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Abstract. In Eurocrypt 2004, Chen, Kudla and Paterson introduced
the concept of concurrent signatures, which allow two parties to produce
two ambiguous signatures until the initial signer releases an extra piece
of information (called keystone). Once the keystone is publicly known,
both signatures are bound to their true signers concurrently. In ICICS
2004, Susilo, Mu and Zhang further proposed perfect concurrent signa-
tures to strengthen the ambiguity of concurrent signatures. That is, even
if the both signers are known having issued one of the two ambiguous
signatures, any third party is still unable to deduce who signed which
signature, different from Chen et al.’s scheme. In this paper, we point out
that Susilo et al.’s two perfect concurrent signature schemes are actually
not concurrent signatures. Specifically, we identify an attack that enables
the initial signer to release a carefully prepared keystone that binds the
matching signer’s signature, but not the initial signer’s. Therefore, their
schemes are unfair for the matching signer. Moreover, we present an ef-
fective way to avoid this attack so that the improved schemes are truly
perfect concurrent signatures.
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1 Introduction

The concept of concurrent signatures was introduced by Chen, Kudla and Pa-
terson in Eurocrypt 2004 [11]. Such signature schemes allow two parties to pro-
duce and exchange two ambiguous signatures until an extra piece of information
(called keystone) is released by one of the parties. More specifically, before the
keystone is released, those two signatures are ambiguous with respect to the iden-
tity of the signing party, i.e., they may be issued either by two parties together
or just by one party alone; after the keystone is publicly known, however, both
signatures are bound to their true signers concurrently, i.e., any third party can
validate who signed which signature.

As explained below, concurrent signatures contribute a novel approach for
the traditional problem of fair exchange of signatures: Two mutually mistrustful
parties want to exchange their signatures in a fair way, i.e., after the completion
of exchange, either each party gets the other’s signature or neither party does.
Fair exchange of signatures is widely useful in electronic commerce, like contract
signing and e-payment.
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According to whether a trusted third party (TTP) is needed in the exchange
procedure, there are two essentially different approaches in the literature for
the problem of fair exchanging signatures: (a) Gradual exchange without TTP;
and (b) Optimal exchange with TTP. Though without the help of a TTP, the
first type solutions (e.g., [21,15,13]) impractically assume that both parties have
equivalent computation resources, and inefficiently exchange signatures “bit-by-
bit” for many interactive rounds. There are many efficient implementations be-
longing to the second approach, such as verifiably encrypted signatures [6,5,9],
escrowed signatures [3,4], convertible signatures [8], and verifiable confirmation
of signatures [10] etc. However, all those schemes require a dispute-resolving
TTP whose functions are beyond that of a CA (certification authority) in PKI
(public key infrastructure). The point is that such an appropriate TTP may be
costly or even unavailable to the parties involved.

In [11], Chen et al. remarkably observed that the full power of fair exchange is
not necessary in many applications, since there exist some mechanisms that pro-
vide a more natural dispute resolution than the reliance on a TTP. In particular,
concurrent signatures can be used as a weak tool to realize practical exchanges,
if one of the two parties would like to complete such an exchange. Chen et al.
presented several such applications, including one party needing the service of
the other, credit card payment transactions, secret information releasing, and
fair tendering of contracts. In the following, we only review a concrete example
of the first kind application.

Consider a situation where a customer Alice would like to purchase a laptop
from a computer shop owned by Bob. For this purpose, Alice and Bob can first
exchange their ambiguous signatures via the Internet as follows. As the initial
signer, Alice first chooses a keystone, and signs her payment instruction ambigu-
ously to pay Bob the price of a laptop. Upon receiving Alice’s signature, Bob
as the matching signer agrees this order by signing a receipt ambiguously that
authorizes Alice to pick one up from Bob’s shop. However, to get the laptop from
the shop physically, Alice has to show both Bob’s signature and the keystone,
because Bob’s ambiguous signature alone can be forged by Alice easily. But the
point is that once the keystone is released, both of the two ambiguous signatures
become bound concurrently to Alice and Bob respectively. Therefore, Bob can
present Alice’s signature together with the corresponding keystone to get money
from bank.

In the above example, Alice indeed has a degree of extra power over Bob, since
she controls whether to release the keystone. Actually, this is the exact reason
why concurrent signatures can only provide a somewhat weak solution for fair
exchange of signatures. In the common real life, however, if Alice does not want
to buy a laptop (by releasing the keystone), why she wastes her time to order
it. At the same time, by adding a time limit in the receipt, Bob could cancel
Alice’s order conveniently like the practice in booking air-tickets nowadays. The
advantage is that those solutions using concurrent signatures [11,27] can be
implemented very efficiently in both aspects of computation and communication,
and do not rely on any TTP. Therefore, the shortcomings in traditional solutions
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for fair exchange of signatures are overcome in a relatively simple and natural
way.

In ICICS 2004, Susilo, Mu and Zhang [27] pointed out that in Chen et al.’s
concurrent signatures, if the two parties are known to be trustworthy any third
party can identify who is the true signer of both ambiguous signatures before
the keystone is released. To strengthen the ambiguity of concurrent signatures,
Susilo et al. further proposed a strong notion called perfect concurrent signatures,
and presented two concrete constructions from Schnorr signature and bilinear
pairing. That is, in their schemes even a third party knows or believes both
parties indeed issued one of the two signatures, he/she still cannot deduce who
signed which signature, different from Chen et al.’s scheme.

In this paper, we shall point out that Susilo et al.’s perfect concurrent signa-
tures are actually not concurrent signatures. Specifically, we identify an attack
against their two schemes that enables the initial signer Alice to release a care-
fully prepared keystone such that the matching signer Bob’s signature is binding,
but not her. Therefore, both of their two perfect concurrent signature schemes
are unfair for the matching signer Bob. At the same time, we also address an-
other weakness in their keystone generation algorithm. To avoid those flaws, we
present an effective way to improve Susilo et al.’s schemes [27] so that the re-
sults are truly perfect concurrent signatures. Moreover, our improvement from
Schnorr signature obtains about 50% performance enhancement over their orig-
inal scheme. In addition, we notice that a similar attack applies to a generic
construction of identity-based perfect concurrent signatures, which is proposed
by Chow and Susilo in ICICS 2005 [12].

For simplicity, we call PCS1 and PCS2 for Susilo et al.’s two perfect concurrent
signatures from Schnorr and bilinear pairing, respectively. Sections 2 presents the
security model for perfect concurrent signatures. In Section 3, we review PCS1
and analyze its security. In Section 4, we discuss PCS2 and its security. In Section
5, we present and analyze the improved schemes. Finally, Section 6 concludes
the paper.

2 Security Model and Definitions

This section presents a formal model for perfect concurrent signatures, which is
adapted from [11,27]. Specifically, a perfect concurrent signature (PCS) scheme
works just as a usual concurrent signature scheme but achieves stronger security.
That is, besides the requirements of unforgeability and fairness for standard
concurrent signatures, a PCS scheme is supposed to satisfy perfect ambiguity
(see below) rather than (usual) ambiguity specified in [11].

Definition 1 (Syntax of Concurrent Signatures). A concurrent signa-
ture scheme consists of the following five algorithms.

SETUP: On input a security parameter �, this probabilistic algorithm outputs
the descriptions of a tuple (U , M, S, K, F), where U is the set of users, M the
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message space, S the signature space, K the keystone space, F the keystone
fix space. The algorithm also outputs the public keys {Xi} of all users, while
each user keeps the corresponding private key xi.

KGEN: This is a mapping from K to F , which is called the keystone generation
algorithm. Note that KGEN should be a one-way function, i.e., it is difficult
to derive k from KGEN(k).

ASIGN: On inputs (Xi, Xj , x, f, m), where Xi and Xj are two distinct public
keys, x is the private key corresponding to Xi or Xj (i.e. x = xi or x =
xj), f ∈ F , and m ∈ M, this probabilistic algorithm outputs an ambiguous
signature σ = (c, s1, s2) ∈ S ×F ×F on message m, where s1 = f or s2 = f .

AVERIFY: On input S = (σ, Xi, Xj , m), where σ = (c, s1, s2) ∈ S × F × F ,
Xi and Xj are two different public keys, and m ∈ M, this deterministic
algorithm outputs accept or reject. We also require AVERIFY should have the
symmetry property, i.e., AVERIFY(σ, Xi, Xj, m) ≡ AVERIFY(σ′, Xj , Xi, m),
where σ′ = (c, s2, s1) is derived from σ = (c, s1, s2).

VERIFY: On inputs (k, S), where k ∈ K and S = (σ, Xi, Xj, m), this deter-
ministic algorithm outputs accept if AVERIFY(S)=accept and the keystone k
is valid. Otherwise, it outputs reject.

Please refer to Section 2.2 of [11] for a framework how the concurrent signatures
can be generated and exchanged between two mutually mistrustful parties, i.e.,
their general concurrent signature protocol.

Now, we describe the security requirements for perfect concurrent signatures,
i.e., correctness, unforgeability, perfect ambiguity, and fairness. Correctness re-
quires that (a) every anonymous signature σ properly generated by ASIGN will
be accepted by AVERIFY, and every pair (k, σ) properly generated by KGEN
and ASIGN will be accepted by VERIFY. Since this is just a simple and basic
requirement, we do not mention it any more. The other three security require-
ments should be considered under a chosen message attack in the multi-party
setting, extended from the existential unforgeability given in [22]. The purpose is
to capture an adversary who can simulate and/or observe concurrent signature
protocol runs between any pair of users, as noticed in [11]. Informally, unforge-
ability requires any efficient adversary with neither of the corresponding two
secret keys cannot forge a valid concurrent signature with non-negligible proba-
bility under chosen message attacks. Since this paper focuses on the fairness and
perfect ambiguity of concurrent signatures, we just mention the following formal
definition of unforgeability without specifying the details of the game between a
challenger and an adversary.

Definition 2 (Unforgeability). A concurrent signature scheme is existen-
tially unforgeable under a chosen message attack in the multi-party model,
if the success probability of any polynomially bounded adversary in the game
specified in Section 3.2 of [11] is a negligible function of the security parameter �.

In [11], ambiguity means that given a concurrent signature without the keystone,
any adversary cannot distinguish who of the two signers issued this signature.
This notion is strengthened by Susilo et al. (See Definition 5 in [27]) to capture
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that there are four cases (not only three cases) for the issuers of two signatures.
We call this strengthened notion perfect ambiguity, and refine its definition here
by providing a full formal specification. That is, the perfect ambiguity of a
concurrent signature scheme is formally defined via the following game between
an adversary E and a challenger C.

Setup: For a given security parameter �, C runs SETUP to obtain all descrip-
tions of the user set U , the message space M, the signature space S, the
keystone space K, the keystone fix space F , and the keystone generation
algorithm KGEN : K → F . SETUP also outputs the public and private key
pairs {(Xi, xi)} for all users. Then, E is given all the public parameters and
the public keys {Xi}, while C retains the private keys {xi}.

Phase 1: E makes a sequence of KGen, KReveal, ASign and Private Key Extract
queries. These are answered by C as in the unforgeability game (Refer to
Section 3.2 of [11]).

Challenge: E selects a challenge tuple (Xi, Xj, m1, m2) where Xi and Xj are
public keys, and m1, m2 ∈ M are two messages to be signed. In response,
C first selects keystones k, k′ ∈R K, computes f1 = KGEN(k) and f2 =
KGEN(k) + KGEN(k′) mod q. Then, by randomly selecting b ∈ {1, 2, 3, 4}, C
outputs ambiguous signatures σ1 = (c, s1, s2) and σ2 = (c′, s′1, s

′
2) as follows:

- If b = 1, σ1 ← ASIGN(Xi, Xj , xi, f1, m1), σ2 ← ASIGN(Xi, Xj , xi, f2, m2);
- If b = 2, σ1 ← ASIGN(Xi, Xj , xj , f1, m1), σ2 ← ASIGN(Xi, Xj, xj , f2, m2);
- If b = 3, σ1 ← ASIGN(Xi, Xj, xi, f1, m1), σ2 ← ASIGN(Xi, Xj, xj , f2, m2);
- If b = 4, σ1 ← ASIGN(Xi, Xj, xj , f1, m1), σ2 ← ASIGN(Xi, Xj , xi, f2, m2).

Phase 2: E may continue to make another sequence of queries as in Phase 1;
these are handled by C as before.

Output: E finally outputs a value b′ ∈ {1, 2, 3, 4} as its guess for b. We say E
wins the game if b′ = b and E has not made a KReveal query on any of the
following values: s1, s2, s′1 − f1, and s′2 − f1.

Definition 3 (Perfect Ambiguity). A concurrent signature scheme is called
perfectly ambiguous if no polynomially bounded adversary can win the above
game with a probability that is non-negligibly greater than 1/4.

Fairness intuitively requires that (1) a concurrent signature scheme should be
fair for the initial signer Alice, i.e., only Alice can reveal the keystone; and
(2) a concurrent signature scheme should be fair for the matching signer Bob,
i.e., once the keystone is released, both signatures are bound to their signers
concurrently. This concept is formally defined via the following game (adapted
from [11]) between an adversary E and a challenger C:

Setup: This is the same as in the game for perfect ambiguity.
Queries: KGen, KReveal, ASign and Private Key Extract queries are answered

by C as in the unforgeability game (Section 3.2 of [11]).
Output: E finally chooses the challenge public keys Xc and Xd, outputs a

keystone k ∈ K and S = (σ, Xc, Xd, m) such that AVERIFY(S) = accept,
where m ∈ M and σ = (c, s1, s2) ∈ S ×F ×F . The adversary wins the game
if either of the following two cases holds:
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1. (k, S) is accepted by VERIFY so that s2 = KGEN(k) is a previous output
from a KGen query but no KReveal query on input s2 was made.

2. E additionally produces S′ = (σ′, Xc, Xd, m
′) along with another key-

stone k′ ∈ K, where m′ ∈ M and σ′ = (c′, s′1, s
′
2) ∈ S ×F ×F , such that

AVERIFY(S′) = accept and s′1 = s2 + H1(k′). Furthermore, (k, k′, S′) is
accepted by VERIFY, but (k, S) is not accepted by VERIFY.

Definition 4 (Fairness). A concurrent signature scheme is fair if the success
probability of any polynomially bounded adversary in the above game is negligible.

Definition 5. We say that a correct concurrent signature scheme is secure,
if it is existentially unforgeable, perfectly ambiguous, and fair under a chosen
message attack in the multi-party setting.

3 PSC1 and Its Security

3.1 Review of PSC1

We now review PCS1 [27], which is a concurrent signature scheme derived from
Schnorr signature [26]. Susilo et al. constructed PCS1 by using some techniques
from ring signatures [24,1], as did by Chen et al. in [11].

– SETUP. On input a security parameter �, the SETUP algorithm first ran-
domly generates two large prime numbers p and q such that q|(p − 1), and
a generator g ∈ Zp of order q, where q is exponential in �. Then, the SETUP
algorithm sets the message space M, the keystone space K, the signature
space S, and the keystone fix space F as follows: M = K = {0, 1}∗, and
S = F = Zq. It also selects a cryptographic hash function H1 : {0, 1}∗ →
Zq, which is used as the message digest function and the keystone gener-
ation algorithm. In addition, we assume that (xA, yA = gxA mod p) and
(xB , yB = gxB mod p) are the private/public key pairs of Alice and Bob,
respectively.

– ASIGN. The algorithm ASIGN takes input (yi, yj , x, s, m), where yi and yj

are two public keys (yi �= yj), x is the private key corresponding to yi or yj

(i.e. x = xi or x = xj), s ∈ F is a keystone fix, and m ∈ M is the message
to be signed. By picking a random number α ∈R Zq, the algorithm outputs
an ambiguous signature σ = (c, s1, s2) as follows:

• If x = xi: c = H1(m, gαys
j mod p), s1 = (α − c) · x−1

i mod q, s2 = s;
• If x = xj , c = H1(m, gαys

i mod p), s1 = s, s2 = (α − c) · x−1
j mod q.

– AVERIFY. Given an ambiguous signature-message pair (σ, yi, yj , m), where
σ = (c, s1, s2), yi and yj are two public keys, the AVERIFY algorithm outputs
accept or reject according to whether the following equality holds:

c ≡ H1(m, gcys1
i ys2

j mod p). (1)

– VERIFY. The algorithm takes input (k, S), where k ∈ K is the keystone and
S = (σ, yi, yj, m), and σ = (c, s1, s2). The algorithm VERIFY outputs accept
if AVERIFY(S)=accept and the keystone k is valid by running a keystone
verification algorithm. Otherwise, VERIFY outputs reject.
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Note that the above are just the basic algorithms for generating and verifying
concurrent signatures. In the following concrete concurrent signature protocol, it
explicitly describes how to generate and verify keystones, and how to exchange
concurrent signatures between two parties without the help of any TTP.

PCS1 Protocol: Before running the protocol, we assume that the SETUP
algorithm is executed and the public keys yA and yB are published. Here we also
assume that Alice is the initial signer and Bob is the matching signer and they
want to exchange their signatures on messages mA and mB. Symmetrically, one
can get the protocol description for the case where the roles of Alice and Bob
are changed.

1. Alice sends Bob (σA, t̂, mA), which are computed as follows.
– Choose a random keystone k ∈R K and set s2 = H1(k).
– Run σA = (c, s1, s2) ← ASIGN(yA, yB, xA, s2, mA).
– Pick a random t ∈R Zq and compute t̂ = yt

A mod p.
2. Upon receiving (σA, t̂, mA), where σA = (c, s1, s2), Bob checks whether

AVERIFY(σA, yA, yB, mA) ≡ accept. If not, then Bob aborts. Otherwise,
he sends (σB , mB) to Alice by performing as follows.
– Compute r = t̂xB mod p, r′ = r mod q, and set s′1 = s2 + r′ mod q.
– Run σB = (c′, s′1, s′2) ← ASIGN(yA, yB, xB , s′1, mB).

3. After (σB, mB) is received, where σB = (c′, s′1, s′2), Alice performs as follows.
– Check whether AVERIFY(σB, yA, yB, mB) = accept. If not, Alice aborts.

Otherwise, continue.
– Compute r′ = s′1 − s2 mod q, r = yxAt

B mod p, and check whether
r′ ≡ r mod q. If not, then Alice aborts. Otherwise, continue.

– Issue the following signature proof Γ to show that r and t̂ are properly
generated by using the knowledge of his private key xA (Refer to Section
2.2 in [27] for details):

Γ ← SPKEQ(γ : r = ytγ
B ∧ t̂ = gtγ ∧ yA = gγ)(k). (2)

– Release the keystone κ = {k, r, t, t̂, Γ} publicly to bind both signatures
σA and σB concurrently.

4. VERIFY Algorithm. After the keystone κ = {k, r, t, t̂, Γ} is released publicly,
σA = (c, s1, s2) and σB = (c′, s′1, s′2) are validated as Alice’s and Bob’s signa-
ture w.r.t. messages mA and mB respectively, iff all the following verifications
hold.
– Check whether H1(k) ≡ s2;
– Check whether r′ = r mod q, where r′ = s′1 − s2 mod q;
– Check whether Γ is a valid signature proof;
– Check AVERIFY(σA, yA, yB, mA) ≡ accept and AVERIFY(σB , yA, yB, mB)

≡ accept.

In a summary, by using two pieces of keystone Susilo et al. strengthened the
ambiguity of concurrent signatures so that there are four cases of authorship for
two ambiguous signatures σA and σB. Due to this reason, their schemes achieves
perfect ambiguity. As pointed in [27], in such schemes even an outsider knows
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(or believes) that Alice and Bob signed exactly one of two signatures σA and
σB, he/she still cannot deduce whether Alice signed σA or σB . In Chen et al.’s
scheme, however, this is very easy for an outsider. Based on the similarity of
PCS1 and Chen et al.’s scheme, the unforgeability of PCS1 can be established
in the random oracle model under the discrete logarithm assumption in subgroup
〈g〉, as stated in [27]. This reason is that one can incorporate the forking lemma
[23] to provide a proof as did by Chen et al. in [11]. For the fairness, however, it
is a different story.

3.2 On the Fairness

The authors of [27] argued the fairness of PCS1 protocol by the following two
claims:

Claim 1. Before κ = {k, r, t, t̂, Γ} is released, both signatures σA and σB are
ambiguous (Theorem 1 in [27]).

Claim 2. After κ = {k, r, t, t̂, Γ} is released, both signatures σA and σB are
bound to the two signers concurrently (Theorem 2 in [27]).

Claim 1 is correct, but Claim 2 may be false if the initial signer Alice is
dishonest. To illustrate this point, we now present a concrete attack against
PCS1 protocol such that once κ is released, (σA, mA) is not binding to Alice, but
(σB , mB) is indeed binding to Bob. Moreover, if necessary Alice can issue another
signature-message (σ̄A, m̄A) to binding herself, where message m̄A is chosen at
her will. From the view point of Bob, he is cheated by Alice, because what he
expected is to exchange his signature on message mB with Alice’s signature
on message mA. But the result is that Alice indeed obtained his signature on
message mB, while Bob did not get Alice’s signature on message mA (though he
may get Alice’s signature on a different message m̄A). Naturally, this is unfair for
the matching signer Bob. Because fairness implies that the matching signer Bob
cannot be left in a position where a keystone binds his signature to him while
the initial signer Alice’s signature is not bound to Alice (See the last paragraph
of page 296 in [11]). In the example of purchasing laptop given in Section 1, due
to this attack Bob may be unable to get money from Alice, but Alice can pick
up one laptop from Bob’s shop.

The following is the basic idea of this attack. It is truly a natural and in-
teresting method to construct perfect concurrent signatures by exploiting two
keystones instead of one. However, we notice that in step 2 of PCS1 proto-
col no mechanism is provided for Bob to check the validity of the keystone
fix s2. Based on this observation, dishonest initial signer Alice can set s2 =
H1(k) + r′ − r̃′ mod q, i.e., s2 + r̃′ = H1(k) + r′ mod q, where r′ and r̃′ are
some properly generated values. Then, Alice generates an ambiguous signature
on mA by using value s2 (though she does not know the keystone for s2). After
receiving Bob’s ambiguous signature on mB, Alice can issue her signature on
m̄A by using the value s̄2 = H1(k) at her will. The detail follows.
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Attack 1 on PCS1 Protocol. In this attack, we assume that the initial signer
Alice is dishonest, but the matching signer Bob is honest, i.e., he follows each
step of PCS1 protocol properly.

1. The dishonest initial signer Alice performs in the following way.
1.1) Pick t, t̃ ∈R Zq, and compute values t̂, r, r′, t̂′, r̃, and r̃′ by

t̂ = yt
A mod p, r = yxAt

B mod p (= t̂xB mod p), r′ = r mod q,

t̂′ = yt̃
A mod p, r̃ = yxAt̃

B mod p (= t̂′xB mod p), r̃′ = r̃ mod q.
(3)

1.2) Choose a keystone k ∈R K and set s2 = H1(k) + r′ − r̃′ mod q. So
Alice has the following equality

s2 + r̃′ = H1(k) + r′ mod q. (4)

1.3) Run σA = (c, s1, s2) ← ASIGN(yA, yB, xA, s2, mA).
1.4) Send (σA, t̂′, mA) to the matching signer Bob.

2. Since AVERIFY(σA, yA, yB, mA) ≡ accept, honest Bob sends Alice (σB , mB)
by
2.1) Compute r̃ = t̂′xB mod p, and r̃′ = r̃ mod q;
2.2) Set s′1 = s2 + r̃′ mod q;
2.3) Run σB = (c′, s′1, s

′
2) ← ASIGN(yA, yB, xB , s′1, mB).

3. Since (σB , mB) is properly generated by honest Bob, it is easy to know that
AVERIFY(σB , yA, yB, mB) ≡ accept and that r̃′ ≡ s′1 − s2 mod q. That is,
(σB , mB) is Bob’s valid signature. Now, Alice selects a message m̄A at her
choice and performs as follows.
3.1) Set s̄2 = H1(k).
3.2) Run σ̄A = (c̄, s̄1, s̄2) ← ASIGN(yA, yB, xA, s̄2, m̄A).
3.3) Retrieve (t, t̂, r, r′) from Step 1.1 (recall Eq. (3)).
3.4) Issue a proof Γ ← SPKEQ(γ : r = ytγ

B ∧ t̂ = gtγ ∧ yA = gγ)(k).
3.5) Output (σ̄A, m̄A), (σB , mB), and the keystone κ = {k, r, t, t̂, Γ}.

On the validity of attack 1, we have the following proposition:

Proposition 1. After the keystone information κ = {k, r, t, t̂, Γ} is released, the
two signature-message pairs (σ̄A, m̄A) and (σB , mB) are bound to Alice and Bob,
respectively. However, (σA, mA) is not bound to Alice.
Proof: This proof is almost self-evident, so we just mention the following main
facts:

– H1(k) ≡ s̄2 (recall Step 3.1).
– r′ ≡ s′1 − s̄2 mod q ≡ r mod q (recall Eqs. (3), (4)).
– Γ is a valid signature proof for SPKEQ(γ : r = ytγ

B ∧ t̂ = gtγ ∧ yA = gγ)(k),
since it is properly generated by Alice in Step 3.4.

– AVERIFY(σA, yA, yB, mA) ≡ accept and AVERIFY(σB , yA, yB, mB) ≡ accept,
since both σB = (c′, s′1, s′2) and σ̄A = (c̄, s̄1, s̄2) are properly generated by
running algorithm ASIGN in Steps 3.2 and 2.3, respectively.
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Therefore, according to the specification of algorithm VERIFY reviewed in
Section 2, (σ̄A, m̄A) and (σB, mB) are truly binding to Alice and Bob. However,
the same keystone information κ = {k, r, t, t̂, Γ} cannot be used to bind (σA, mA)
to Alice. In fact, even Alice is unable to reveal a keystone k′ such that s2 =
H1(k′). Otherwise, this implies Alice can find a pre-image of hash value s2 =
H1(k) + r′ − r̃′ mod q. 
�

3.3 On the Keystone Generation

In PCS1 protocol, a variant of Diffie-Hellman key exchange technique [14] is used
to derive keystone fix r′. In summary, r′ is generated as follows. By selecting a
random number t ∈ Zq, Alice first sets t̂ = yt

A mod p and sends t̂ to Bob. Then,
Bob computes r = t̂xB mod p, r′ = r mod q, and sets s′1 = s2+r′ mod q. Finally,
Alice issues a signature proof Γ ← SPKEQ(γ : r = ytγ

B ∧ t̂ = gtγ ∧ yA = gγ)(k),
and releases keystone information κ = {k, r, t, t̂, Γ}. Hence, from the public

information κ any third party can derive the value yAB
�
= gxAxB mod p by

calculating
yAB = rt∗

mod p, where t∗ = t−1 mod q. (5)

A problem is that the value of yAB is the crux for some other cryptosystems,
such as the strong designated verifier signature (SDVS) of Saeednia et al. [25],
and the signcryption scheme of Huang and Cheng [19]. That is, if yAB is available
to an adversary those cryptosystems are broken (Check [18] for more discussions
on SDVS). This implies that one user cannot use the same key pair to run
PCS1 protocol and those cryptosystems, even though all of them work in the
discrete logarithm setting with the same parameters. In other words, this is an
example showing that the simultaneous use of related keys for two cryptosystems
is insecure (See [17] for some positive results).

4 PCS2 and Its Fairness

This section briefly reviews and analyzes PCS2, which is a perfect concurrent
signature constructed from bilinear pairing.

– SETUP: This algorithm first selects an admissible bilinear pairing (Sec 2.1 of
[27]) e : G1 × G1 → G2, where G1 and G2 are two cyclic (additive and mul-
tiplicative, respectively) groups with the same prime order q. It also selects
two cryptographic hash functions H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq.
Alice and Bob have private/public key pairs (xA, PA = xAP ) and (xB , PB =
xBP ), where xA, xB ∈ Z

∗
q , and P is a generator of group G1. System para-

meters {G1, G2, e, q, P, H0, H1} are publicly known.
– ASIGN: The ASIGN algorithm takes inputs (Pi, Pj , x, f, m), where x is the

secret key associated with public keys Pi or Pj (i.e., x = xi or x = xj), f ∈ F
is a keystone fix, and m ∈ M is the message to be signed. By selecting a
random number a ∈R Zq, the algorithm outputs an ambiguous signature
σ = (c, s1, s2) as follows:
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• If x = xi: c = H1(Pi||Pj ||e(aH0(m), P ) · e(fH0(m), Pj)), s1 = (a −
c)x−1

i mod q, s2 = f ;
• If x = xj : c = H1(Pi||Pj ||e(aH0(m), P ) · e(fH0(m), Pi)), s1 = f , s2 =

(a − c)x−1
j mod q.

– AVERIFY: Given σ = (c, s1, s2), AVERIFY(σ, Pi, Pj , m) = accept iff the fol-
lowing equality holds.

c ≡ H1(Pi||Pj ||e(H0(m), P )c · e(H0(m), Pi)s1 · e(H0(m), Pj)s2 ).

– VERIFY: Given a concurrent signature (k, S), where k ∈ K and S = (σ =
(c, s1, s2), Pi, Pj , m), VERIFY(k, S) = accept iff k is a valid keystone by
executing the keystone verification algorithm, and AVERIFY(S) = accept.

PCS2 Protocol. Without losing generality, we assume that the initial signer
Alice and the matching signer Bob want to exchange their signatures on messages
mA and mB, respectively.

1. Alice first sends (σA, Z) to Bob by performing as follows
– Select a random keystone k ∈R K and set s2 = H1(k);
– Pick a randomness α ∈ Z

∗
q and compute Z = αP ;

– Run σA = (c, s1, s2) ← ASIGN(PA, PB, xA, s2, mA).
2. Upon receiving (σA, Z), Bob checks whether AVERIFY(σA, PA, PB , mA) ≡

accept. If not, Bob aborts. Otherwise, he returns the following value σB to
Alice.
– Compute r = e(PA, Z)xB , and set s′1 = s2 + r mod q;
– Run σB = (c′, s′1, s′2) ← ASIGN(PA, PB, xB , s′1, mB).

3. Once σB = (c′, s′1, s
′
2) is received, Alice first computes r = e(PB, Z)xA ,

then checks whether both AVERIFY(σB , PA, PB, mB) ≡ accept and s′1 ≡
s2 + r mod q. If any of those two verifications fails, Alice aborts. Otherwise,
she releases the keystone (k, α) so that both signatures σA and σB are binding
concurrently. With (k, α), the validity of σA and σB is validated if all the
following verifications hold:
– s2 ≡ H1(k) and s′1 ≡ s2 + r mod q, where r = e(PA, PB)α;
– AVERIFY(σA, PA, PB, mA) ≡ accept;
– AVERIFY(σB , PA, PB, mB) ≡ accept.

Attack 2 on PCS2 Protocol. Compared with PCS1, PCS2 protocol is more
efficient since the 2nd keystone fix r is exchanged between Alice and Bob in a
more effective way (thanks to the bilinear pairing). However, PCS2 protocol is
also unfair for the matching signer Bob, since a dishonest initial signer Alice
can cheat Bob in an analogous way as in PCS1. More precisely, dishonest Alice
can first select three random numbers k, α, α′ ∈R Z

∗
q , and compute Z = αP ,

Z ′ = α′P , r = e(PA, PB)α, and r′ = e(PA, PB)α′
. Then, Alice further sets

s2 = H1(k) + r − r′ mod q, i.e., the following equality holds:

s2 + r′ ≡ H1(k) + r mod q. (6)

After that, Alice runs σA ← ASIGN(PA, PB , xA, s2, mA), and sends (σA, Z ′) to
Bob. Once getting Bob’s valid signature σB = (c′, s′1, s

′
2) on message mB, where
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s′1 = s2 + r′ mod q and r′ = e(PA, Z ′)xB , Alice releases (k, α) so that (σB , mB)
is bound to Bob. However, the same keystone information (k, α) does not bind
(σA, mA) to Alice. Moreover, if needed Alice can generate her signature σ̄A on
a different message m̄A of her choice by using value s̄2 = H1(k). Due to Eq. (6),
the keystone (k, α) shall bind (σ̄A, m̄A) to Alice as well as (σB , mB) to Bob.

5 The Improved Schemes

5.1 Description of the Improved Schemes

We observe that the attacks against the fairness of PCS1 and PCS2 result from
the following fact: The initial signer Alice sets both two pieces of keystone alone.
This privilege allows Alice to choose two pairs of keystone fixes so that the sums
of them have the same value (recall Eqs. (4) and (6)). However, this sum de-
termines the matching signer Bob’s signature. Therefore, to avoid this attack
we shall improve PCS1 and PCS2 as iPCS1 and iPCS2 by letting Bob choose
the second keystone. At the same time, our improved protocols are designed to
achieve a symmetry for both keystones. That is, both keystones can be values in
the same domain and have the same verification algorithm. Moreover, the signa-
ture proof Γ is totaly removed in our iPCS1 to get a more efficient concurrent
signature protocol (Check Table 1). The reason is that in the iPCS1 protocol
(see below), the authenticity of H1(k′) can be checked by Alice in Step 3 as
follows: s′1 ≡ s2 + H1(k′) mod q, where k′ = (t̂xA mod p) mod q and (t̂, s′1) is
received from Bob.

In the following description, we just specify the two improved concurrent
signature protocols iPCS1 and iPCS2, while the corresponding algorithms are the
same as in PCS1 and PCS2, respectively. In addition, note that iPCS1 protocol
also works well for Chen et al.’s concurrent signature scheme [11].

iPCS1 Protocol: As in PCS1, we assume that the SETUP algorithm is already
executed, and that the initial signer Alice and the matching signer Bob want to
exchange their signatures on messages mA and mB, respectively.

1. Alice sends Bob (σA, mA), where σA = (c, s1, s2) is calculated as follows:
– Choose a random keystone k ∈R K and set s2 = H1(k);
– Run σA = (c, s1, s2) ← ASIGN(yA, yB, xA, s2, mA).

2. Upon receiving (σA, mA), Bob checks whether AVERIFY(σA, yA, yB, mA) ≡
accept. If not, Bob aborts. Otherwise, Bob returns back (σB , mB, t̂) to Alice
by
– Pick a random t ∈R Zq and compute t̂ = yt

B mod p;
– Compute r = yxBt

A mod p, and k′ = r mod q;
– Set s′1 = s2 + H1(k′) mod q;
– Run σB = (c′, s′1, s

′
2) ← ASIGN(yA, yB, xB , s′1, mB).

3. Upon receiving (σB , mB, t̂), where σB = (c′, s′1, s
′
2), Alice performs as follows:

– Compute r = t̂xA mod p, and k′ = r mod q;
– Test whether s′1 ≡ s2 + H1(k′) mod q;
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– Check whether AVERIFY(σB , yA, yB, mB) ≡ accept;
– If σB is invalid, abort. Otherwise, release the keystone (k, k′) publicly to

bind both signatures σA and σB concurrently.
4. VERIFY Algorithm. With the keystone (k, k′), anybody can check the validity

of σA = (c, s1, s2) and σB = (c′, s′1, s
′
2) as follows.

– Alice signs σA iff s2 ≡ H1(k) and AVERIFY(σA, yA, yB, mA) ≡ accept.
– Bob signs σB iff s′1 ≡H1(k)+H1(k′) mod q and AVERIFY(σB , yA, yB, mB)

≡ accept.

iPCS2 Protocol: Again, we assume that the initial signer Alice and the match-
ing signer Bob want to exchange their signatures on messages mA and mB,
respectively.

1. Alice first sends Bob (σA, mA), where σA is computed as follows.
– Select a random keystone k ∈R K and sets s2 = H1(k);
– Run σA = (c, s1, s2) ← ASIGN(PA, PB, xA, s2, mA).

2. Upon receiving (σA, mA), Bob checks that AVERIFY (σA, PA, PB, mA) ≡
accept. If not, Bob aborts. Otherwise, he returns back (σB , Z) to Alice by
performing below.
– Pick a random α ∈ Z

∗
q , compute Z = αP and r = e(PA, PB)α;

– Set the second keystone k′ = r mod q;
– Compute s′1 = s2 + H1(k′) mod q;
– Run σB = (c′, s′1, s

′
2) ← ASIGN(PA, PB, xB , s′1, mB).

3. Once σB = (c′, s′1, s′2) is received, Alice acts in the following way:
– Compute r = e(Z, PB)xA , and k′ = r mod q.
– Test whether s′1 ≡ s2 +H1(k′) mod q. If not, abort. Otherwise, continue.
– Check whether AVERIFY(σB , PA, PB , mB) ≡ accept.
– If σB is invalid, Alice aborts. Otherwise, Alice releases the keystone

(k, k′) to bind both signatures σA and σB concurrently.
4. VERIFY Algorithm. With the keystone (k, k′), anybody can check the validity

of σA = (c, s1, s2) and σB = (c′, s′1, s
′
2) as follows.

– Alice signs σA iff s2 ≡ H1(k) and AVERIFY(σA, yA, yB, mA) ≡ accept.
– Bob signs σB iff s′1 ≡H1(k)+H1(k′) mod q and AVERIFY(σB , yA, yB, mB)

≡ accept.

Table 1 gives the efficiency comparison for all concurrent signature protocols
discussed in this paper. As the main computational overheads, we only consider
multi-exponentiations (denote by E), scalar multiplications (denote by M), and
bilinear mappings (denote by e). As in [5], we assume that simultaneous expo-
nentiations are efficiently carried out by means of an exponent array. Namely,
the costs for ax1

1 ax2
2 and ax1

1 ax2
2 ax3

3 are only equivalent to 1.16 and 1.25 single ex-
ponentiation, respectively. Note that our iPCS1 outperforms the original PCS1
by about 50%, while iPCS2 is a little more efficient than PCS2.
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Table 1. Efficiency Comparison

Comp. Cost Comp. Cost Comp. Cost Signature Keystone
Protocol of Alice of Bob of Verifier Size Size

CS [11] 2.41E 2.41E 2.5E 3|q| |q|
CPS1 [27] 9.41E 3.41E 7.98E 3|q| 4|q| + 2|p|
iCPS1 3.41E 4.41E 2.5E 3|q| 2|q|
CPS2 [27] 6e+3.41E+1M 6e+3.41E 7e+3.5E 3|q| 2|q|
iCPS2 6e+3.41E 6e+3.41E+1M 6e+2.5E 3|q| 2|q|

5.2 Security Analysis of the Improved Schemes

Based on the results in [11,27] and the discussions previously provided, it is not
difficult to see that both iPCS1 and iPCS2 are truly perfect concurrent signature
protocols. Formally, we have the following theorem.

Theorem 1. The above iPCS1 is a secure perfect concurrent signature protocol
in the random oracle model under the discrete logarithm assumption. That is,
iPCS1 is perfectly ambiguous, fair, and existentially unforgeable under a chosen
message attack in the multi-party setting.

Proof. First of all, unforgeability holds due to the facts that all basic algorithms
in our iPCS are the same as in PCS1, and PCS1 is unforgeable (Theorem 4 in
[27]). Second, perfect ambiguity is almost evident. The reason is that in the
game of perfect ambiguity, to guess the signer of σ1 = (c, s1, s2) the adversary
E has to distinguish whether either s1 or s2 is a random number from Zq or an
output of H1(·) for some keystone k. However, this is impossible in the random
oracle model, since the hash function H1(·) is treated as a truly random function
with the range of Zq. Similarly, E cannot determine the authorship of σ2 better
than guessing. Therefore, the adversary E cannot guess correctly the value b ∈
{1, 2, 3, 4} selected by the challenger C at random with an advantage that is
non-negligibly greater than 1/4. Now, we turn to prove fairness in detail.

We suppose that there exists an algorithm E that with non-negligible probability
wins the fairness game, under the assumption that H1(·) is a random oracle.
Then, based on E’s output we derive some contradictions.

To initialize the fairness game for a given security parameter �, the challenger
C runs the SETUP algorithm to generate the public parameters (p, q, g) as usual,
where q is exponential in �, choose all the private keys xi ∈R Zq, set the public
keys as yi = gxi mod p, and give these public keys to the adversary E. Then, C
responds to E’s different kinds of queries as follows.

H1-Queries: E can query the random oracle H1 at any time. C simulates the
random oracle by keeping a list of pairs (mi, ri), which is called the H1-List.
When an input m ∈ {0, 1}∗ as H1-query is received, C responds as follows:
1. If the query m is the first component for some pair (mi, ri) in the H1-List,

then C outputs ri.
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2. Otherwise, C selects a random number r ∈R Zq, outputs r as the value
of H1(m), and adds the pair (m, r) to the H1-List.

KGen Queries: E can request that the challenger C properly generate a keystone
fix. To this end, C maintains a K-List of pairs (ki, fi), and answers such a
query by choosing a random keystone k ∈R K and computing f = H1(k).
C outputs f and adds the tuple (k, f) to the K-List. Note that K-List is a
sublist of H1-List, but is required to answer KReveal queries later.

KReveal Queries: E can request that the challenger C reveal the keystone k for
any keystone fix f which is produced for answering a previous KGen Query.
If there exists a pair (k, f) on the K-List, then C returns k, otherwise it
outputs invalid.

ASign Queries: E can also make any signature query of the form (yi, yj , s, m),
where s ∈ Zq, yi and yj (yi �= yi) are two public keys, and m ∈ {0, 1}∗ is
the message to be signed. To answer E’s query, C computes the signature
as normal and outputs σ = (c, s1, s2) = ASIGN(yi, yj, xi, s, m).

Private Key Extract Queries: E can request the private key for any public key yi.
Since it is C that sets up all the private keys, C just returns the appropriate
private key xi as its answer.

In the final stage, E finally outputs S = (σ, yA, yB, m) and a keystone k ∈ K
with non-negligible probability η, where yA and yB are two public keys, m ∈ M,
and σ = (c, s1, s2) ∈ S × F × F , such that AVERIFY(S) = accept and either of
the following two cases holds:

1. (k, S) is accepted by VERIFY so that s2 = KGEN(k) is a previous output
from a KGen query but no KReveal query on input s2 was made.

2. E additionally produces S′ = (σ′, yA, yB, m′) along with another keystone
k′ ∈ K, where m′ ∈ M and σ′ = (c′, s′1, s

′
2) ∈ S × F × F , such that

AVERIFY(S′) = accept and s′1 = s2 + H1(k′). Furthermore, (k, k′, S′) is
accepted by VERIFY, but (k, S) is not accepted by VERIFY.

Since the adversary E produces the above output with non-negligible proba-
bility η, either case 1 or case 2 must occur with non-negligible probability. We
now analyze those two cases separately and then derive contradictions.

Case 1. Suppose E’s outputs satisfy the conditions in case 1 with non-negligible
probability. Namely, E has found a keystone k and an output of a KGen query s2
such that s2 = H1(k), but without making a KReveal query on input s2. Since
H1(·) is a random oracle, E’s probability of producing such a k is at most μ1μ2/q,
where μ1 is the number of H1 queries made by E and μ2 is the number of KGen
queries made by E. Both μ1 and μ2 are polynomially bounded in the security para-
meter � and q is exponential in �, so this probability is negligible. This contradicts
our assumption that case 1 occurs with non-negligible probability.

Case 2. Suppose case 2 occurs with non-negligible probability, i.e., the adver-
sary E’s outputs satisfy all conditions in case 2. Since S′ = (σ′, yA, yB, m′) is
accepted by AVERIFY, s′1 = s2+H1(k′), and (k, k′, S′) is accepted by VERIFY, we
must have s2 = KGEN(k) = H1(k). At the same time, since S = (σ, yA, yB, m)
is also accepted by AVERIFY and we already have s2 = KGEN(k) = H1(k), this



450 G. Wang, F. Bao, and J. Zhou

implies that (k, S) is also accepted by VERIFY. This contradicts to the condition
in case 2 that (k, S) is not accepted by VERIFY. 
�

Theorem 2. The above iPCS2 is a secure perfect concurrent signature protocol
in the random oracle model under bilinear Diffie-Hellman assumption. That is,
iPCS2 is perfectly ambiguous, fair, and existentially unforgeable under a chosen
message attack in the multi-party setting.

Theorem 2 can be proved analogously as Theorem 1. That is, unforgeability
and perfect ambiguity essentially follow from the results in [27] since all basic
algorithms in iPCS2 are the same as in PCS2, while fairness can be obtained in
a similar way as we do in Theorem 1.

6 Conclusion

For the applications with somewhat weak requirement of fairness, concurrent sig-
natures [11] provide very simple and natural solutions for the traditional prob-
lem of fair exchange signatures without involving any trusted third party. To
strengthen the ambiguity of concurrent signatures, two perfect concurrent sig-
natures are proposed in [27]. This paper successfully identified an attack against
those two perfect concurrent signatures by showing that they are actually not
concurrent signatures. Consequently, those two schemes are unfair in fact. To
avoid this attack, we presented effective improvements to achieve truly perfect
concurrent signatures. Moreover, our improvement from Schnorr signature ob-
tains about 50% performance enhancement over the original scheme in [27]. We
also addressed another weakness in their keystone generation algorithm. In ad-
dition, we remarked that a similar attack can apply to an identity-based perfect
concurrent signature scheme proposed in [12]. As the future work, it is interest-
ing to consider how to improve the efficiency of perfect concurrent signatures,
and how to construct concurrent signature schemes in multi-party setting.
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