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Abstract. In this paper, we study the solvability of fair exchange in the
context of Byzantine failures. In doing so, we first present a generic model
with trusted and untrusted processes, and propose a specification of the
fair exchange problem that clearly separates safety and liveness, via fine-
grained properties. We then show that the solvability of fair exchange
depends on a necessary and sufficient topological condition, which we
name the reachable majority condition. The first part of this result, i.e.,
the condition is necessary, was shown in a companion paper and is briefly
recalled here. The second part, i.e., the condition is sufficient, is the focal
point of this paper. The correctness proof of this second part consists in
proposing a solution to fair exchange in the aforementioned model.

1 Introduction

Intuitively, a fair exchange is an exchange of items among two or more parties
where the only possible outcome is either that all parties obtain their items,
or none of them do. In our modern daily lives, the notions of fair exchange and
trust are ubiquitous: everyday, without even noticing, we participate in numerous
commercial exchanges, which we expect to be fair (and most actually are). Such
exchanges range from buying a coffee to spending a significant part of our savings
in buying a house. A key enabler to make all these exchanges occur is the notion
of trust. In the physical world, this trust is supported by the identification and
the implicit reputation of tangible exchange partners.

In the digital world, on the contrary, fair exchange is a surprisingly difficult
problem. This can be explained by the lack of trust that characterizes the digital
realm. In an e-commerce environment, an exchange partner behaving unfairly can
vanish without a trace, in contrast with a physical commercial environment where
a partner can be approached physically and held accountable for a misbehavior.
Yet, fair exchange is a fundamental problem that has constantly been studied over
the past decades and that has recently regained interest [1,2,3,4]. This is partly due
to the advent of m-business as a natural evolution of e-business, i.e., extending the
possibilities of e-business through the use of mobile devices, e.g., cellular phones.
When it comes to solving fair exchange in such semi-open environments, i.e., where
all parties are not necessarily identified a priori, carefully modeling and analyzing
trust relationships between peers is a key issue.
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Contribution and Roadmap. This paper propose a generic model in order to
study fair exchange in different network settings and also provides a topological
condition, both necessary and sufficient, for solving fair exchange. In Section 2,
we introduce a synchronous distributed model where processes are divided into
two categories, namely participants, which can be Byzantine, and trustees, which
are known a priori to be correct. In that section, we then formally define the fair
exchange problem via fine-grained properties that separately capture the liveness
and safety requirements of the problem. In Section 3, based on an impossibility
result shown in a companion paper, we present a necessary and sufficient topo-
logical condition for solving fair exchange in a model with trustees. Section 4
then presents a solution to fair exchange under the aforementioned condition:
this solution and its proof provide the correctness proof for the condition. Finally,
Section 5 discusses related work, while Section 6 summarizes our contribution
and sketches ongoing and future work.

2 Model and Problem Statement

Intuitively, our model consists in a synchronous distributed system composed
of two types of processes: participants, which are processes potentially subject
to Byzantine failures, and trustees, which are known a priori to be correct (and
which can thus be trusted). The addition of trusted processes in our model is
motivated by the fact that fair exchange is impossible in the absence of trust,
i.e., without at least one correct process trusted a priori by all other processes [4].
Adding only a single trusted process would however limit the scope of our model
and imply a specific role for that trustee, i.e., that of a Trusted Third Party
(TTP). For this reason, we associate a trustee with each process, hence uniformly
splitting the notion of trust among participants of the exchange and allowing for
fully decentralized approaches.

A Generic Yet Realistic Model. The notion of trustees allows us to pro-
duce a generic model applicable to various trust and network topologies [2,5]. In
particular, this model does not dictate the role of trustees in the fair exchange
protocol, i.e., how trustees are connected or the amount of computation they
bear. As a consequence, most existing solutions, either centralized or decentral-
ized, can be described in our model. For example, Figure 1(a) shows a classical
centralized trust setting, typically via a TTP as in [5], and the equivalent set-
ting in our model. Figure 1(b) then illustrates a distributed trust setting, as with
Guardian Angels [2]. By splitting the trust among all participants, via their re-
spective trustees, we can show that the existence of a decentralized solution to
fair exchange depends on a rather simple topological condition.

In practice, a trustee is typically implemented via a tamperproof piece of hard-
ware embedded in each host, e.g., a specialized chip or a smart card. This hardware-
based approach is gaining momentum in the industry, as illustrated by efforts from
IBM, with both its PCI 4758 and PCI-X 4764 cryptographic coprocessors [6], and
from Intel, with its Trusted Platform Module [7]. Such solutions are expected to
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Fig. 1. Examples of trust topologies

eventually become mainstream, as the urge to go beyond software-based security
increases, in particular in the realm of digital rights management, and as fully de-
centralized peer-to-peer architectures are being deployed.

2.1 System Model

More formally, we consider a distributed system consisting of a set Π of n
processes, Π = {p1, p2, . . . , pn}. Processes of Π are called participants. We com-
plete our model with a set Π ′ of n trusted processes, Π ′ = {p′1, p′2, . . . , p′n}, i.e.,
a trusted process is known to be correct a priori by all other processes. Processes
of Π ′ are called trustees. Furthermore, each p′i is matched in a one-to-one rela-
tionship with the corresponding participant pi and is directly connected to it.
The set Π+ is then the set of all 2n processes, i.e., Π+ = Π ∪ Π ′. Participants
are processes actually taking part in the exchange by offering and demanding
items, and they may exhibit Byzantine behaviors. Trustees on the contrary are
trusted processes that have no direct interest in the exchange. Their role is to
decide when it is appropriate to provide their associated participant with its ex-
pected item. We also assume the existence of a Public Key Infrastructure (PKI),
i.e., each process (participants and trustees) owns a private key and made the
corresponding public key accessible to all other processes. Among other things,
this assumption provides message unforgeability.

Topology and Synchrony. Processes are interconnected by a communication
network and communicate by message passing. The system is synchronous : it
exhibits synchronous computation and synchronous communication, i.e, there
exists upper bounds on processing and communication delays. To help our rea-
soning, we also assume the existence of some global real time clock, whose tick
range, noted T , is the set of natural numbers.1

Regarding the network topology, we assume that processes of Π+ form a con-
nected graph and that there exists a direct link between any participant and

1 This global clock is virtual in the sense that processes do not have access to it.
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its trustee. Links are reliable bidirectional communication channels, i.e, if both
the sender and the receiver are correct, any message inserted in the channel is
eventually delivered by the receiver. The synchronous system assumption fur-
ther tells us that the delivery will occur within some known time bound ΔPL.
Formally, such channels are said to be perfect links (PL), which provide send and
deliver primitives (respectively PL.send() and PL.deliver() functions) and ensure
the well-known termination and no creation properties.

Executions and Failure Patterns. We define the execution of algorithm A as
a sequence of steps executed by processes of Π+. In each step, a process has the
opportunity to atomically perform all three following actions: (1) send a message,
(2) receive a message and (3) update its local state.2 Based on this definition, a
Byzantine process is one that deviates from A in any sort of way, so a Byzantine
process is Byzantine against a specific algorithm A. It is a known result that
Byzantine failures can only be defined with respect to some algorithm [8]. A
Byzantine failure pattern f is then defined as a function of T to 2Π where f(t)
denotes a set of Byzantine processes that have deviated from A through time t.
In a way, a failure pattern f can be seen as a projection of all process failures
during some execution of A. Once a process starts misbehaving, it cannot return
to being considered correct, i.e., f(t) ⊆ f(t+1). We also define F as the set of all
possible failure patterns of A, so f ∈ F . Let Byz(f) =

⋃
t∈T f(t) denote the set of

Byzantine processes in f . We then define the set Fb of all failure patterns where
no more than b processes are Byzantine. More formally, Fb is the largest subset
of F such that, for any failure pattern f ∈ Fb, |Byz(f)| ≤ b, with 0 ≤ b ≤ n:

Fb = {f ∈ F : |Byz(f)| ≤ b} with 0 ≤ b ≤ n .

Note that b is bounded by n, the number of processes in Π . From this definition,
b is the maximum number of Byzantine processes in any failure pattern of Fb and
Fn = F . Note that all the above definitions regarding executions and failures are
similar to the models of [8,9], but that failures refer exclusively to participants,
i.e., processes of Π , since trustees are correct.

2.2 The Fair Exchange Problem

The fair exchange problem consists in a group of processes trying to exchange
digital items in a fair manner. The difficulty of the problem resides in achieving
fairness. Intuitively, fairness means that, if one process obtains the desired digital
item, then all processes involved in the exchange should also obtain their desired
digital item. The assumption is made that each process knows both the set Π
of processes participating in the fair exchange and the terms of the exchange.
The terms of the exchange are defined by a set D of expected item descriptions,
D = {d1, d2, . . . , dn}, and a set Ω of pairs of processes (pi, pj). A description di is
the description of the item expected by process pi. Furthermore di is unique, so
2 At each step, the process can of course choose to skip any of these actions, e.g., if it

has nothing to send.
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if i �= j, then di �= dj . A pair (pi, pj) defines the receiver pj of the item offered by
pi. Elements of Ω are defined such that pj is the image of pi through a bijective
map (or permutation) of Π , with i �= j. Finally, let M denote the set of digital
items mi actually offered by process pi during an execution of fair exchange,
M = {m1, m2, . . . , mn}. Note that, accordingly, for each description in D there
does not necessarily exist a corresponding item in M , since M includes items
that might have been offered by Byzantine processes. Finally, let desc(m) be the
function returning the description of item m.

Fair Exchange as Service. Fair exchange can be seen as a service allowing
processes to exchange digital items in a fair manner. Each process offers an item
in exchange for a counterpart of which it has the description. The exchange is
completed when every process releases the desired counterpart or all processes
release the abort item ϕ, meaning that the exchange has aborted. To achieve
this, the service offers the two following primitives.

offer(mi, pj) – Enables the process pi to initiate its participation in the
exchange with processes of Π by offering item mi to pj , in exchange for the
item matching description di, with di and Π known a priori.3

release(x) – Informs the process that the exchange completed and works as
a callback. Process pi receives item x, which is either an item matching di

or the abort item ϕ.

Note that, at the end of an exchange, we say that pi releases an item, meaning
that the service calls back the release operation of pi. This convention is sim-
ilar to the one used for typical deliver primitives, e.g., with reliable broadcast
primitives [10].

Fair Exchange Properties. We now specify the formal properties of the
fair exchange problem. While several other specifications exist in the litera-
ture [2,3,11], our specification differs in that it separates safety and liveness
via fine-grained properties. Such elemental properties then allow us to better
reason about the correctness of our solution.

Validity. If a correct process pi releases an item x, then either x ∈ M and x
matches di, or x is the abort item ϕ.

Uniqueness. No correct process releases more than once.
Non-triviality. If all processes are correct, no process releases the abort item ϕ.
Termination. Every correct process eventually releases an item.
Integrity. No process pj releases an item mi, with process pi correct, if mi

matches description dk of some correct process pk, with pk �= pj .
Fairness. If any process pi releases an item mj matching description di, with

pi or pj correct, then every correct process pk releases an item matching
description dk.

3 When defining the FE problem, trustees are not required since they have no direct
interest in the exchange.
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Among these six properties, the last two, integrity and fairness, are specific
to the problem of fair exchange and define precisely the possible outcomes of
fair exchange algorithms. Other specifications of fair exchange usually rely on a
single property to capture the notion of fairness [2,5,11]. However we argue that
if those specifications are suitable for cases where n = 2, they are impossible to
satisfy in models allowing more than one Byzantine process. In [2], for example,
the fairness property requires that if any correct process does not obtain its
item, then no process obtains any items from any other process. This is clearly
unsustainable in the presence of two or more Byzantine processes because one
cannot prevent two Byzantine processes from conspiring in order for one of them
to obtain the item of the second one. A simple but flawed fix would be to modify
this definition as follows: if any correct process does not obtain its item, then
no process obtains any items from any correct process. If it first seems correct,
this definition of fairness now allows a correct process to obtain the item of a
Byzantine process, even if other correct processes do not obtain anything.

Coming back to our specification, integrity ensures that no process obtains
an item offered by a correct process and matching the description of some other
correct process. Notice that this does not prevent a Byzantine process from illic-
itly obtaining the item destined to or offered by some other Byzantine process,
since such a behavior cannot be prevented and does not prejudice any correct
process. Then, fairness guarantees that if any process obtains its desired item
offered by some other process, with at least one of them being correct, then every
correct process also obtains its desired item. In other words this property pre-
vents a Byzantine process from taking advantage of a correct process but does
not protect other Byzantine processes from their own incorrect behaviors. More
trivially, it also ensures that no correct process takes advantage of any process.

3 The Reachable Majority Condition

In a companion paper [4], we showed that a necessary condition to solve fair
exchange in the model with trustees is to have every correct participant reliably
connected to a majority of trustees. To formally define this condition, named the
reachable majority (RM) condition, we must first define the notion of reliable
path as follows. Let pi and pj be two correct processes of Π+. We say that pi

and pj are connected by a reliable path, if there exists at least one path between
pi and pj such that no process along that path is Byzantine. The RM condition
is then formally defined as follows.

Definition 1 (Reachable majority condition). Topological condition under
which, for any correct process p ∈ Π and any failure pattern f ∈ Fb, p is
connected by a reliable path to a strict majority of trustees, i.e., �n

2 + 1�, even
in the presence of up to b Byzantine processes.

Note that trustees described in Definition 1 are called major trustees, whereas
others are called minor trustees. The strict majority of Definition 1 ensures
that the set of major trustees is identical for all correct processes, since if two
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processes have a single major trustee in common, then they have all their major
trustees in common. The main focus of this paper is to show that not only is this
condition necessary, it is also sufficient (Theorems 1 and 2 hereafter). This con-
dition then allows us to better reason on the solvability of fair exchange and to
compare different topologies. Indeed, given a topology and a number of Byzan-
tine processes, one can infer whether a solution exists in that context. Or maybe
more interestingly, it is possible to determine the maximum number of Byzantine
processes that a specific network topology may sustain and yet still allow true
fair exchange (by opposition to probabilistic fairness). Note that if the RM con-
dition is met, it implies that all correct processes and a majority of trustees are
interconnected by reliable paths. However, it is important to note that it does
not imply, nor require, a majority of correct processes. Figure 2 gives examples of
topologies allowing true fair exchange, including their respective upper bounds
on the number of Byzantine processes. As illustrated in Figure 2(a), a TTP is
able to sustain any number of Byzantine processes, whereas Figure 2(b) and (c)
show topologies sustaining respectively a minority of Byzantine processes and
up to the parity between correct and Byzantine processes.
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Fig. 2. Topologies allowing true fair exchange

3.1 Impossibility and Solvability Theorems

As already mentioned, in [4] we showed that the RM condition is a necessary
condition in order to deterministically solve fair exchange in the model with
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trustees. Hereafter, Theorem 1 gives an informal reading of this result. Further-
more, in this paper, we argue through Theorem 2 that the RM condition is also
sufficient in order to solve fair exchange.

Theorem 1 (Impossibility). In the context of a synchronous model with trus-
tees and Byzantine failures, there is no deterministic solution to the fair exchange
problem, if the reachable majority condition is not satisfied.

The formal proof of Theorem 1 falls outside the scope of this paper and can be
found in [4]. However, to give an intuition of its correctness, first observe that, in
order to ensure fairness, trustees must make a consistent decision whether to al-
low their respective processes to obtain their items or not. Then, since a process
and its trustee are directly connected, if some correct process p is not reliably
connected to a majority of trustees, neither is its trustee p′. So, either p′ is not
allowed to make a decision and p ends up violating the termination property
of fair exchange; or p′ is indeed allowed to make a decision in the absence of
a majority, in which case there is no means to prevent fairness from being vio-
lated, e.g., if another group of reliably connected trustees make a contradictory
decision.

Theorem 2 (Solvability). In the context of a synchronous model with trustees
and Byzantine failures, there exists a deterministic solution to the fair exchange
problem under the reachable majority condition.

Proof. In Section 4, we present Algorithms 1 and 2, which combine to produce
a generic solution to fair exchange, for any topology and any number of Byzan-
tine processes respecting the RM condition. We then prove the correctness of
Theorem 2 by proving that our solution preserves the validity, uniqueness, non-
triviality, termination, integrity and fairness properties of fair exchange.

4 Fair Exchange Under the RM Condition

In this section, we propose a solution to fair exchange that relies on the use of
trustees. As described in Section 2.1 (system model), participants communicate
by message passing and the network is a connected graph with respective partic-
ipants and trustees connected directly. Our solution is composed of Algorithm 1
and Algorithm 2 and, other than perfect links presented in the model, they rely
on two communication modules described hereafter, i.e., a best-effort multicast
module and a Byzantine agreement module. Note that we merely aim at prov-
ing that a generic solution does exist under the RM condition and are thus not
concerned with performance.

Best-Effort Multicast (BM). In order to solve fair exchange, Algorithms 1
and 2 rely on a best-effort multicast module that provides processes (participants
and trustees) with the means to send messages to any group of processes with
best effort. As described in our model, directly connected processes communicate
via reliable channels. However, two processes that do not benefit from a direct
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link are not necessarily reliably connected, since paths between them might go
through a Byzantine process, making communications potentially unreliable.
The BM module provides a means to reliably send messages to processes acces-
sible through at least one reliable path.4 The module provides two primitives,
send and deliver, described hereafter.

BM.send(pi, S, ‘type’, m) – Enables a process pi to multicast a message m to
a defined set S of processes. The message type prevents confusion among
different messages.

BM.deliver(pi, pj , ‘type’, m) – Works as a callback and enables a process pj of
S to receive a message m from process pi.

Hereafter, we present the validity and agreement properties of best-effort mul-
ticast, which are the two main properties ensured by the BM module. A no
creation property is also part of the specification of the best-effort multicast
abstraction but is not detailed here. Note that one can ensure that the validity
property of BM is achieved within some maximum time bound ΔBM , e.g., by
having ΔBM = n × ΔPL in the worst case.

Validity. Let pi and pj be any two correct processes connected by a reliable
path, if pi BM.sends a message m to a set S, with pj ∈ S, then pj eventually
delivers m.

Agreement. Let pi and pj be any two correct processes of some set S that are
connected by a reliable path, if pi BM.delivers a message m BM.sent to S,
then pj BM.delivers m.

Byzantine Agreement (BA). In Algorithm 2, we use a Byzantine Agree-
ment module that provides trustees with a means to reach agreement among
major trustees, in spite of Byzantine failures that may occur along the various
paths. This version of Byzantine agreement is largely based on [13]. However
it differs in the sense that no Byzantine processes participate in the agreement
(only trustees) but communications along unreliable paths may be blocked by
Byzantine processes. Now, by considering minor trustees responsible for Byzan-
tine failures happening along the unreliable paths leading to them, one can then
apply Byzantine agreement to our model, i.e., by considering major trustees as
correct processes, minor trustees as Byzantine processes and unreliable paths
as reliable. The BA module provides three primitives, BA.start(), BA.send() and
BA.deliver(), described hereafter in details.

BA.start(p′j) – Enables a trustee p′i to start an execution of BA in order to
receive a message from a trustee p′j. For each execution of the protocol,
every trustee calls the start primitive at the same time (see explanation
below) and trustee p′j calls the send primitive.

BA.send(p′i, m) – Enables a trustee p′i to reliably broadcast a message m to all
trustees.

4 This can be achieved using flooding as presented in Appendix A or some more
sophisticated algorithm [12].
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BA.deliver(p′i, M) – Works as a callback and enables a trustee p′j to receive a
set M of messages as the result of a reliable broadcast by trustee p′i. Possible
outcomes of the broadcast are twofold: (1) M is a singleton, meaning that
transmissions from the sender were not blocked, so that message can be
used; (2) M is the empty set, meaning that the sender did not call the send
primitive in a timely fashion or that messages from the sender were blocked.

Intuitively, the goal consists in preventing Byzantine processes along unreliable
paths from causing major trustees to receive different sets M . When relying on
unforgeable signed messages, a solution is known to exists for any number of
Byzantine processes [13], i.e., in our case minor trustees. Hereafter, we recall the
two interactive consistency (IC) properties ensured by the BA module.

IC1 – Agreement. If a major trustee BA.delivers a set of messages M , then
every major trustee BA.delivers M .

IC2 – Validity. If a major trustee BA.sends a message m, then every major
trustee eventually BA.delivers the set {m}.

An implicit assumption in [13] is that all trustees roughly start at the same time
to allow the absence of messages to be detected. Since all trustees roughly start
Algorithm 2 at the same time, the start primitive of BA enables us to explicitly
ensure this assumption by having all trustees calling the primitive at the same
time (line 13 of Algorithm 2), i.e., at time t0 + ΔBM . This ensures termination
of BA, even if a trustee does not send any vote or messages are blocked by some
Byzantine processes.

4.1 Fair Exchange Algorithm

Algorithms 1 and 2 provide a generic solution to the fair exchange problem for
any topology and any number of Byzantine processes meeting the RM condi-
tion. For sake of simplicity, we assume that all correct processes – including all
trustees – have local clocks that are synchronized within some fixed maximum
error, as discussed in [14], so they are able to start the algorithms at the same
time. We also assume that upon actions are executed atomically with respect to
one another. Participants execute Algorithm 1, which initiates the fair exchange
protocol, and trustees execute Algorithm 2. In Algorithm 1, each participant
sends an encrypted version of its offered item to the trustee of the correspond-
ing participant, according to Ω (the terms of the exchange). It then waits to
receive and release the content of the first message sent by its trustee. The ter-
mination of Algorithm 1 is ensured by the timeout contained in Algorithm 2. In
Algorithm 2, each trustee waits to receive the item expected by its associated
participant. Algorithm 2 is then structured in two phases described hereafter:
(1) the voting phase, and (2) the clue exchange phase.

Voting Phase. In this phase, trustee p′i sends its vote to every trustee to inform
them that it holds the expected item, and waits to receive the vote of every
trustee. In Algorithm 2, once trustee p′i receives the encrypted item (line 7), it
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Algorithm 1. Fair Exchange executed by participant pi, with (pi, pj) ∈ Ω

1: Uses: Perfect Link (PL), Best-effort Multicast (BM)
2: Initialisation:
3: released ← ‘false’

4: function offer(item, pj)
5: BM.send(pi, {p′

j}, ‘item’, encrypt(p′
j , item)) {sends its encrypted item to p′

j}

6: upon PL.deliver(p′
i, pi, item) do {callback from PL}

7: if ¬released then {avoids releasing}
8: released ← ‘true’ {more than once}
9: release(item) {releases the item received}

deciphers it using its private key, checks if it matches its description and starts
the voting process. The trustee signs and broadcasts its proceed vote (line 12)
using BA, indicating that it holds the expected item. It also starts BA for each
trustee to ensure termination of all executions of BA. Then, upon reception of
a vote, the validProceedVote() function checks if the delivered set is a singleton
containing the proceed vote of the sender (line 17). If the vote is valid, it is
added to the set of votes. Once all votes are gathered, a trustee knows that every
trustee voted proceed and that they thus hold the expected item. With that
information, trustee p′i enters the final phase by signing and then sending the n
votes – called the i-th clue – to every trustee (line 21).

Clue Exchange Phase. In this phase, trustee p′i sends its clue to all trustees to
inform them that it received all n votes, and waits to receive the clues from a
majority of trustees (line 27). Upon reception of a clue, the validClue() function
checks if the clue contains a signed set of all n proceed votes (line 25). With
�n

2 + 1� clues, it sends the deciphered item to its corresponding participant
(line 28). The majority is necessary to ensure that at least one major trustee
was able to produce its i-th clue in order for any process to release its item. At
this stage, no Byzantine process is able to prevent trustees of correct processes
to send the expected item to their respective process.

4.2 Correctness Proof

In the following, we prove that Algorithms 1 and 2 solve fair exchange under
the reachable majority condition. Our correctness proof shows that Algorithms 1
and 2 preserve the validity, uniqueness, non-triviality, termination, integrity and
fairness properties of fair exchange. Based on Lemma 1, the respective theorems
hereafter validate each of these properties. Note that, hereafter, the term process
is only used to designate participants, i.e., processes of Π , unless specifically
mentioned otherwise.
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Algorithm 2. Fair Exchange protocol executed by trustee p′i

1: Uses: Perfect Link (PL), Best-effort Multicast (BM), Byzantine Agreement (BA)
2: Initialisation:
3: t0 ← time() {sets t0 to starting time}
4: di ← ... {sets description to known value}
5: item ← ⊥ {sets variable to null}
6: votes, clues ← ∅ {sets variables to empty set}

7: upon BM.deliver(pj , p
′
i, ‘item’, sealedItem) do {callback from BM}

8: if (item = ⊥) then {checks for duplicate send}
9: item ← decipher(sealedItem) {deciphers and stores received item}

10: if desc(item) = di then {check if item matches description}
11: vote ← sign(‘proceed’) {produces proceed vote}
12: BA.send(p′

i, vote) {sends vote}

13: upon time() > t0 + ΔBM do {item exchange phase is over}
14: for all p′

j ∈ Π ′ do {for all trustees}
15: BA.start(p′

j) {starts BA}

16: upon BA.deliver(p′
j , vote) do {callback from BA}

17: if validProceedVote(vote) then {checks vote}
18: votes ← votes ∪ vote {adds p′

j’s vote to set}
19: if (|votes| = n) then {if all votes are proceed}
20: clue ← sign(votes) {produces clue}
21: BM.send(p′

i, Π
′, ‘clue’, clue) {sends clue}

22: else
23: PL.send(p′

i, pi, ϕ) {sends ϕ to pi}

24: upon BM.deliver(p′
j , p

′
i, ‘clue’, clue) do {callback from BM}

25: if validClue(clue) then {checks if message is valid}
26: clues ← clues ∪ {clue} {adds pj’s clue to set}
27: if (|clues| > n/2) then {checks for majority of clues}
28: PL.send(p′

i, pi, item) {sends item to pi}

Lemma 1. If some trustee does not receive the expected encrypted item, then
no trustee sends an item at line 28 of Algorithm 2.

Proof. If some trustee does not receive the expected item, it does not send the
proceed vote. Hence no trustee receives all n proceed votes, so no trustee
sends its i-th clue. If no trustee sends its i-th clue, then no trustee receives any
clue. Without a majority of clues, no trustee sends the item to its corresponding
participant at line 28 of Algorithm 2.

Theorem 1 (Validity). If a correct process pi releases an item x, then either
x ∈ M and x matches di, or x is the abort item ϕ.

Proof. In Algorithm 1, a process pi only releases an item at line 9. Process pi

releases upon reception of an item from its trustee p′i, so the possible items
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are those sent by p′i in Algorithm 2. In Algorithm 2, trustee p′i explicitly sends
the abort item ϕ at line 23 so pi would release ϕ. The only other case of item
transmission is at line 28: p′i sends the item that is stored in variable item. From
Lemma 1, if a trustee sends an item at line 28, it has previously received the
expected item and stored it in variable item. Since, from line 8, no two different
items can be stored in variable item, p′i sends the expected item at line 28. So pi

would release the expected item.

Theorem 2 (Uniqueness). No correct process releases more than once.

Proof. The boolean variable released in Algorithm 1 and the atomic execution
of upon statements prevent any correct process from releasing more than once.

Theorem 3 (Non-triviality). If all processes are correct, no process releases
the abort item ϕ.

Proof. Since every process is correct, every process sends the correct encrypted
item at line 5 of Algorithm 1 as agreed in the terms of the exchange. From the
validity property of BM, every trustee p′i receives an item matching description di

before time t1 = t0 + ΔBM , so every trustee produces and sends its proceed

vote at line 12 of Algorithm 2 in a timely fashion. From the IC2 property of
BA, no process receives an invalid proceed vote. So finally, no trustee sends
the abort item ϕ (line 23) of Algorithm 2 and thus no process releases ϕ.

Theorem 4 (Termination). Every correct process eventually releases an item.

Proof. The assumption that participants and trustees start Algorithms 1 and 2
at the same time and the timeout at line 13 of Algorithm 2 ensures that every
trustee starts all n executions of BA at the same time. This implies that, from
the existence of a time bound for the termination of BA and the IC1 property,
there is a time after which: either every trustee of correct processes receives
at least one invalid proceed vote and sends the abort item ϕ, prompting the
corresponding correct process to release ϕ; or every major trustee receives all
n valid proceed votes. In the latter case, every major trustee produces and
sends its i-th clue at line 21 of Algorithm 2. From the validity property of BM
and the reachable majority condition, every trustee of correct processes receives
a majority of clues and then sends the item at line 28 of Algorithm 2. Finally,
from the termination property of PL, every correct process releases the item.

Theorem 5 (Integrity). No process pj releases an item mi, with process pi

correct, if mi matches description dk of some correct process pk, with pk �= pj.

Proof. Firstly, since any process pk and its trustee p′k are directly connected,
no process pj intercepts the transmission of any deciphered item mi by p′k at
line 28 of Algorithm 2. Secondly, only in a single step of Algorithm 1, i.e., at
line 5, does a correct process pi transmit its item mi through the network. Since
pi is correct, pi encrypts mi using the public key of p′k in order to send it through
the network. So no process other than pi and pk holds a deciphered version of
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mi and, since both are correct, they do not send a deciphered version of mi to
pj . From assumption on the PKI unforgeability, pj is not capable of obtaining a
deciphered version of mi and thus does not release mi.

Theorem 6 (Fairness). If any process pi releases an item mj matching de-
scription di, with pi or pj correct, then every correct process pk releases an item
matching description dk.

Proof. The proof is by contradiction.

Assume that some correct process pk does not release an item matching descrip-
tion dk and that some other process pi releases an item mj matching descrip-
tion di, with pi or pj correct. If pi releases mj (line 9 of Algorithm 1), either pi

is correct and only releases an item received from its trustee p′i; or pj is correct
and encrypted mj before sending it to p′i (line 5 of Algorithm 1) and thus pi is
only capable of releasing mj by receiving it from its trustee p′i. So in either cases,
if pi releases mj , mj is received from trustee p′i, which sends mj at line 28 of
Algorithm 2. Trustee p′i thus receives a majority of clues in some previous steps.
From the reachable majority condition, at least one of these clues is produced
by some major trustee p′x. Trustee p′x thus receives all n proceed votes. So,
from the IC1 property of BA, every major trustee also receives all n proceed

votes, including all trustees of correct processes. This implies that no trustee of
correct processes sends the abort item ϕ (line 23 of Algorithm 2), including p′k,
so pk does not release ϕ. From the validity and termination properties of FE,
if pk does not release ϕ, then pk releases an item matching description dk. A
contradiction.

4.3 Discussion

As presented in Section 4, our generic solution relies both on best-effort multi-
cast (BM) and Byzantine agreement (BA) modules. The BM module is used in
Algorithms 1 and 2, i.e., by participants and trustees, whereas the BA module
is only used in Algorithm 2, i.e., by trustees.

Since both modules share very similar validity and agreement properties, a
reasonable question is: could we have done with only one module? The answer
is: yes, a modified version of BM would be sufficient. To understand why, let us
first point out a key guarantee offered by BA: trustees always eventually deliver
a set of messages, even if the sender did not call the send primitive or all its
messages where blocked by Byzantine processes (in which case the set is empty).
The eventual delivery of BA is achieved through the use of the start primitive,
allowing trustees to detect the absence of messages.5

The BM module, on the contrary, offers no such guarantee. However, by
adding a start primitive to BM and by slightly changing its semantics, we could
rely on the BM module to reach deterministic agreement among major trustees.

5 Major trustees are thus able to agree on the votes of all trustees, including minor
trustees, even if some (or all) messages sent by minor trustees are blocked.
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However, since the BM module already accomplishes two different tasks, i.e.,
point-to-point and multicast communication, overloading it with a third seman-
tics would make our solution more difficult to understand.

5 Related Work

Research on fair exchange has produced an impressive body of work over the past
decades, as testified by several surveys [15,16]. At least three different commu-
nities of researchers are showing major interest in this problem, namely people
active in e-business solutions, in cryptographic algorithms and in distributed
systems. This diversity results in a variety of problem statements and underly-
ing assumptions, as well as an even larger number of approaches to solve fair
exchange.

Modeling Fair Exchange. The fair exchange problem comes basically in two
flavors, namely a weak variant and a true variant [16]. Weak fair exchange does
not require the exchange to be fair but rather that honest peers are able to gather
evidence of potential misbehaviors. This variant thus assumes that misbehaving
peers can be brought to justice, which is not the case in our approach. The
problem we address in this paper is true fair exchange, which on the contrary
requires a strong enforcement of fairness.

Within the realm of true fair exchange, various specifications have been pro-
posed, with slightly different sets of properties [15]. Among these properties,
fairness is the most difficult to capture and hence where most specifications tend
to differ, as in [2,5,11]. Despite what is sometimes claimed, several such specifica-
tions are really meaningful for exchanges involving only two processes, i.e., they
are impossible to satisfy in models allowing more than one Byzantine process.
Note also that many researches explicitly aimed at the fair exchange variant
involving only two peers [5,17,18,19,20], in particular when it comes to specific
applications of fair exchange, e.g., exchanges of digital signatures, of emails and
their receipts, etc. Our specification of the fair exchange problem, on the con-
trary, considers the general case where more than two peers might be involved,
as already discussed in Section 2.2.

Besides proposing a specification, some authors also discuss the difficulty of
fair exchange and propose impossibility results in various models. In [11], fair
exchange is measured against consensus, and an impossibility result on fair ex-
change in asynchronous models is shown by comparison with the FLP impossi-
bility [21]. In [22], fair exchange is shown to be impossible to solve deterministi-
cally in an asynchronous system with no Trusted Third Party (TTP). In another
feasibility study [23], complex exchanges are broken into sub-exchanges – each
relying on a different TTP – and represented as a graph. Reduction rules are
then applied to the graph in order to demonstrate the feasibility of the exchange.
This method also makes it possible to illustrate how closely exchange feasibility
relies on trust. Along that line, we have shown that fair exchange is insolvable in
a synchronous model in the absence of some identified process that every other
process can trust a priori [4].



A Topological Condition for Solving Fair Exchange 45

Before moving to the discussion on existing fair exchange solutions, let us
clarify an often misunderstood specificity of fair exchange. Indeed, this misun-
derstanding leads some people to believe that the above impossibility results are
in fact contradicting an important result by Chaum et al. in [24]. Intuitively, this
result states that any multiparty protocol can be achieved in an unconditionally
secure manner, provided that the system is synchronous and that at least 2

3 of
the peers are honest. The key difference here is in what one is really trying to
achieve. Indeed, the problem considered by Chaum et al. consists in having a
set of peers compute a multiparty function while preserving privacy regarding
each peer’s input and output [25]. However, fairness is out of their scope, i.e.,
they do not achieve it, nor discuss it, hence the confusion, since the absence of
discussion may unintentionally lure the reader into thinking otherwise.

Solving Fair Exchange. Most solutions to fair exchange rely on some kind
of Trusted Third Party (TTP). A TTP is a process directly accessible to all
processes. Fairness is thus trivially ensured by having processes send their items
to the TTP, which forwards the items, if the terms of the exchange are ful-
filled [26]. A TTP brings synchronism and control over terms of the exchange in
order to ensure fairness but constitutes a bottleneck and a single point of fail-
ure. For this reason, various so-called optimistic algorithm have been proposed
that only involve the TTP when something goes wrong, i.e., when an attempt
to cheat is detected [5,19,26,27,28]. However optimistic approaches are based on
the strong assumption that the environment is mostly honest. To weaken the
role of the TTP, in [18] for instance, Franklin and Reiter propose a solution
using a semi-trusted third party that can misbehave on its own but does not
conspire with either of the two participant peers. Similarly, the authors of [29]
propose a solution based on a cluster of untrusted servers acting as third parties.
In the latter paper, however, the authors recognize that they are merely solving
a variant of the weak fair exchange.

By relying on fully decentralized tamperproof modules, other approaches de-
part from the traditional TTP-based approach [1,2,3], assuming fully connected
processes but embedded tamperproof modules dependant of their process for
communicating. A very interesting feature of the approach proposed in [2] lies
in its ability to gracefully degrade its quality of service from true fairness to
probabilistic fairness.

6 Concluding Remarks

In this paper, we extended a previous result [4] by proposing a necessary and
sufficient topological condition – the reachable majority condition – on the solv-
ability of fair exchange in a synchronous model with Byzantine failures and
trustees. We gave a solution to fair exchange under the reachable majority con-
dition, along with its correctness proof. This result thus validates the correctness
of our reachable majority condition. Currently, we are further studying the rela-
tionship between various topologies and the reachable majority condition. We are
also further investigating the relationship between our results and those found in
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the domain of secure multiparty computation and fair computation [30]. In [24]
for instance, Chaum et al. show that any multiparty protocol can be achieved
in an unconditionally secure manner, provided that the system is synchronous
and that at least 2

3 of the peers are honest.
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24. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC ’88: Proceedings of the 20th ACM symposium on Theory of computing,
New York, NY, USA, ACM Press (1988) 11–19

25. Goldreich, O.: The Foundations of Cryptography. Volume 2. Cambridge University
Press (2004)

26. Bürk, H., Pfitzmann, A.: Value exchange systems enabling security and unobserv-
ability. Computers & Security 9(9) (1990) 715–721

27. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with
off-line TTP. In: RSP: 19th IEEE Computer Society Symposium on Research in
Security and Privacy. (1998)

28. Baum-Waidner, B., Waidner, M.: Round-optimal and abuse free optimistic multi-
party contract signing. In: Automata, Languages and Programming. Number 1853
in Lecture Notes in Computer Science (LNCS), Springer (2000) 524–535

29. Srivatsa, M., Xiong, L., Liu, L.: Exchangeguard: A distributed protocol for elec-
tronic fair-exchange. In: 19th International Parallel and Distributed Processing
Symposium (IPDPS 2005), IEEE Computer Society (2005)

30. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: CRYPTO ’90: Proceedings of the 10th International Cryp-
tology Conference on Advances in Cryptology, London, UK, Springer-Verlag (1991)
77–93

A Best-Effort Multicast

Algorithm 3 provides a solution to the best-effort multicast abstraction presented
in Section 4 and thus shows that the BM module is implementable in the context
of our model. We assume that every process knows its direct neighbors and we
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define Vpi as the set of neighbors of process pi. Intuitively Algorithm 3 satisfies
the properties of best-effort multicast by having correct processes flooding the
network with the message. Flooding is achieved by forwarding any received mes-
sage the first time it is received. Upon reception of that message, if the process is
included in the set S of recipients, it also delivers the message. Note that having
a Byzantine process deliver a message it was not suppose to does not jeopardize
the validity of BM, nor cause any sort of problems.

Algorithm 3. Best-effort multicast protocol executed by process pi

1: Uses:
2: Perfect Link (PL)

3: Initialisation:
4: forwarded ← ∅ {set of forwarded messages}

5: function send(pi, S, m)
6: for all pj ∈ Vpi do {for all neighbors}
7: PL.send(pi, pj , 〈pi, S, signi(m)〉) {sign and send the message}
8: if pi ∈ S then {check if message destined to self}
9: deliver(m) {deliver the message}

10: upon PL.deliver(pj, pi, 〈pk, S, signk(m)〉) do
11: if m /∈ forwarded then {check if not forwarded}
12: forwarded ← forwarded ∪ {m} {add the message to forwarded set}
13: for all px ∈ Vpi − {pj} do {for all neighbors except pj}
14: PL.send(pi, px, 〈pk, S, signk(m)〉) {forward the message}
15: if pi ∈ S then {check if message destined to self}
16: deliver(m) {deliver the message}

Correctness Proof. In the following, our correctness proof aims at showing
that Algorithm 3 preserves the Agreement and Termination properties of best-
effort multicast and that such a module is thus implementable in our model.
Note that in Lemma 1 the term ‘receive a message’ does not imply that the
message is delivered but it relates to messages that are either obtained from the
send() function (line 5 of Algorithm 3) or from the PL.deliver() callback (line 10
of Algorithm 3).

Lemma 1. Let pi and pj be any two correct processes that are connected through
a reliable path, if pi receives a message m, then pj receives m.

Proof. The proof is by induction.
Basis step. Assume that some correct process pi receives a message m (line 5
or 10) and that pi and pj are directly connected. So either pi is the originator
of m and sends m to processes of Vpi ; or pi receives m from some process px

and sends m to processes of Vpi − {px}. In both cases, from the termination
property of perfect links, all processes of Vpi eventually receive m. From our
initial assumption, since pj ∈ Vpi , pj receives m.
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Inductive step. Assume that any two correct processes pi and pj are connected
through a reliable path. From definition of reliable paths, there exists a process
pk such that pk is on that reliable path and pj ∈ Vpk

. Moreover, pk is correct and
connected to pi through a reliable path. So now assume that pi and pk receive a
message m. Again either pk is the originator of m and sends m to processes of
Vpk

; or pk receives m from some process py and sends m to processes of Vpk
−{py}.

In both cases, from the termination property of perfect links, all processes of Vpk

eventually receive m. From our initial assumption, since pj ∈ Vpk
, pj receives m.

Theorem 1 (Agreement). Let pi and pj be any two correct processes of S
that are connected through a reliable path, if pi delivers a message m, then pj

delivers m.

Proof. Assume that any two correct processes pi and pj of S are connected
through a reliable path and that pi delivers a message m. So pi receives m in
a previous step of Algorithm 3 (line 5 or 10). From Lemma 1, pj also receives
m. Since pj is a correct process of S, either m is in the forwarded set of pj and
pj has delivered m, or m is not in the forwarded set of pj and pj delivers m at
line 16.

Theorem 2 (Termination). Let pi and pj be any two correct processes con-
nected through a reliable path, with pj ∈ S, if pi sends a message m, then pj

eventually delivers m.

Proof. Assume that any two correct processes pi and pj of S that are connected
through a reliable path and that pi sends a message m. So pi receives m, as the
originator of m. From Lemma 1, pj also receives m. Since pj is a correct process
of S, either m is in the forwarded set of pj and pj has delivered m, or m is not
in the forwarded set of pj and pj delivers m at line 16.
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