A Fast RSA Implementation on Itanium 2 Processor

Kazuyoshi Furukawa, Masahiko Takenaka, and Kouichi Itoh

FUJITSU LABORATORIES LTD.,
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan
{kazful, takenaka, kito}@labs.fujitsu.com

Abstract. We show the fastest implementation result of RSA on Itanium 2. For
realizing the fast implementation, we improved the implementation algorithm of
Montgomery multiplication proposed by Itoh et al. By using our implementation
algorithm, pilepine delay is decreased than previous one on Itanium 2. And we
implemented this algorithm with highly optimized for parallel processing. Our
code can execute 4 instructions per cycle (At maximum, 6 instructions are exe-
cuted per cycle on Itanium 2), and its probability of pipeline stalling is just only
5%. Our RSA implementation using this code performs 32 times per second of
4096-bit RSA decryption with CRT on Itanium 2 at 900MHz. As a result, our
implementation of RSA is the fastest on Itanium?2. This is 3.1 times faster than
IPP, a software library developed by Intel, in the best case.

Keywords: RSA, Montgomery multiplication, software implementation, Ita-
nium 2.

1 Introduction

The RSA [13] is one of the standard public-key cryptosystems. The security of RSA
relies on a fact that factoring huge integers, which is used as a public-key in RSA, is
infeasible. Thus the key-length of RSA is chosen so as to avoid such factorization. In
the past, 1024-bit was enough. However, with a remarkable development of semicon-
ductor technologies, we need longer RSA keys in the near future. For example, NIST
recommends using 2048-bit or 3072-bit RSA keys after the year 2010 [[16] [17]. If the
key-length of RSA becomes longer, its computational cost grows with the cube of the
bit length. Therefore, realizing a high-speed RSA with longer-keys is more important
than ever.

Most of the RSA processing time is spent in modular multiplications. For performing
modular multiplication effectively, several types of primitive algorithms was proposed
by Montgomery [1]], Barrett [14], Kaihara-Takagi [[15] and so on. Currently, the most
popular algorithm is the Montgomery’s one (Montgomery multiplication). In addition,
many improvements on this algorithm have been proposed. Dusse and Kaliski trans-
formed a multiplication and reduction for long bit integers into an effective integration
of multiplication and reduction for small bit integers [18]. Related with hardware ar-
chitecture for scalable Montgomery multiplication, many results are known [7] [8] [9]
[LO] [[L1] [12]. Related with software implementation, Koc et al. [2] presented several
effective software implementation algorithms of the Montgomery multiplication (e.g.
SOS, CIOS, FIOS and more), and evaluated the required resources of these implemen-
tation algorithms. Furthermore, FIOS, one of the improvement by Koc et al. [2], was

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 507-518] 2006.
© Springer-Verlag Berlin Heidelberg 2006

508 K. Furukawa, M. Takenaka, and K. Itoh

improved by Itoh et al [3]]. This improved algorithm (Itoh’s algorithm) is very suitable
for pipelining, and allows high-performance RSA implementation on a DSP [3]].

Our objective of this paper is to realize a fast implementation of RSA on Itanium 2,
because it has attractive features for establishing high-performance RSA. That is, it can
operate a 64-bit X 64-bit multiply instruction with very low latency (4 cycles) and low
delay (1 cycle), and can execute 6 instructions in parallel at 1 cycle. Our strategy has 2
steps as follows.

In the first step, we analyzed the dependency between data calculations in a Mont-
gomery multiplication in the Itoh’s algorithm. By considering the specific conditions
for Itanium 2 pipeline scheduling, the pipeline delays are evaluated. However, we found
that a naive application of the Itoh’s algorithm causes heavy overheads on Itanium 2.
Thus we enhanced the Itoh’s algorithm so as to avoid such overheads, which is one of
our contributions of this paper.

In the second step, based on the pipeline scheduling found in the first step, we estab-
lished an optimized code in parallel processing in assembly language of Itanium 2 by
trial and errors. Our code can execute 4 instructions per cycle, while Itanium 2 can ex-
ecute at maximum 6 instructions. Since the probability of pipeline stalling of our code
is just only 5%, we think our code is optimal. These results show the high-performance
in parallel processing for software implementation. In fact, our code performs 32 times
4096-bit RSA decryptions with CRT per second on Itanium 2 at 900MHz. Compared
with IPP, an RSA software library developed by Intel, our code is 3.1 times faster in the
best case.

As far as the authors know, this is the first paper which analyzes the optimizing
process and presents performance results for RSA software implementation specified
for Itanium 2.

The rest of this paper is organized as follows. We describe primitives of the Mont-
gomery multiplication and previous implementation algorithms in chapter 2, our pro-
posed algorithm in chapter 3, implementational results of our proposed algorithm in
chapter 4 and a conclusion in chapter 5.

2 Montgomery Multiplication and Itoh’s Algorithm

In this chapter, we briefly introduce the Montgomery multiplication method for modular
multiplications and its implementation algorithm.

The Montgomery method allows efficient modular multiplications [1]]. The most cru-
cial part of this method is the Montgomery multiplication (REDC) shown in Algorithm
1. Let N be an integer is greater than 1, and R be an integer greater than N and rel-
atively prime to N. Also let N’ be an integer such that 0 < N” < Rand N’ = —N"!
(mod R). Under these notations, Algorithm 1 calculates a Montgomery multiplication
REDC(A,B) = Ax Bx R™! (mod N) for integers A and B with0 < A X B<RX N.

To compute a modular multiplication A X B (mod N) with the Montgomery multi-
plication, we covert A and B to so-called the Montgomery domain in which the Mont-
gomery multiplications are effectively computed (this conversion is done by applying
an appropriate constant R). After a Montgomery multiplication, a result is re-converted
to the previous domain and output. An outline is shown in Algorithm 2.

A Fast RSA Implementation on Itanium 2 Processor 509

-input: 4, B, R, N.
-output: REDC(A,B) = AXBXR! (mod N)
-algorithm
N’':=-N7 (mod R)
Y =AB
M = (Y (mod R)) x N’ (mod R)
Y:=Y+MN
Y=Y/R
ifY>NthenY =Y-N
return Y

Alg. 1. Montgomery Multiplication (REDC)

-input: 4, B, R, N.
-output: AXB (mod N)

-algorithm
A’=AXR (mod N)
B’= BXR (mod N)
C’=REDC(A’,B’) = AXBXRxRXR'! (mod N) = AxBxR (mod N)
C =REDC(C, 1) =AXBXRXR'! (mod N) = AxB (mod N)

return C

Alg. 2. Structure of “CORE loop of REDC” in Algorithm 3

In typical implementations of REDC, input integers A, B and output integer Y are
represented with multi-precision, namely an s X w-bit integer A is represented as
(as-1,a5-2, . ..,a9) where every a;(0 < i < s — 1) is a w-bit word data. (Here, R = 2"
is used). So, in these implementations, all integers are represented with multi-precision
and looped calculations for every word data are required. Thus such implementations
are not efficient.

In 1996, Koc et al. presented some implementation algorithms of REDC [2]. FIOS
(Finely Integrated Operand Scanning) algorithm was among these implementations and
further improved by Itoh et al [3]] so as to suitable for pipelining [3]]. We focus on this
algorithm (Itoh’s algorithm) in the rest of this paper. An outline of the Itoh’s algorithm
is shown in Algorithm 3. And “Core loop of REDC” structure in Algorithm 3 is shown
in Fig 1. Here, “Upper Computation” in Fig 1 is corresponding to the first equation
of “Core loop of REDC” in Algorithm 3. And “Lower Computation” is corresponding
to the second equation. To handle carries of each equation to the next loop, the first
equation in the (i + 1)-th loop does not refer to a result of the second equation in the
i-th loop. Thus Itoh’s algorithm can compute the first and second equations in parallel,
which is an improvement in comparison with the original FIOS algorithm. This is why
the Itoh’s algorithm is suitable for pipelining.

3 Enhancement on the Itoh’s Algorithm

Our objective of this paper is to realize a fast implementation of RSA on Itanium 2. To
do so, our strategy has 2 steps. As the first step, we analyze the dependency between data

510 K. Furukawa, M. Takenaka, and K. Itoh

LN ml A J B Y]

AxB+C+D Upper Computation
i) !
I

K bit. k bit

9 A B D

AxB+C+D

H L Lowep‘ Computation
] -

Fig. 1. Structure of “CORE loop of REDC” in Algorithm 3

calculations in the Itoh’s algorithm in this chapter. Also, an enhanced Itoh’s algorithm,
which avoids heavy overheads on Itanium 2 are proposed in this chapter.

3.1 Analysis of “Core Loop of REDC” in the Itoh’s Algorithm

For improving the Itoh’s algorithm, analyzing “Core loop of REDC” part in Algorithm
1 is required. Figure 2 shows our dependency analysis of “Core loop of REDC” in
which the i-th and the (i + 1)-th loops are discussed. Here “Upper MAA” corresponds to
“Upper Computation” in Fig. 1 and “Lower MAA” to “Lower Computation” in Fig. 1
(MAA means one multiplication and two additions).

In Fig.2, “Lower MAA” needs a temporal result of “Upper MAA” before starting its
computation. We call this relation “dependency” and represent as directions in Fig.2.
Similarly, three following dependencies can be found Fig.2. Here a representation X —
Y means that Y needs a result of X to start its computation. We call this relation as “Y
depends to X”.

(1-1) Upper MAA — Lower MAA
(1-ii1) i-th Upper MAA — (i + 1)-th Upper MAA
(1-iii) i-th Lower MAA — (i + 1)-th Lower MAA

REDC implementations with FIOS cannot avoid a dependency between the i-th Lower
MAA and the (i + 1)-th Upper MAA. On the other hand, the Itoh’s algorithm computes
i-th Lower MAA and (i + 1)-th Upper MAA in parallel, because there is no dependency
between them. Thus, the Itoh’s algorithm is very suitable for pipelining.

For implementing the Itoh’s algorithm on Itanium 2, some specific conditions for
Itanium 2 pipeline scheduling shold be considered. As the first condition, Itanium 2
cannot operate one multiplication and two additions (multiply-add-add) within 1 in-
struction, but can operate one multiplication and one addtion (multiply-add) within 1
instruction. By taking this restriction into account, a pipeline scheduling of the Itoh’s
algrithm is modified as in Fig.3, where a symbol MA represents a multiply-add opera-
tion and a symbol A’ represents an add operation. Note that MA can be operated within
1 instruction, while A’ cannot within 1 instruction.

A Fast RSA Implementation on Itanium 2 Processor 511

-input: A, B, R, N.
-output: REDC(A,B) = AXBXR' (mod N)
-Multi-precision integers

N=(nl, " n)
-w-bit word data.
tmp, C1,C2, m

- algorithm
Y=0

for j=0 to s-1
(C1, tmp) =y, +a, Xb,
m ‘=tmp X n', (mod) /*ris 2v %
(C2 tmp) =tmp +m X n,
(O) 5+ 1 4, x b
, tmp) =y, +C1 +a, X b,
3)/}'.5 = tﬁp +C2+m Xﬁi } Core loop of REDC
next 1
(C2.C1) =C1+C2+y,
Vs =01
nextj
ifY>NthenY =Y-N
return Y

Alg. 3. Itoh’s algorithm for REDC

In the pipeline scheduling of Fig.3, there are three dependencies shown in the fol-
lowing (2-1)—(2-iii).

(2-1) Upper A" — Lower MA
(2-ii) i-th Upper MA — (i + 1)-th Upper MA
(2-iii) i-th Lower A — (i + 1)-th Lower A’

In Fig.3, MA can be operated within 1 instruction (XMA instruction of Itanium
2). However, there is another specific condition of Itanium 2 that XMA instructions
are executed only to floating-point registers for input and output data. Since Upper A’
(integer addition) is executed to general registers, not to floating-point registers, we
require a trick like follows:

(al) One idea is to operate an Upper A’ by an XMA instruction. This can be done by
substituting integers in general registers to floating-point registers and by executing
an XMA instruction with a dummy multiplication (namely, a multiplication with
1). In total, two XMA instructions are required, which cause overheads because
XMA instructions are heavy operations compared to integer addition instructions
to general registers.

(a2) Another idea is to operate an Upper A’ as integer addition. This can be done by
converting from general registers to floating-point registers before an XMA instruc-
tion, and by converting floating-point registers to general registers after the instruc-
tion. Again, this idea causes performance overheads due to two data-conversion
instructions, which are much heavier than XMA instructions on Itanium 2.

In the next section, we enhance the Itoh’s algorithm and propose an efficient algo-
rithm for “Core loop of REDC” based on (a2) rather than (al). This is because integer
additions are very light instructions on Itanium 2.

512 K. Furukawa, M. Takenaka, and K. Itoh

“Core loop of REDC”
(C1, tmp) = a; X b; + y;+C1 : Upper multiply, add and add (Upper MAA)
(C2,y;,)=n;Xm+ tmp+C2 : Lower multiply, add and add (Lower MAA)

o MAA

Upper

AA
i+ ZJ ::er WAA

Fig. 2. Pipeline scheduling of “Core loop of REDC” in the Itoh’s algorithm (not optimized to
Itanium 2)

Lower

“Core loop of REDC”

(CI’, tmpl) =a, X b +y : Upper multiply-add (Upper MA)
(C1, tmp2) = tmpl + (C1°, C1) : Upper add (Upper A’)
(C2°,tmp3) =n;Xm +tmp2 : Lower multiply-add (Lower MA)
(C2,y;.,) =tmp3 +(C2’°,C2) :Lower add (Lower A’)

i-th
MA\Aj
T MAA
MAIA’

Fig. 3. Pipeline scheduling of “Core loop of REDC” in the Itoh’s algorithm (optimized to Ita-
nium 2)

3.2 Proposed Algorithm

As described in the previous section, two approaches (al) and (a2) have heavy over-
heads. A main reason of these overheads is a pipeline delay of Lower MA by the de-
pendency (2-i). Especially in (a2), a pipeline delay caused by Upper A’ is large enough,
because it consists of 1 conversion instruction (floating-point registers to general reg-
isters), 1 addition instruction for general registers and another 1 conversion instruction
(general registers to floating-point registers).

Our approach for this problem is to break the dependency between Upper A’ and
Lower MA. Since this dependency is a result of the Itoh’s algorithm, we go back to the
Itoh’s algorithm and enhance it so as to break the dependency. In fact, we established an
enhanced version of the Itoh’s algorithm in Fig.4 and Fig.5, in which Lower MA does
not depend on Upper A’ anymore but Lower MA depends on that of the previous loop.
By this enhancement, overheads by the pipeline delay are eliminated.

In Fig.4, two symbols MA and A” are used, where a symbol MA is same as in Fig.3
while a symbol A” represents an addition of 4 values, the carry (C3), data stored on

A Fast RSA Implementation on Itanium 2 Processor 513

“Core loop of REDC”

(C1, tmpl) = C1 +a; X b;: Upper multiply-add (Upper MA)
(C2, tmp2) = C2+ m X n; : Lower multiply-add (Lower MA)
(C3,y;))=y;+ C3+tmpl + tmp2 : Sum of results (Lower A™)

Fig. 4. Pipeline scheduling of “Core loop of REDC” in our enhanced Itoh’s algorithm (optimized
to Itanium 2)

memory (yi) and calculated results by Upper and Lower MA (tmpl and tmp2). The
dependencies of Fig.4 are shown in the following (3-1)—(3-iv).

(3-1) i-th Upper MA — i-th Lower A”

(3-ii) i-th Upper MA — (i + 1)-th Upper MA
(3-iii) i-th Lower MA — (i + 1)-th Lower MA
(3-iv) i-th Lower A” — (i + 1)-th Lower A”

By changing the dependency (2-i) to the dependency (3-iii), we succeeded to cancel
the pipeline delay by Upper A’ in Fig.3.

4 Implementation of Our New Algorithm on Itanium 2

In this chapter, as the second step for realizing fast RSA implementation, we describe
implementational aspects of our new algorithm proposed in section 3.2 including the
experimental performance results of RSA decryptions on Itanium 2.

4.1 Characteristics of Itanium 2

Itanium 2 belongs to a processor family called IPF (Itanium Processor Family), which
is developed by Intel and Hewlett Packard, and its architecture is based on that of IA-64.
The greatest characteristic of IPF is the EPIC (Explicitly Parallel Instruction Comput-
ing) technology, which does not support out-of-order executions unlike IA-32 architec-
ture processors. In the out-of-order executions, instruction scheduling was dynamically
done by a processor. But in IPF, instruction scheduling is done by the compiler. So
the effectiveness of the compiler is directly reflected to the performance of software
implementation. Other characteristics of Itanium 2 are listed in followings:

— Executes 6 instructions within 1 cycle at maximum. In other words, maximum IPC
(Instruction Per Cycle) is 6.

— Provides many ports for executing various types of instructions (4 ports for mem-
ory, 2 ports for general, 2 ports for floating-point and 3 ports for blanch)

514 K. Furukawa, M. Takenaka, and K. Itoh

Fig. 5. New structure of “CORE loop of REDC” in our enhanced Itoh’s algorithm

— Has 128 of 64-bit general registers.

Has 128 of 82-bit floating-point registers.

Provides software pipelining by CPU (MSL, Modulo Schedule Loop).

Provides instructions for 64-bit fixed-point multiply-add instructions with 4 cycles
latency and 1 cycle delay.

4.2 TImplementation Environment

We used an hp workstation zx 2000 for implementation, whose specifications are sum-
marized in the followings:

CPU and frequency: Itanium 2 at 900 MHz

Size of DRAM : 2 Gigabytes of memory

Size of L1 cache: 16 K byte (Instruction) / 16K byte (Data)
Size of L2 cache: 256 K byte

Size of L3 cache: 1.5 M byte

OS: Red Hat Enterprise Linux 4

Compiler: gec 3.4 and icc 9.0

In the following sections, we implemented REDC and RSA based on our enhanced
Itoh’s algorithm described in the previous sections. At the optimization, the perfor-
mance of 1-time calculation of 4096-bit REDC is mainly considered. Our analys is
used three factors, namely the number of total instructions, the probability of pipeline
stalling and averaged IPC of total instructions. These factors are measured by the “per-
formance monitoring counter” provided for Itanium 2. In this counter, the number of
total instructions does not include NOP instructions, and averaged IPC of total instruc-
tions are obtained with dividing the number of total instructions by total cycles. We did
not consider cache hit-miss here because its occasion is hard to be monitored.

4.3 Implementation and Optimization of REDC

In this section, we describe implementation aspects of REDC with C language and
assembly language.

A Fast RSA Implementation on Itanium 2 Processor 515

Implementation with C language. At the first step of the optimization, we imple-
mented our new algorithm with C language. Here, instructions to operate multiply-add
(XMA instruction) cannot be directly used with C language. So we used intrinsic func-
tion of Intel C Compiler 9.0 (icc 9.0) to operate XMA instruction. Grammar of the
intrinsic function is represented as follows:

__int64 _m64_xmalu(__int64 a, __int64 b
__int64 _m64_xmahu(__int64 a, __int64 b

int64 c)
int64 c)

We show the evaluation result for optimization of our C language code in table 2.
We obtained probability of pipeline stalling comes up to 14, most of which are waiting
cycles to execute XMA instrutions. We found we can eliminate some instructions of
assemble codes output by icc 9.0. An example of this elimination is shown in Table 1
which shows the assemble code of D=_m64_xmalu(A,B,C); by icc 9.0 and its elimi-
nated result by hand-assembled code. We note grA, grB and grC represent the interger
registers and frA, £frB and frC represents the floating-point registers.

Table 1. Assembly list output by icc 9.0 (left column) and result of elimination by hand-
assembled code (right column)

1d8 grA = [&A]; 1df8 frA=[&A];

1d8 grB = [&B]; 1df8 frB=[&B];

1d8 grC = [&C]; 1d£f8 frC=[&C];
setf.sig.frA = grA; |xma.lu.frD=frA, frB, frC;
setf.sig.frB = grB; stf8[&D] = frD;

setf.sig.frC = grC;
xma.lu. frD=frA, frB, frC;
getf.sig.grD=£frD;
st8[&D]=grD;

Implementation with hand-assembled code. In section 4.3.1, we implemented our
new REDC algorithm with C language and found out we can eliminate some instruc-
tions. So we optimized the code with extreme technique of hand-assembling by elim-
inating the total number of instructions, tuning the software pipeline schedule based
on the instruction latencies. Finally, we attained the result that average IPC of REDC is
4.02. Especially, average IPC in the “Core loop of REDC” of is 5.25 which is extremely
good result because maximum IPC of Itanium 2 is 6. In table 2, we show the result of
the evaluation for optimization of the hand-assembled code with comparison that of C
language for 4096-bit our REDC algorithm.

4.4 Implementation of RSA

We measured the performance of RSA decryption with CRT by using the hand-
assembled optimized code of our new REDC algorithm described in section 4.3.2. At
the implementation of RSA modular exponentiation, we used the technique of sliding-
window method with 5-bit window size. Our result showed very fast performance, that

516 K. Furukawa, M. Takenaka, and K. Itoh

Table 2. Comparison of evaluation results for two types of implemented code for 4096-bit REDC
of our proposal, one is with C language and another is with hand-assembled code

C language Hand-assembled code

Total cycles 65,111 18,801
Total instructions
(NOT including NOP instruction) 177,199 75,560
Probability of pipeline stalling 14% 5%
Average IPC of total instructions 2.57 4.02

Table 3. Measured total time of the 1-time execution of our REDC algorithm in our environment

Bit length Total time on our environment (u sec)

512 0.62
768 1.15
1024 1.81
2048 5.88
3072 12.24
4096 20.87

is, our implementation attained 1,090 times of 1024-bit RSA CRT decryptions on Ita-
nium 2 at 900MHz.

We compared our result of performance measurement with that of Intel Performance
Primitive (IPP) which is software RSA library developed by Intel. This library is well
known as fast library on Intel processors series. Especially, it is the fastest RSA library
of marketed products on Itanium 2. We show the comparison in Table 4. In this table,
results of IPP are obtained by our measurement. Our results are 1.19 — 3.1 times faster
than IPP, and are the fastest on Itanium 2.

Table 4. Measured total time of the 1-time execution of our REDC algorithm in our environment

Bit length INTEL (u sec) Our Implementation Ratio

4096 95,482 30,829 3.09
3072 44,383 14,277 3.10
2048 5,984 4,759 1.25
1024 1,099 917 1.19
768 659 512 1.28
512 313 237 1.32

5 Concluding Remarks

In this paper, we proposed new implementation algorithm of the primitive of Mont-
gomery multiplication (REDC) by improving the Itoh’s algorithm. Our new algorithm
is suitable for pipeline scheduling on Itanium 2 which has an instruction to operate

A Fast RSA Implementation on Itanium 2 Processor 517

multiply-add (XMA instruction). And we implemented our new algorithm on Itanium
2. In the implementation, we optimized for parallel processing of REDC with extremely
technique of hand-assembled code. By using our optimized code, average IPC of REDC
is 4.02. Especially, average IPC in the “Core loop of REDC” is 5.25, which is an ex-
tremely good result because maximum IPC of Itanium 2 is 6, and its probability of
pipeline stalling of our implementation is just only 5%. We also implemented RSA
decryption with CRT based on our optimized code of REDC and technique of sliding-
window method with 5-bit window size. Our implementation result attained 32 times
of 4096-bit RSA decryption of CRT on Itanium 2 at 900MHz. Our REDC and RSA
implementation can process variable bit length of RSA. And our RSA implementation
performs 3.1 times faster than Intel’s library in the best case.

A motivation of this paper is to realize fast implementation of RSA with long (say
4096-bit) keys. For such keys, Karatsuba and/or FFT algorithms may work better than
conventional Montgomery’s approach. Comparing such implementations (especially on
Itanium 2) will be our future work.

Acknowledgement. The authors would like to thank to Kouichi Kumon for his techni-
cal advice of code optimazation on Itanium 2, and Tetsuya Izu for his editorial sugges-
tions of the paper. We also thank anonymous referees of this paper for their comments.

References

[1] P.L.Montgomery, “Modular Multiplication without Trial Division”, Mathematics of Com-
putation, Vol.44, No.170, pp.519-521, 1985.

[2] C.K.Koc, T.Acar and B.S.Kaliski Jr., “Analyzing and Comparing Montgomery Multiplica-
tion Algorithms”, IEEE Macro, Vol.16, No.3, pp.26-33, June 1996.

[3] K.Itoh, M.Takenaka, N.Torii, S.Temma and Y. Kurihara, “Fast Implementation of Public-
Key Cryptography on a DSP TMS320C6201”, Cryptographic Hardware and Embedded
Systems -CHES *99,(LNCS1717), pp.61-72, 1999.

[4] Itanium 2 Processor Reference Manual for Software Development and Optimization, Intel,
2002.6

[5] Intel Itanium Architecture Software Developer’s Manuals, Intel, 2005

[6] Intel C++ Compiler for Linux Reference, Intel, 2005

[7] A.ETenca, G.Todorov and C.K.Koc, “High-Radix Design of a Scrable Modular Muiti-
plier”, Cryptographic Hardware and Embedded Systems - CHES 2001, (LNCS 2162), pp.
185-201, 2001.

[8] C.D.Walter, “Systolic Modular Multiplication”, IEEE Trans. Computers, vol.42, no.3, pp.
376-378, Mar, 1993.

[9] G.Orlando and C.Paar, “A Scalable GF(p) Elliptic Curve Processor Archtechture for Pro-
gramable Hardware” Cryptographic Hardware and Embedded Systems - CHES 2001
(LNCS 2162), pp. 348-363, 2001.

[10] S.E.Eldridge and C.D.Walter, “Hardware Implementation of Montgomery’s Modular Mul-
tiplication Algorithm”, IEEE Transactions on Computers, vol. 42, no. 6, July 1993, pp.
693699.

[11] C.D.Walter, “Montgomery’s Multiplication Technique: How to Make It Smaller and
Faster”, Cryptographic Hardware and Embedded Systems - CHES 99 (LNCS 1717), pp.
80-93, 1999.

518

[12]
(13]

[14]

[15]
[16]
(17]

[18]

K. Furukawa, M. Takenaka, and K. Itoh

A F.Tenca and C.K.Koc, “A Scalable Archtecture for Montgomery Multiplication”, Cryp-
tographic Hardware and Embedded Systems - CHES ’99 (LNCS 1717), pp. 94-108, 1999.
R.L.Rivest, A.Shamir and L.Adleman, “A Method of obtaining digital signature and public
key cryptosystems”, Comm.of ACM, Vol.21, No.2, pp.120-126, Feb.1978.

Paul Barrett, “Implementing the Rivest, Shamir, and Adleman Public-Key Encryp-
tion Algorithm on a Standard Digital Signal Processor”, Advances in Cryptology-
CRYPTO’86(LNCS263), pp.311-323, 1987.

M.E.Kaihara and N.Takagi, “Bipartile Modular Multiplication”, Cryptographic Hardware
and Embedded Systems - CHES 2005 (LNCS 3659), pp. 185-210, 2005.

National Institute for Standards and Technology (NIST), SP 800-57: Recommendation on
Key Management, 2005.

National Institute for Standards and Technology (NIST), SP 800-78: Cryptographic Algo-
rithms and Key Sizes for Personal Identity Verification, 2005.

S.R.Dusse and B.S.Kaliski Jr., “A Crytographic Library for the Motorola DSP56000”, Ad-
vances in Cryptology - EUROCRYPTO 90 (LNCS 473), pp.230-244, 1990.

	Introduction
	Montgomery Multiplication and Itoh's Algorithm
	Enhancement on the Itoh's Algorithm
	Analysis of ``Core Loop of REDC'' in the Itoh's Algorithm
	Proposed Algorithm

	Implementation of Our New Algorithm on Itanium 2
	Characteristics of Itanium 2
	Implementation Environment
	Implementation and Optimization of REDC
	Implementation of RSA

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

