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Abstract. Seifert (ACM CCS 2005) recently described a new fault at-
tack against an implementation of RSA signature verification. Seifert’s
attack differs from the seminal work of Boneh, DeMillo and Lipton (EU-
ROCRYPT 1997) in that it targets a public-key rather than a private-key
operation. Here we give a simplified analysis of Seifert’s attack and gauge
its practicality against RSA moduli of practical sizes. Our intent is to
give practice-oriented work estimates rather than asymptotic results. We
also suggest an improvement to Seifert’s attack which has the following
consequences: If an adversary is able to cause random faults in only 4
bits of a 1024-bit RSA modulus stored in a device, then there is a greater
than 50% chance that they will be able to make that device accept a sig-
nature on a message of their choice. For 2048-bit RSA, 6 bits suffice.

Keywords: hardware faults, fault analysis, signature verification, RSA
signatures.

1 Introduction

Recently, Seifert described a novel attack against an implementation of the RSA
signature verification operation [8]. His attack is based on the following assump-
tions:

— An adversary has a device which contains an RSA public key, (N, e), stored
in protected read-only memory (e.g., in EEPROM).

— The values N and e are known to the adversary.

— On input m, s, the device transfers the values N and e from protected mem-
ory to working memory, and then proceeds to check if s is a valid signature
for m.

— As the device transfers the value N from protected memory, the adversary
can induce data faults.

The attacker’s goal is to create a message-signature pair which the device will
accept as valid. Seifert describes a probabilistic algorithm which does this. More-
over, Seifert’s attack is a selective forgery; that is, an adversary is able to select

* J.A. Muir is supported by a Natural Sciences and Engineering Research Council of
Canada Postdoctoral Fellowship.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 420-E34] 2006.
© Springer-Verlag Berlin Heidelberg 2006


http://www.scs.carleton.ca/~jamuir

Seifert’s RSA Fault Attack: Simplified Analysis and Generalizations 421

an arbitrary message, compute a “signature” on it and have the device accept
these as a valid message-signature pair. This is all done without factoring N and
without learning the private key, d.

Seifert’s attack uses an incredibly simple strategy: If forging RSA signatures
using the modulus N is too difficult, then modify some bits of N and create a
new modulus, IV, where it is easy to forge signatures. Seifert points out that it is
very easy to create signatures when N is prime, since then we can simply com-
pute the private exponent, d, as e~! mod (N — 1), assuming that e is relatively
prime to N — 1. In the off-line part of Seifert’s attack, the adversary modifies
some of the least significant bits of N to create N. In the on-line part of the
attack, the adversary repeatedly queries the device with a specially constructed
message-signature pair and causes data faults until this particular N is used as
the modulus in the signature verification algorithm.

To put a practical perspective on Seifert’s attack, imagine that the device is
a “locked” computer that will only execute code if it can validate a signature on
that code. This is exactly what Microsoft had hoped to implement in its Xbox
game-console [T0]. Microsoft attempted to design the Xbox so that only software
signed by Microsoft would run on it. However, a number of Xbox enthusiasts
found ways to circumvent Microsoft’s software authentication techniques [5].
In fact, Seifert credits Andy Green and Franz Lehner’s Xbox “hack” [5, page
143] as the inspiration for his attack. However, there is an important distinction
between the two techniques. Green and Lehner’s attack involves a deterministic
change to an internal parameter; Seifert’s attack involves a random change to
an internal parameter. If an attacker has the ability to change bits of (N,e)
deterministically, then it is much easier to unlock the device. In this case, it is
possible to defeat the authentication procedure by just setting e to equal 1.

After the publication of Seifert’s attack, one of the most pressing questions
concerning it involved its practical consequences (e.g., What is the estimated
work factor and success probability for an adversary who mounts the attack
against a 1024-bit public RSA key?). The analysis provided in [§] gives a num-
ber of asymptotic expressions for the work factor and success probability of the
attack, but extracting practical information from them is nontrivial. For exam-
ple, the main result (Thm. 1) in [§] says that if an adversary can cause faults
in the least significant O(lglg N) bits of N, then, assuming that the Riemann
Hypothesis is true, they can make the device accept a signature on an arbitrary
message with probability ©(1/1g N) in 1g°Y N time. Clearly, the real-world
implications of this result for 1024-bit RSA depend on the constants hidden in
the asymptotic terms. It turns out that it is possible to give a more precise and
straightforward analysis of Seifert’s attack. With this analysis it is possible to
make statements like the following: If an adversary can cause faults in only 4
bits of an RSA modulus, then there is a greater than 50% chance that they will
be able to make the device accept a signature on an arbitrary message after 2*
on-line queries.

Our contributions. Our main contribution is a simplified analysis of Seifert’s
attack. The work estimates we present are practice-oriented and can be easily
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interpreted. We verify our analysis against some computational trials which use
RSA public keys of practical sizes (i.e., 1024 bits and 2048 bits). In addition,
we offer two straightforward generalizations to Seifert’s attack. We demonstrate
that we do not need to restrict ourselves to errors only in the least significant bits
qf the modulus. Also, we show that we do not need to limit ourselves to moduli,
N, that are prime — what we really want is moduli that have easily computed
factorizations.

Outline. In §2 we describe the fault model which we use throughout the paper.
In §3 we review Seifert’s attack and adapt it to our fault model. An analysis
and some computational results are presented in §3.1 and §3.2. In §4 we give an
improvement to Seifert’s attack; analysis and computational results are provided
in §4.1 and §4.2. We briefly discuss some open problems related to fault attacks
on discrete log based signature schemes in §5. We end with some remarks in §6.

2 Fault Model

Suppose that the target device (i.e., the locked computer) implements Algo-
rithm [Il In this algorithm, the operator “«~” denotes an assignment operation

Algorithm 1. Faulty RSA Signature Verification
Input: m € {0,1}", s € Zn.

Output: “accept” or “reject”.

1: (N,&) e» (N, e)

h «— H(m)

B — s° mod N

if h = b’ then return “accept”

else return “reject”

that is subject to bit-faults; we will make this more precise in a moment. The
function H denotes a message encoding function which typically incorporates
some cryptographic hash function. For example, H might be a full-domain hash
function constructed from a concatenation of SHA-256 hashes [2].

The bit-faults which affect the public key are instigated by the adversary.
In our model, we only consider bit-faults in the RSA modulus, N. These faults
change N to N non-deterministically while e remains unchanged. This assump-
tion — that faults can be localized to a particular parameter of a cryptographic
computation — is commonly used in the theory of fault analysis (cf. [3]).

Recently, Naccache, Nguyen, Tunstall and Whelan [7] presented a key recov-
ery attack on DSA which requires that an adversary zeroize some of the least-
significant bits of the nonce k used in signature generation. What’s more, they
successfully implemented their attack against a smartcard and demonstrated
that it is possible for an adversary to engineer the required data faults. However,
despite the physical experiments conducted by Naccache et al., the practicality of
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the assumption that bit-faults will affect N but not e depends upon the charac-
teristics of a specific target device and the tools and skills of a specific adversary
(the fact that the bit-length of e is much shorter than N may be of some help).
So let us state plainly that the validity of our assumptions for any particular
target device are untested; however, experience shows that often attacks can be
modified minorly to adapt to different situations, and thus we believe this fault
model is important to consider as a starting point. For example, if an adversary
can localize faults to N only 20% of the time, this may suffice to carry out the
attack.

Concerning bit-faults in e, it seems unlikely that an adversary would be able
to take advantage of such errors. But, if by randomly flipping bits of e, we could
obtain a value € for which it is easy to compute e-th roots modulo N, then this
type of attack would certainly be worth exploring. However, unless the adversary
has a way to set € = 1 with high probability, this would seem to happen very
rarely. In practice, e is usually taken to be 3 or 65537 since these values help
make signature verification more efficient.

An excellent survey of techniques for inducing computational faults in a device
is presented in [I]. For example, a random-data fized-location fault (i.e., random
data appears at a fixed location within N) can be induced by illuminating one
of the device’s registers or data buses with a strong light source. Alternately, a
fized-data random-location fault (i.e., constant data appears at a random location
within the modulus) can be initiated by varying the device’s supply voltage.

We model the effect of faults on the modulus using an error function, £. This
function takes two parameters: the first is V and the second is a nonce, A. Both
¢ and A determine how N is transformed. One possible definition of ¢ is the
following

E(N,A) = N @ 0" "¢ A||0°, where A e {0,1}°. (1)

Here, N is considered as an n-bit array; its value is changed by xoring it with a
b-bit string, A, which is offset according to the value ¢. The values b and ¢ are
fixed non-negative integers that satisfy 0 < b+ ¢ < n. This error function models
random-data fixed-location faults.

Another possible definition of £ is

E(N,A) = N & 1"772(0°||14, where A € {0,1,2,...n — b}. (2)

The symbol “&” denotes a bit-wise “and”. Now, the bits of N are changed by
zeroing a block of b bits offset according to the parameter A (which is now an
integer). This error function models fixed-data random-location faults.

In general, we can consider

¢£:{0,1}" x S — {0,1}"

where S is a finite set. The nonce A is drawn uniformly from S (we denote this
as A €gr S). In Algorithm [ after the operation (N, @) «~ (N, e), we have that

J/\}:f(N,A)7 for some Aerp S, and e=e.
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When Algorithm [ is executed, the adversary initiates faults but they cannot
control the value of A.

For the sake of clarity, we continue our exposition assuming that £ is defined
as in ([I)). Thus, we have

N =N®0" "¢ A|0°, for some A € {0,1}".

A is b-bits wide; we sometimes refer to A as an error vector. The value of b might
be influenced by the size of the device’s data-bus or registers; for example, many
smart cards have 8-bit registers while typical desktop PCs have 32-bit registers.
The bit-length of the modulus is n, so we have n = |IlgN | + 1.

Using the parameters b, ¢, A, we can rewrite the signature verification opera-
tion like so:

Algorithm 2. Faulty RSA Signature Verification
Input: m € {0,1}", s € Zn.

Output: “accept” or “reject”.

1. Aegp{0,1}°

N~ N@o""=¢|Alo°

e—e

h — H(m)

B — s® mod N
if h = A/ then return “accept”
else return “reject”

3 Seifert’s Attack

In Algorithm [l we present a simplified description of Seifert’s attack which is
adapted according to our fault model. Note that the title “Algorithm” is applied
loosely. To turn the description into a true algorithm, we would need to bound
the number of times that the second iterative loop (lines 11-13) is executed.

Essentially, what is happening in Algorithm [Blis that we randomly flip bits of
N until we find a value N such that N is prime and e~! exists modulo N — 1.
If we find such a value, then we use it to construct a new private exponent d
by computing the inverse of e modulo N — 1. This can be done efficiently using
the extended Euclidean algorithm or Fermat’s Theorem. Next, we generate a
signature for m, using d which will verify against the public key (N e). All
of this work so far is done off-line (i.e., it does not require any interaction
with the device). The attack finishes with an on-line phase where we repeatedly
query the device with our selected message and the signature we constructed
for it. Each time we query the device, we hope that the bit-faults we initiate
will cause the device to use the modulus N when it checks our message and
signature.
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Algorithm 3. Seifert’s Fault Attack

Input: An arbitrary message m € {0,1}", the device’s RSA public key (N, e).
Output: “success” or “fail”.
S« {0,1}°\ {0°}
repeat
Aegr S
S — S\ {A}
N — N @0 "=¢||Alo°
until (N is prime and gcd(e,ﬁ —1)=1)or (S=09)
if S = o then return “fail”
d—e " mod (N —1)
9: h — H(m)
10: s — h* mod N
11: repeat
12: output « the output of Algorithm [2lon input m, s.
13: until output = “accept”
14: return “success”

—_

Note that Algorithm Bl generalizes Seifert’s original attack model in an obvious
way. The original model did not consider the parameter ¢ as bit-faults were
always restricted to the b least-significant bits of V. We will see that the value
of ¢ has no effect on the running time or success probability of the attack;
however, the value of b does.

3.1 Analysis

Algorithm [] contains two iterative loops. The first loop (lines 2-6) is executed
during the off-line portion of the attack:

repeat
AerS
S — S\ {A}
N — N & 0m=b=¢||Al|o°
until (N is prime and gcd(e,ﬁ —1)=1)or (S=9)

Note that the error space S = {0,1}*\ {0°} may be traversed in other ways (e.g.,
it might be more convenient to enumerate the elements of S in lexicographic
order).

The off-line portion of the attack succeeds if we can find a value of N that
causes the loop to exit before we exhaust the error space. The probability of this
happening for a particular value of N is

Pr(ﬁ is prime) - Pr(ged(e, N - 1)=1).
In practice, e is usually equal to 3 or 65537 which are both prime numbers. We
will make the simplifying assumption that e is prime. Thus,

Pr(ged(e, N — 1) = 1) = Pr(e /| N — 1) = 621.
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A consequence of the Prime Number Theorem is that the probability that a
random odd positive integer x is prime is roughly 2/Inz. Using this fact, and
the bound 2"~1 < N < 2", we have

2 2 2

Pr(N is pri N = .
r(N is prime) . > |pon In 2

The reader who carefully examines the definition of Algorithm [3lmay notice that
there are some values of N that are not necessarily odd. This happens only when
¢ = 0. However, in the off-line phase of the attack, since we are searching for NV
that are prime, when carrying out our search we would simply modify the error
space, S, so that N is always odd. R

Now we can estimate the probability that N meets our criteria as

2(e—1)
e-nln2’

Thus, the expected number of N values we need to consider before we find one
that suits our needs is S(’e{nj The probability that there is no good value of NV
inside our search space can be estimated as

L 2e=1) 21
e-nln2 ’
This represents the probability that the off-line stage of the attack fails.

The on-line portion of the attack is described in the second iterative loop
(lines 11-13):

repeat
output < the output of Algorithm 2l on input m, s, (N, e).
until output = “accept”

This portion of the attack is much simpler to analysis. We want the RSA verifi-
cation algorithm to be affected by a particular error vector; assuming that each
error vector from {0, 1}? is equiprobable, this happens with probability 21b . Thus,
the expected number of faulted signature verification operations needed before
the desired error occurs is 2°.

Some of the important characteristics of Algorithm Bl are summarized in
Figure [l Notice how the parameter b affects the success probability and run-
ning time of the attack. By increasing b we can increase the probability that the

off-line stage worst case running time O(2° — 1)

expected running time O ( Z(Zl“ﬁ)

1_ 2(e71))2b_1

enln?2

probability of success 1 — (

on-line stage expected running time O(2°)

Fig. 1. Characteristics of Algorithm [l
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off-line stage of the attack succeeds. However, this also increases the expected
number of steps in the on-line stage of the attack. Depending on how quickly the
target device processes and responds to on-line queries, the expected number of
on-line queries required can present a major obstacle to attack implementors.

3.2 The Off-Line Search in Practice

We constructed two RSA public keys by pairing the RSA challenge numbers
RSA-1024 and RSA-2048 [12] with the exponent e = 65537. For each public
key, we examined the search space used in the off-line stage of Algorithm [3 for
various values of b and ¢ (recall that b is the error-width and ¢ is its offset). All
our numerical computations (i.e., probabilistic primality testing and ged’s) were
done using the C++ library NTL [9].

For each public key, we took b € {4,6,8,10,12,14,16}. For each value of b,
we set ¢ to equal each multiple of b in the interval 0...n — b — 1; so, ¢ takes on
1+ ["72~!| different values. In theory, the offset, ¢, could take any value in the
interval 0...n —b; our reason for limiting ¢ to multiples of b was that we wanted
the ¢ values to define disjoint search spaces.

We illustrate our experiments with an example. Suppose b = 4 and n = 1024.
For these parameters, the error offset ¢ takes on 255 different values; namely,
0,4,8,12,...,1016. Each value of ¢ defines a search space which is disjoint from
all the others. We found that 3 of the 255 search spaces contained N values for
which the off-line stage of the attack succeeds. The ratio 3/255 can be compared
to our estimate of the probability that the off-line stage of the attack succeeds
when b = 4 (see below). Across the 255 search spaces, we examined 255-(2*—1) =
3825 values of N. Of these 3825 values, 3 had the desired properties. The ratio
3/3825 can be compared to our estimate of the probability that N is prime and
N-1is relatively prime to e = 65537. The same methodology was used for the
other values of b. Our experimental results are summarized in Figure 21

From our analysis in the previous section, for the 1024-bit public key, we
estimate the probability that a value of N has the desired properties as

2 - 65536
655371024 - n2 ~ 00082

The empirical values listed for RSA-1024 in column 5 of Figure[2 appear to con-
verge toward this estimate. From the probability above, we see that the expected
number of values of N we must examine before we find one that meets our crite-
ria is 1/0.00282 = 355. If the architecture of a device permits the attacker some
control over the size of b, then they might choose b so that their search space
contains at least 355 values (but, of course, this does not guarantee that the
search space will contain a good value of N ). In practice, it would seem prudent
to first find lots of good values of N , for various values of b and ¢, and then pick
one that has a short error-width which is easy to instantiate in the device.
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b good N’s total # of N’s ratio good ¢’s total # of ¢’s ratio

RSA-1024 4 3 3825 0.00078 3 255 0.0118
e =65537 6 24 10710 0.00224 23 170 0.135
8 68 32385 0.00210 53 127 0.417
10 264 104346 0.00253 97 102 0.951
12 969 348075 0.00278 85 85 1
14 3354 1195959  0.00280 73 73 1
16 11658 4128705  0.00282 63 63 1
RSA-2048 4 11 7665 0.00144 11 511 0.0215
e =65537 6 44 21483 0.00205 41 341 0.120
8 106 65025 0.00163 80 255 0.314
10 332 208692 0.00159 164 204 0.804
12 1018 696150 0.00146 169 170 0.994
14 3433 2391918  0.00144 146 146 1
16 11601 8322945  0.00139 127 127 1

Fig. 2. Experimental results for the off-line stage of Algorithm [3]

Using the probability above, we can estimate the probability that the off-line
stage of the attack will succeed for different values of b:

b=4, 1—(1-0.00282)2""! ~0.0415
b=6, 1—(1—0.00282)2""1 ~0.163
b=38, 1—(1—0.00282)>1~0513
b=10,1— (1 —0.00282)2""~1 ~ 0.944.

These estimates are quite close to the empirical values listed for RSA-1024 in

column 8 of Figure
Similar comparisons can be made for RSA-2048. We estimate the probability
that a 2048-bit value of N has the desired properties as

2 - 65536

And, we estimate the probability that the off-line stage of the attack will succeed
for different values of b as:

4

b=4, 1—(1—0.00141)2""1 ~0.0209
b=6, 1—(1—0.00141)2""! ~ 0.0851
b=28, 1—(1—0.00141)>~1 ~0.302

b=10,1— (1 —0.00141)2"~1 ~ 0.764.

These estimates are quite close to our empirical results.

Although our fault model and method of analysis greatly simplify many of the
arguments from Seifert’s paper, these experiments demonstrate that our analysis
does give an accurate picture of what can be expected in practice.
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4 TImproving Seifert’s Attack

The criteria that Seifert uses for his off-line search can be relaxed. When we
examine various values of N, what we really want is an integer that has an
easily computed prime factorization. If N is prime, then this is certainly true.
However, there are many other integers which have this property. If we know
the prime factorization of N, then we can easily compute ¢(/N) and then use the
extended Euclidean algorithm to obtain d = e~! mod o(N).

Deciding whether or not the prime factorization of a random integer can be
easily computed is a subjective task. It depends upon what factorization method
you are using, how efficiently it is implemented and how much time you are
willing to invest. The strategy we used was this: given N, divide out any prime
factors < 2'°, and then check whether the quotient is equal to 1 or is prime.
We chose a small bound of 210 since we did not want to invest much time in
attempting to factor each IV in our simulations. Adversaries who are willing to
invest more time into attempting to factorize a few values of N might utilize,
say, the elliptic curve factoring method since it tends to find small prime factors
of N first.

The off-line stage of the attack now becomes

S —{0,1}"\ {0}
repeat
A Er S
S — S\{A}
N — N @0 b=c||Al|0°
NO — N with any prime factors < 210 divided out.
until (Nj is prime or equal to 1 and ged(e, p(N)) = 1) or (S = @)

Obviously, the bound 2'° can be replaced with one larger or smaller according
to the preference of the implementor. There is a convenient data structure in
NTL which can be used to generate all primes less than 23 in sequencdl.

4.1 Analysis
The probability that a value of N causes the loop above to exit is

Pr(]vo is prime or equal to 1) - Pr(ged(e, go(ﬁ)) =1) =
Pr(the second-largest prime factor of Nis < 219) . Pr(ged(e, o(N)) = 1).

The distribution of the second-largest prime factor of random integers < x as
x — oo was investigated by Knuth and Trabb Pardo [6]. Following their discus-
sion, we define

! Actually, during our experiments, we found that the largest prime generated by
NTL’s PrimeSeq class to be 2% — 21® — 1 which is not the greatest prime < 23
there are 3184 more primes which are larger.
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F(B) = leHgo Pr(a random integer < x has its 2nd-largest prime factor < z).
Knuth and Trabb Pardo showed that this limit exists, and also presented a
method for approximating its value. Over the interval 0 < § < 1/2, F5(f)
increases monotonically from 0 to 1; for 8 > 1/2, F»(8) = 1. Since n is the
bit-length of the modulus, N, we have N <o, Setting « and 3 equal to 2" and
10/n, respectively, we obtain

F, (10/n) ~ Pr(a random integer < 2" has its 2nd-largest prime factor < 219).

Assuming N behaves like a random integer < 2", this is the probability that
we want to approximate. Using our assumption that e is prime, we estimate the
probability that N meets our criteria as

(e — 1)F3(10/n) .

(&

Unfortunately, F2(3) does not have a simple closed form so it is not immediate
what sort of improvement this achieves. However, we can quantify the difference
by plugging in some numbers.

A table of values for F5(() is provided in [6]. From this table, we build a
polynomial approximation to F»(3) in the interval 0 < 8 < 1/2. This gives us

F5(10/1024) ~ 0.0175, F5(10/2048) ~ 0.00872,
F5(30/1024) ~ 0.0538, F,(30,/2048) ~ 0.0264.

Now, for a 1024-bit public key with e = 65537, the probability that a random
value of N ends our search when we cast out prime factors < 219 is roughly

65536 - 0.0175
65537 ~ 0.0175.

So, our chances, which we calculated in §2.4, have increased from 0.282% to
1.75%. If we cast out primes less than 23°, we get 5.38%. Some more comparisons
are made in Figure [3l The most dramatic difference appears in the number of
values of N we expect to consider before the search ends.

4.2 The Improved Off-Line Search in Practice

We repeated the experiments from §2.4 using our new on-line search criteria. For
various error widths and offsets, we exhausted the resulting search spaces and
determined which N’s could be easily factorized after casting out prime factors
< 210, Our results are summarized in Figure @ Our empirical results are close
to what our analysis predicts.

Although we have considered only random-data fixed-location faults in our
experiments, it is just as easy to treat fixed-data random-location faults. An
interesting demonstration of this is presented in Appendix [Al
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off-line search using

Seifert’s off-line search
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iterations
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Fig. 3. Comparison of off-line search strategies
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Fig. 4. Experimental results of searching for easily factorable Ns
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1

1

1

1
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An interesting lesson that can be taken from Seifert’s attack is that public-key
authentication systems based on the integer factorization problem are somewhat
fragile with respect to bit-faults; that is, if you randomly flip a few bits of the
public-key then there is a non-negligible probability that you end up with an
integer that is easy to factor. It would be interesting to determine if similar fault
attacks exist for discrete log based authentication systems. We briefly consider
some problems related to the ElGamal signature scheme [4].

In the ElGamal signature scheme

— the private key is x € [1,p — 2].
— the public key is (y, g,p) where y = ¢ mod p, p is a large prime (say, 1024
bits) and g is a generator of Z,™.
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The signature verification algorithm is presented in Algorithm [

Algorithm 4. ElGamal Signature Verification

Input: m,(r,s),(y,9,p)

Output: “accept” or “reject”

1: if r ¢ [0,p—1] or s € [0,p — 2] then
return ‘“reject”

h — H(m)

u«— ¢" mod p

u' «— 7r°y" mod p

if u = u’ then return “accept”

else return “reject”

To forge a signature on a message m, we must find (r, s) such that

H(m)E S, T

g r*y"  (mod p). (3)

It is well-known that the forgery problem is no harder than computing discrete
logs in Zj (to see this, choose r at random and then solve a discrete log to obtain
s). Now, if we are able to randomly flip bits in one of p,y, g, it may be that the
forgery problem becomes tractable.

For example, if we change p to p, where p is easily factorable, then we can
apply the CRT to Zz which may reduce our work in solving gHm) = psyr
(mod p) using, say, an index-calculus method. Also, if ¢(p) is smooth, then the
Pohlig-Hellman algorithm can be utilized; however, we ideally want an attack
that has a high probability of success.

One tempting possibility to consider is replacing g with g where the order of g
is small (as in a small subgroup attack). However, the probability that randomly
flipping bits of g moves us into a small subgroup of Z; seems to be negligible.

It is possible that computing log, y might be easier than computing log, y.
This motivates the following relaxation of the discrete log problem: given y, find
7 and Z such that § = ¢* and y @ 7 has low weight.

6 Remarks

Our analysis and computational trials show that if an adversary is able to cause
random faults in only 4 bits of a 1024-bit RSA modulus stored in a device, then
there is a greater than 50% chance that they will be able to make that device
accept a signature on a message of their choice; for 2048-bit RSA, 6 bits suffice.

These percentages do not take into account any of the practical difficulties that
might be involved in a real-world implementation of the attack. For example, it
might be difficult to limit the effect of faults to a particular block of bits within
the modulus. Our examination was limited to a mathematical model and so we
did not deal with these issues. Presently, there is no record of anyone successfully
or unsuccessfully carrying out this attack in the open literature. Whether this is



Seifert’s RSA Fault Attack: Simplified Analysis and Generalizations 433

because the assumptions of the attack are too strong or that simply no one has
yet attempted to implement it remains to be seen.

One way to defend against this attack is to have the device check the integrity
of its public key. This might be done by computing a cryptographic hash of the
public key and then comparing it to some stored value. However, care must
be taken in when this comparison is done. If an integrity check is done before
a signature is verified, this will not stop attackers who cause bit-faults in the
public key after the check. Other countermeasures, against fault analysis attacks
in general, are discussed in [I].
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to this fault model is easy carry out. Here, we present an interesting example of
this.

The 2048-bit modulus from the public RSA key that Microsoft stores inside
the Xbox can be found in publicly available source code [I1]. Here is the modulus
in hexadecimal:

A44B1BBD7EDA72C7143CD5C2D4BA880C7681832D5198F75FCAB1618598E2B3E4
8D9A47BOBFF6BCO67CAES88F198266E535A6CB41B470C0A38A19D8F57CB11F568
DB52CF69E49F604EEA52F4EBOD37E80C60BD70ASCF5A67ECOSAA6B3ESC80C116
819A14892BFA7603BECE39F09C42724EEQF371C473AAAO9FEDA34F9EA1019827
BDO7CA52A80013BEQ471E46FCF1CA4D915FBODF95E9344330B6AAEOB90526AD1
BE475D10797526075C9206FF758A3EB3BAF7COA22E51645BBOF13FE129A22F2E
1BEDDA9S5D68AFCE6D46585B01FBB5737273C6AEE399148C5B8E77B479DESBOSBD
EEC27FEFFF7B349C64F51002D2F6522ED43617F2A1A3D4C2E6D73D66ES4ED7D3

This modulus consists of 256 bytes. If we index the bytes from least significant
(byte 0 = D3) to most significant (byte 255 = A4), then the smallest index, 4, such
that when we zeroize byte ¢ we obtain an easily factorable number is i = 16. The
method of factorization we used was to cast out all prime factors < 23° and then
apply a probabilistic primality test. The factorization is 3 - 13 - 199 - 856469 - pg
where pg is a large prime. The smallest index, j, such that when we zeroize byte
J we obtain a prime number is 7 = 104.
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