plex service, the license proposed for the composed service should be consonant
with the implemented licenses of individual services. In our future work, we
intend to propose a framework to compare the service licenses, iterating over
the licensing clauses of services to be composed. Based on the comparison of
the rights expressed on services to be composed, the framework would also be
able to suggest dynamically a license(s) for the composed service, yet legally
enforceable.

Acknowledgements

We are grateful to Dr. Renato Ianella for his suggestions on enhancing ODRL for
services. We acknowledge Prof. Michael Weiss and Prof. Fabio Casati for their
suggestions. We thank anonymous reviewers for their helpful comments.

References

1. Foster, I.: Service Oriented Science. Science 308 (2005) 814–817
2. Szyperski, C.: Component Software: Beyond Object Oriented Programming. ACM

Press, New York (1998)
3. D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Proceedings

of the IEEE Web Services Based Systems and Applications (ICIW’06), Guade-
loupe, French Caribbean. (2006) 142–147

Licensing Services: Formal Analysis and Implementation 377

4. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communica-
tions of the ACM 46(10) (2003) 25–28

5. Heckel, R., Lohmann, M., Thone, S.: Towards a UML Profile for Service Oriented
Architectures. In: Proceedings of the Workshop on Model Driven Architecture:
Foundations and Applications (MDAFA) . (2003)

6. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Services Compo-
sition. In: Proceedings of the Fourteenth Australasian Database Conference on
Database Technologies. (2003) 191–200

7. Goldstein, P.: International Copyright Principles, Law, and Practice. Oxford Uni-
versity Press (2001)

8. Fitzgerald, B., Oi, I.: Free Culture: Cultivating the Creative Commons. Media
and Arts Law Review (2004)

9. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management
11(1) (2003)

10. Skene, J., Lamanna, D., Emmerich, W.: Precise Service Level Agreements. In:
Proc. of 26th Intl. Conference on Software Engineering (ICSE). (2004)

11. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management Applications
of the Web Service Offerings Language. In: Proc. of the 15th CAiSE. (2003)

12. Jeffrey Schlimmer (Ed.): Web Services Policy Framework (WS-Policy).
http://www-128.ibm.com/developerworks/webservices/library/ specification/ws-
polfram/ (2004)

13. World Intellectual Property Organization: WIPO Copyright Treaty (WCT).
http://www.wipo.int/treaties/en/ip/wct/trtdocs wo033.html (1996)

14. Rosenblatt, B., Trippe, B., Mooney, S.: Digital Rights Management: Business and
Technology. M & T Publishers, New York (2002)

15. Gunter, C., Weeks, S., Wright, A.: Models and Languages for Digital Rights. In:
Proceedings of the HICSS-34. (2001)

16. Pucella, R., Weissman, V.: A Logic for Reasoning about Digital Rights. In: IEEE
Proceedings of the Computer Security Foundations Workshop. (2002)

17. Chong, C., Corin, R., Etalle, S., Hartel, P., Law, Y.: LicenseScript: A Novel Digital
Rights Language. In: Proceedings of the International Workshop for Technology,
Economy, Social and Legal Aspects of Virtual Goods. (2003)

18. D’Andrea, V., Gangadharan, G.R.: Licensing Services: An “Open” Perspective.
In: Open Source Systems (IFIP Working Group 2.13 Foundation Conference on
Open Source Software), Vol. 203, Springer Verlag. (2006) 143–154

19. Weyuker, E.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering 14(9) (1988) 1357–1365

20. D’Andrea, V., Fikouras, I., Aiello, M.: Interface Inheritance for Object Oriented
Service Composition Based on Model Driven Configuration. In: Proceedings of
ICSOC (Short Papers). (2004) 66–74

21. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures, and Applications. Springer Verlag (2004)

22. World Intellectual Property Organization: Successful Technology Licensing. WIPO
Publishers, Geneva, Switzerland (2004)

23. ContentGuard Inc.: XrML: The Digital Rights Language for Trusted Contents and
Services. http://www.xrml.org/ (Accessed on May 2006)

24. Renato Iannella (Ed.): Open Digital Rights Language (ODRL) Version 1.1.
http://odrl.net/1.1/ODRL-11.pdf (2002)

25. Renato Ianella (Ed.): ODRL Creative Commons Profile. http://odrl.net/
Profiles/CC/SPEC.html (2005)

	Introduction
	Exploring Service Licensing Clauses
	Licensing Clauses in Service Descriptions Languages
	Formalising the Service Licenses
	Implementing Licenses in Services
	A Scenario of Service Licensing
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

