
P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 369 – 378, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modular Behavior Profiles in Systems with Shared
Libraries (Short Paper)

Carla Marceau and Matt Stillerman

ATC-NY, 33 Thornwood Drive, Ithaca NY 14850, USA
{carla, matt}@atc-nycorp.com

Abstract. Modern computing environments depend on extensive shared
libraries. In this paper, we propose monitoring the calls between those libraries
as a new source of data for host-based anomaly detection. That is, we
characterize an application by its use of shared library functions and
characterize each shared library function by its use of (lower-level) shared
libraries. This approach to intrusion detection offers significant benefits,
especially in systems such as Windows, much of which is implemented above
the kernel as dynamically linked libraries (DLLs). It localizes anomalies to
particular code modules, facilitating anomaly analysis and assessment and
discouraging mimicry attacks. It reduces retraining after system updates and
enables training concurrent with detection. The proposed approach can be used
with various techniques for modeling call sequences, including N-grams,
automata, and techniques that consider parameter values. To demonstrate its
potential, we have studied how a DLL-level profiling IDS would detect two
recent attacks on Windows systems.

Keywords: Anomaly detection, intrusion detection, behavior profile, shared
libraries, dynamic link libraries.

1 Introduction

After ten years of research on host-based anomaly detection systems, anomaly
detection is still a remote dream for applications that run on most desk-top systems.
One reason for this is that modern applications, especially Windows applications, are
huge and exhibit a very wide range of behaviors; as the set of legitimate behaviors
grows, the probability of false negatives increases, as does the time needed to train a
behavior profile. This problem is exacerbated by mimicry attacks [1], which imitate
normal application behavior as seen by a given detector in order to defeat that
detector. Second, as applications grow, training the anomaly detector takes longer.
Worse, Windows systems are subject to frequent patches and updates, any one of
which can invalidate the current behavior profile of an application and provoke
retraining. Third, anomaly detectors indicate that something might be wrong, but they
typically provide very little information for anomaly assessment and response. In
particular, they cannot localize the anomaly to a specific program module, which
might provide further information for assessment. For these reasons, most current
approaches to application anomaly detection are unlikely to succeed for Windows
applications.

370 C. Marceau and M. Stillerman

In this paper, we propose a novel approach to application anomaly detection that
addresses these difficulties. The basic idea is to exploit the use of shared libraries by
applications to create profiles for the exported functions of each shared library. We
model the behavior of the application by its calls to DLLs and the behavior of each
DLL function by its calls to other DLLs. The result is a localized profile of each
module (application binary or DLL). Figure 1 schematically represents this key idea.
In the system of Figure 1, Application 1 is characterized by its calls to Kernel32.dll,
AAA.dll, and BBB.dll. BBB.dll is characterized by its calls to CCC.dll, kernel32.dll,
and DDD.dll.

It might seem that the use of shared libraries is too limited to profile applications.
However, modern computing systems include extensive shared libraries that
implement GUI components, display pictures, enable access to networks and
databases, manage mail and other higher level protocols, and provide other reusable
functionality. Much of the Windows operating system is implemented in well over a
thousand DLLs that execute in user space and mediate access to the kernel. As one
example, opening Outlook to open a single email exercises well over one hundred
DLLs, of which up to five may be represented on the call stack at any one time.
Furthermore, many vulnerabilities in Windows systems are located in DLLs,
including a recently discovered vulnerability in the graphics rendering engine
(gdi32.dll) that affects every Windows system shipped between 1990 and January
2006 [2, 3]. It is not surprising that most published Windows system vulnerabilities
occur in DLLs, since DLLs are available for attackers to study and the payoff for
cracking them (a large number of potential victims) is high.

Application 1 Application 2

AAA.dll BBB.dll

Kernel32.dll

CCC.dll DDD.dll

Ntdll.dll

kernel

Compromised
DLL

Fig. 1. Structure of a Windows application

This paper makes the following novel contributions:

• It defines DLL profiles and a class of intrusion detection systems based on DLL
profiles

• It demonstrates that DLL profiles associate suspicious behavior with specific code
modules

 Modular Behavior Profiles in Systems with Shared Libraries 371

• It shows that identifying the locus of suspicious behavior opens new sources of
data for analyzing anomalies

• It provides evidence that DLL profiles reduce false negatives and resist mimicry
attacks

• It argues that DLL profiles can be used to minimize the burden of training and
enable detection to proceed concurrently with retraining after updates

The paper is organized as follows. In Section 2, we review the structure of
Windows processes and explain how DLL profiles can be used to detect anomalous
program execution. In Section 3, we discuss related work. In Section 4, we briefly
describe our experiments detecting two recent exploits on a small application. In
Section 5, we substantiate the claimed benefits of DLL profiles. We conclude with
suggestions for further research.

2 An Intrusion Detection Model Based on DLL Profiles

A Windows process comprises multiple (kernel-supported) threads, some of which
are dedicated to GUI or system functions. Windows applications make extensive use
of DLLs that implement the operating system and supply additional functionality.
The Windows kernel API is defined by ntdll.dll. However, Windows applications
rarely call ntdll.dll directly. Indeed, the Microsoft Visual Studio development
environment does not support calls to ntdll.dll. Instead, kernel32.dll1 defines the
standard interface to the operating system, although a few DLLs call ntdll directly.
Many calls to kernel32 are mediated through higher-level DLLs. As a result, the
typical application cascades through layers of DLLs and results in multiple calls to
ntdll and the kernel.

Ground-breaking work by Forrest, et al. [4, 5] showed that kernel-call traces
capture application behavior. However, in systems and applications dominated by
DLLs, much of the information in kernel-call traces characterizes the internal
behavior of DLLs. Therefore, a single N-gram in such a trace often reflects the
behavior of multiple DLLs. In the short execution of Outlook mentioned above, up to
five DLLs at a time were represented on the call stack. Other characterizations of the
behavior of the application as a whole also describe the combined behavior of many
shared libraries.

In DLL profiling, we characterize each module (the application and the DLLs) by
the calls it makes to other DLLs—not to the kernel. When one DLL calls another,
their combined state can be represented with a stack of traces of calls between
modules, one for each current invocation of a module. Figure 2 represents a snapshot
of the stack. Each box represents a separate sequence that is currently being
accumulated. In Figure 2, the most recent inter-module call by the application is to
function f() in AAA, which in turn has called function c() in CCC. When function c
returns, the current inter-DLL sequence for function c() is complete. If function f()

1 The name “Kernel32” suggests that this DLL defines an interface to the kernel. Kernel32

provides very basic operating system functionality, but it accesses the kernel only through
ntdll, which implements the kernel API. In this paper, we will commonly write DLL names
without the .dll extension.

372 C. Marceau and M. Stillerman

calls some other function in another DLL, a sequence for that function is pushed onto
the stack. Note that since DLLs are reentrant, the stack may include multiple
instantiations of a single module.

Fig. 2. (a) The stack of inter-DLL-call sequences in a thread. Each stack element is a trace (b)
of calls from an exported function of a DLL (or the application main) to other DLLs.

DLL profiles support a new class of intrusion detection methods, depending on
what information is recorded in the traces and the profile for each exported DLL
function. For example, if the profile focuses on control flow, training traces record
the identity of the called functions. N-grams, automata, or other methods may be
used to represent the set of traces, as for kernel-call traces [4-11]. Alternatively, if the
profile focuses on dataflow, the training traces can record not only the functions
called, but also relations among the arguments to the function being profiled and the
arguments of the functions it calls. The experiments described in this paper used N-
grams, with N=6,2 but most of our results are more generally applicable.

An IDS that uses the DLL stack model for intrusion detection can be realized in a
straightforward way. We posit that the IDS maintains a profile of each function
exported by a Windows system DLL, in addition to a profile of each application
module (binary or DLL) to be protected. At run time, calls to each profiled DLL are
captured, for example by mediating connectors [12, 13], and sent to the IDS. For
each thread, the IDS maintains a stack of currently executing modules (DLLs or the
main application). For each function in the stack, it records information about the
external calls made by the function, as in Figure 2. When an exported function of a
DLL is called from another DLL, the instrumentation informs the IDS of the call.
The IDS notes the call in the trace at the top of the DLL stack for that thread, checks
for anomalies against the profile of the calling function, and pushes a trace for the
called function onto the stack. When the DLL function returns, its trace is popped off
the DLL stack.

2 Although Forrest’s group used N=6 to model UNIX and Linux processes, a smaller value for

N may be more appropriate for tracking behavior in terms of inter-DLL calls.

Trace of application calls to DLLs

Trace of inter-DLL calls by
function c() in CCC.dll

Trace of inter-DLL calls by
function f() in AAA.dll

(a)

…;Kernel32.HeapAlloc();AAA.f()

(b)

 Modular Behavior Profiles in Systems with Shared Libraries 373

After an update to a DLL, the IDS continues to function but switches to training
mode for the updated DLL. When an exported function from the newly updated DLL
is called, the IDS pushes the DLL onto the stack, but instead of comparing the trace of
the DLL function to the old profile, it collects the trace for input into a new profile.
When the DLL function returns, the completed trace is added to the collection of
traces for that function, and the profile creation module of the IDS processes it. At
some point, the profile is deemed sufficiently mature to be used for detection. At that
point, the IDS switches back into detection mode for that DLL function. Note that
function profiles mature at different rates, depending on each function’s range of
behavior and on how frequently it is exercised.

3 Related Work

Much work has been done on profiling programs by sequences of calls, analyzing
such sequences, and evading detection based on such sequences. The VtPath model
of Feng et al. [14], who use much the same information as the process
characterization of Figure 2. They exploit the call stack at each system call to record
calls and returns between successive system calls. Like the VtPath model, DLL
profiles are used to detect anomalies above the kernel-interface level. Our model
differs from theirs in that (1) it records the thread history per calling DLL, rather than
for the application as a whole, and (2) it is sparser in that it includes only calls
between modules. At any one time, the expected number of functions on the DLL
stack is much smaller than the number of functions on the call stack, because
functions exported by a DLL are gateways to the DLL’s entire functionality, much of
which may be implemented in other functions. The exported function may make
several calls within the DLL before some function makes a call to another DLL.

We note the difference between our approach and that of Sekar [15]; that approach
characterizes an application as a whole by the sequence of its kernel calls augmented
by a notation of the origin of the kernel call in the application itself. With Sekar’s
approach, it is possible to avoid characterizing library functions and focus on the
behavior of the application itself; our approach also characterizes the application per
se. However, by characterizing the intermediate shared library functions, we are able
to identify attacks aimed precisely at these libraries. Indeed, this accounts for a very
large number of attacks on Windows systems. Note that both [14] and [15] employ
stack tracing in Linux to obtain data for the analysis. In Windows systems, stack
tracing is often infeasible because of stack optimization, in which the compiler may
use idiosyncratic stack structures within a DLL.

4 Experiments with DLL Profiles

To investigate DLL profiles, we created a DLL profile for a small Windows
application and used it to detect two recent exploits. In this section, we describe the
experiment.

The first exploit, introduced in the Fall of 2004, exploits a vulnerability present in
most versions of gdiplus [3] up to Windows XP, Service Pack 1. It causes a heap
overflow when gdiplus is used to display a malicious JPEG image. To study the

374 C. Marceau and M. Stillerman

exploit, we instrumented ImgViewer/32 [16], a freeware application for viewing
pictures in GIF, JPEG, and other formats. Like many image viewing applications,
ImgViewer/32 relies on Microsoft’s graphics processing DLLs, gdi32 and gdiplus,
and hence is vulnerable to the attack.

The gdiplus attack, as described in [17], occurs in two stages. In the first stage, a
specially-crafted JPEG image header causes function GdipGetPropertyCount() to
overwrite the heap with code contained in the “comments” section of the header.
Later, during execution of the function GdiplusShutdown(), the overwritten code is
executed. The version of the exploit that we used [18] takes advantage of the heap
overflow to create a new user with administrative privileges.

Our experiment was conducted as follows. We created a profile of normal behavior
by exercising the ImgViewer application on harmless JPEG images in thirty training
runs. We then ran the application with a malicious image. The exploit traces were
compared with the profiles to find anomalies, and the anomalies were analyzed. We
obtained examples of harmless anomalies by exercising the ImgViewer application
with JPEG comments against a profile that excluded images with comments.

The ImgViewer application exercises the application binary and 24 DLLs in
several threads; we monitored only threads that were governed by the application,
which used 14 DLLs. Using those threads, we constructed profiles as described in
Section 2. Individual profiles were expressed as sets of N-grams.

We also profiled the effect of the recently discovered WMF exploit [19]. In
January 2006, a vulnerability in gdi32.dll was discovered that had existed in all
Windows systems since 1990. The vulnerability, which lies in the part of gdi32 that
displays WMF pictures, enables a picture to specify arbitrary code to be executed
when the picture is displayed. To exercise the vulnerability, we created a small WMF
exploit that simply halts the process when invoked. We then used DLL profiles based
on a short training period to detect the WMF exploit. Training consisted of the
previous thirty executions of ImgViewer on JPEG images, followed by three
executions of ImgViewer on benign WMF images.

We discuss the first example in some detail in Section 5. Results from the second
example were similar.

We used two types of instrumentation in our experiments. Our first efforts were
performed using mediating connectors [12, 13], which are wrappers placed at the
point of entry into functions exported by a DLL. These connectors are ideal for
intercepting calls into ntdll, but using them to capture calls from modules requires that
the signature of each exported function of each DLL be known in advance. An
alternative is to start with an application and automatically instrument each DLL as it
is invoked; the result is a cascade of wrappers. We have implemented such a cascade
and used it for our experiments. When the application or a DLL is linked, the
instrumentation modifies its import table so that when a call is made, the
instrumentation obtains control and writes a log entry.

5 Benefits of DLL Profiles

In this section, we claim several benefits for DLL profiles and illustrate them with
experimental evidence from the gdiplus experiment.

 Modular Behavior Profiles in Systems with Shared Libraries 375

Localization of anomalous behavior to code modules. The gdiplus exploit manifested
in anomalies in traces of five exported DLL functions. First, GdipGetPropertyCount, in
which the heap overflows, exhibited many calls to five functions that were not in its
profile. Second, GdiplusShutdown, which executes the attack code, exhibited four
anomalies—all to novel functions—as shown in Table 1. Third, during the execution of
GdipGetPropertyCount, the HeapAlloc() function of kernel32 exhibited a call to
RtlUnwind, which unwinds the stack after an exception. RtlUnwind() did not appear in
the RtlUnwind’s profile.

Table 1. Anomalous calls from GdiplusShutdown during the attack

DLL Function Comment

kernel32 LoadLibraryA Loads netapi32

netapi32 NetUserAdd Adds a new user for the machine

netapi32 NetLocalGroupAddMembers Gives the new user privilege

kernel32 ExitProcess End application

Two other functions—CoCreateInstance() in ole32.dll and NdrClientCall2() in
rpcrt4.dll—also exhibited anomalies with respect to the available profiles. However,
the profiles of those functions had not converged by the end of training. An IDS
based on DLL profiles as described above would still be accumulating these two
profiles. Thus, it would not (yet) be using them for detection.

False negatives and resistance to mimicry attacks. The DLL functions we have
profiled typically have a narrow range of behavior. 90% of all traces are of length 6
or less, and half call just one other function. This dramatically reduces the chances of
a false negative, since it is unlikely that attack behavior happens to fall into the
narrow range of the function’s normal behavior. For example, GdiplusShutdown()
normally executes 10 functions in 2 DLLs, as shown in Table 2.

The narrow range of normal behavior reduces the probability of false negatives and
makes mimicry attacks infeasible by making the target much smaller: 2 DLLs instead
of 14 and 10 functions instead of over 800. Consider the gdiplus exploit, for example.
Our exploit payload created a new user through calls to the netapi32 DLL. A clever
attacker will avoid such blatantly malicious behavior, but will find himself
constrained by the normal profile of the vulnerable function, in our case
GdiplusShutdown. A mimicry attacker has to find a function that is not only
vulnerable but also enables the desired functionality. In the case of
GdiplusShutdown, it is hard to imagine any malicious behavior (other than crashing
the application) that an attacker could accomplish using the functions in Table 2.

Anomaly analysis. Localizing anomalies to one or more DLLs makes it possible to
draw on knowledge about the DLLs to analyze anomalies. Anomaly analysis in real
time helps the IDS decide whether to treat the anomaly as novel application behavior
or an attack. For example, the WMF exploit, described earlier, was in operating
system code that had been stable for fifteen years. Suppose that an IDS based on

376 C. Marceau and M. Stillerman

DLL behavior, as described here, had been in use for that whole time. The behavior
profiles for that DLL would have been stable for much of that time. Thus, the
anomalous behavior, when it appeared, would be very suspicious, in contrast with
anomalies from a DLL whose profile has only recently converged.

Table 2. Functions invoked by GdiplusShutdown

DLL Function Comment

EnterCriticalSection Wait for mutex object

LeaveCriticalSection Release mutex object

SetEvent Signal on (parameter) event

WaitForSingleObject Wait on locked object

CloseHandle Release object

DeleteCriticalSection Release resources for mutex

HeapFree Free block in heap

Kernel32

HeapDestroy Destroy user-created heap

DeleteObject Delete object created by gdiplus
Gdi32

DeleteDC Delete gdi32 device context

Anomaly analysis can also consider the distance of the anomaly from the profile.
For example, the gdiplus exploit called two functions in netapi32, which creates new
users; netapi32 does not appear in the profile. Other factors of interest are the
provenance and change history of the DLL.

Anomaly analysis can sometimes use information about functions to estimate their
potential harm. A call to NetUserAdd() in the context of gdiplus is highly suspicious.
We obtained examples of harmless anomalies by exercising the ImgViewer on JPEG
images with comments against a profile based on images without comments. This
resulted in three anomalous calls to the two functions of Table 3. An IDS armed with
knowledge about common functions could guess that these two functions, which
collect information about a device (the screen), are probably benign.

Table 3. Harmless anomalies

DLL Function Description
user32 GetDC Retrieves a handle to a display device context (DC) for

the client area of a specified window or for the entire
screen.

gdi32 GetDeviceCaps Retrieves device-specific information for the specified
device, specified by a handle.

Easing the burden of training (and retraining). In a system whose architecture is
dominated by DLLs, when one DLL is updated the system-call profiles of all

 Modular Behavior Profiles in Systems with Shared Libraries 377

applications that use that DLL are invalidated, and must be retrained. In contrast, an
IDS based on DLL profiles can retrain just the profile of the one changed DLL, and
can continue to use all other profiles mature profiles for detection. Retraining a given
DLL occurs less frequently and is quicker than training an entire application; it also
allows detection of anomalies in other DLLs to continue while the updated DLL is
being trained.

The rate at which profiles converge is apt to vary from one DLL function to
another. In our experiments, the profiles for two functions never converged; we were
nevertheless able to feel quite confident about anomalies detected in other functions
whose profiles had converged quickly and unambiguously.

6 Conclusion and Future Work

We have presented a novel approach to host-based anomaly detection that relies on
profiles of functions exported by shared libraries. We have argued and shown
evidence that such profiles reduce false negatives, localize anomalies to code modules
and provide opportunities analyze them, and reduce the burden of training.

Much research remains to be done to realize the potential benefits of DLL profiles.
A major question is the performance cost of deploying various types of profiles and
how to minimize that cost. Our preliminary measurements with Outlook suggest a
performance penalty of 5-10%. This number assumes an IDS in which most anomaly
checks are simple (like a table lookup) and the remainder represent state changes.

In addition, an IDS system based on DLL profiles faces non-trivial “bookkeeping”
and security challenges. To make retraining practical, ways to base updated function
profiles on the profiles for the previous version must be developed.

Finally, DLL profiles open new possibilities for anomaly analysis. Additional
information about shared libraries and their functions, as well about connections
between libraries (including static analysis of binaries) may lead to algorithms and
heuristics for estimating the potential harmfulness of a large class of program
anomalies.

Acknowledgements

This work was supported by the Army Research Office under contract DAAD 19-03-
C-0060. We are grateful to Matthew Donovan and Ian Lenz for technical assistance.
Mediating connectors used in the experiments were provided by Teknowledge
Corporation.

References

1. Wagner, D. and P. Soto. "Mimicry Attacks on Host Based Intrusion Detection Systems,"
in Proceedings of the Ninth ACM Conference on Computer and Communications Security.
2002.

2. Allison, K., "Windows PCs Face ‘Huge’ Virus Threat," in Financial Times, January 2,
2006.

378 C. Marceau and M. Stillerman

3. Microsoft (TM), "Microsoft Security Bulletin Ms05-053: Vulnerabilities in Graphics
Rendering Engine Could Allow Code Execution (896424),"
http://www.microsoft.com/technet/security/bulletin/MS05-053.mspx.

4. Forrest, S., S.A. Hofmeyr, and A. Somajayi. "A Sense of Self for UNIX Processes," in
Proceedings of the IEEE Symposium on Computer Security and Privacy. 1996: IEEE
Press.

5. Hofmeyr, S.A., S. Forrest, and A. Somayaji, "Intrusion Detection Using Sequences of
System Calls," Journal of Computer Security, 1998. 6(3): p. 151–180.

6. Debar, H., et al. "Fixed vs. Variable-Length Patterns for Detecting Suspicious Process
Behavior," in Proceedings of the ESORICS 98, 5th European Symposium on Research in
Computer Security. 1998. Louvain-la-Neuve, Belgium.

7. Warrender, C., S. Forrest, and B. Pearlmutter. "Detecting Intrusions Using System Calls:
Alternative Data Models," in Proceedings of the IEEE Symposium on Security and
Privacy. 1999, pp. 133-145.

8. Ghosh, A.K., A. Schwatzbard, and M. Shatz. "Learning Program Behavior Profiles for
Intrusion Detection," in Proceedings of the 1st USENIX Workshop on Intrusion Detection
and Network Monitoring. 1999. Santa Clara, California.

9. Marceau, C. "Characterizing the Behavior of a Program Using Multiple-Length N-Grams,"
in Proceedings of the New Security Paradigms Workshop. 2000. Ballycotton, Ireland.

10. Pfleger, K. "On-Line Cumulative Learning of Hierarchical Sparse N-Grams," in
Proceedings of the International Conference on Development and Learning. 2004.

11. Michael, C.C. and A. Ghosh, "Simple, State-Based Approaches to Program-Based
Intrusion Detection," ACM Transactions on Information and System Security, 2002. 5(3):
p. 203-237.

12. Balzer, R. and N. Goldman. "Mediating Connectors," in Proceedings of the ICDCS
Workshop on Electronic Commerce and Web-Based Applications. 1999. Austin, TX, pp.
73-77.

13. Balzer, R. and N. Goldman. "Mediating Connectors: A Non-Bypassable Process Wrapping
Technology," in Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems. 1999.

14. Feng, H., et al. "Anomaly Detection Using Call Stack Information," in Proceedings of the
IEEE Security and Privacy. 2003. Oakland, CA, USA.

15. Sekar, R., et al. "A Fast Automaton-Based Method for Detecting Anomalous Program
Behaviors," in Proceedings of the IEEE Symposium on Security and Privacy. 2001.
Oakland, CA, pp. 144-155.

16. Arcata Pet, "Imgviewer/32," http://www.arcatapet.net/imgv32.cfm.
17. Ries, C., "Analysis of a Malicious JPEG Attack,"

http://www.vigilantminds.com/files/jpeg_attack_wp.pdf.
18. French Security Incident Response Team (FSIRT), "Windows JPEG GDI+ Overflow

Administrator Exploit (Ms04-028)," http://www.frsirt.com/exploits/09232004.ms04-28-
admin.sh.php.

19. Microsoft (TM) TechNet, "Microsoft Security Bulletin Ms06-001: Vulnerability in
Graphics Rendering Engine Could Allow Remote Code Execution (912919),"
http://www.microsoft.com/technet/security/bulletin/MS06-001.mspx.

	Introduction
	An Intrusion Detection Model Based on DLL Profiles
	Related Work
	Experiments with DLL Profiles
	Benefits of DLL Profiles
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

