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Abstract. Modern computing environments depend on extensive shared 
libraries.  In this paper, we propose monitoring the calls between those libraries 
as a new source of data for host-based anomaly detection.  That is, we 
characterize an application by its use of shared library functions and 
characterize each shared library function by its use of (lower-level) shared 
libraries.  This approach to intrusion detection offers significant benefits, 
especially in systems such as Windows, much of which is implemented above 
the kernel as dynamically linked libraries (DLLs).  It localizes anomalies to 
particular code modules, facilitating anomaly analysis and assessment and 
discouraging mimicry attacks.  It reduces retraining after system updates and 
enables training concurrent with detection.  The proposed approach can be used 
with various techniques for modeling call sequences, including N-grams, 
automata, and techniques that consider parameter values.  To demonstrate its 
potential, we have studied how a DLL-level profiling IDS would detect two 
recent attacks on Windows systems. 

Keywords: Anomaly detection, intrusion detection, behavior profile, shared 
libraries, dynamic link libraries. 

1   Introduction 

After ten years of research on host-based anomaly detection systems, anomaly 
detection is still a remote dream for applications that run on most desk-top systems.  
One reason for this is that modern applications, especially Windows applications, are 
huge and exhibit a very wide range of behaviors; as the set of legitimate behaviors 
grows, the probability of false negatives increases, as does the time needed to train a 
behavior profile.  This problem is exacerbated by mimicry attacks [1], which imitate 
normal application behavior as seen by a given detector in order to defeat that 
detector.  Second, as applications grow, training the anomaly detector takes longer.  
Worse, Windows systems are subject to frequent patches and updates, any one of 
which can invalidate the current behavior profile of an application and provoke 
retraining.  Third, anomaly detectors indicate that something might be wrong, but they 
typically provide very little information for anomaly assessment and response.  In 
particular, they cannot localize the anomaly to a specific program module, which 
might provide further information for assessment.  For these reasons, most current 
approaches to application anomaly detection are unlikely to succeed for Windows 
applications. 
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In this paper, we propose a novel approach to application anomaly detection that 
addresses these difficulties.  The basic idea is to exploit the use of shared libraries by 
applications to create profiles for the exported functions of each shared library.  We 
model the behavior of the application by its calls to DLLs and the behavior of each 
DLL function by its calls to other DLLs.  The result is a localized profile of each 
module (application binary or DLL).  Figure 1 schematically represents this key idea.  
In the system of Figure 1, Application 1 is characterized by its calls to Kernel32.dll, 
AAA.dll, and BBB.dll.  BBB.dll is characterized by its calls to CCC.dll, kernel32.dll, 
and DDD.dll. 

It might seem that the use of shared libraries is too limited to profile applications.  
However, modern computing systems include extensive shared libraries that 
implement GUI components, display pictures, enable access to networks and 
databases, manage mail and other higher level protocols, and provide other reusable 
functionality.  Much of the Windows operating system is implemented in well over a 
thousand DLLs that execute in user space and mediate access to the kernel.  As one 
example, opening Outlook to open a single email exercises well over one hundred 
DLLs, of which up to five may be represented on the call stack at any one time.  
Furthermore, many vulnerabilities in Windows systems are located in DLLs, 
including a recently discovered vulnerability in the graphics rendering engine 
(gdi32.dll) that affects every Windows system shipped between 1990 and January 
2006 [2, 3].  It is not surprising that most published Windows system vulnerabilities 
occur in DLLs, since DLLs are available for attackers to study and the payoff for 
cracking them (a large number of potential victims) is high. 

Application 1 Application 2

AAA.dll BBB.dll

Kernel32.dll

CCC.dll DDD.dll

Ntdll.dll

kernel

Compromised 
DLL

 

Fig. 1. Structure of a Windows application 

This paper makes the following novel contributions: 

• It defines DLL profiles and a class of intrusion detection systems based on DLL 
profiles 

• It demonstrates that DLL profiles associate suspicious behavior with specific code 
modules 
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• It shows that identifying the locus of suspicious behavior opens new sources of 
data for analyzing anomalies 

• It provides evidence that DLL profiles reduce false negatives and resist mimicry 
attacks 

• It argues that DLL profiles can be used to minimize the burden of training and 
enable detection to proceed concurrently with retraining after updates 

The paper is organized as follows.  In Section 2, we review the structure of 
Windows processes and explain how DLL profiles can be used to detect anomalous 
program execution.  In Section 3, we discuss related work.  In Section 4, we briefly 
describe our experiments detecting two recent exploits on a small application.  In 
Section 5, we substantiate the claimed benefits of DLL profiles.  We conclude with 
suggestions for further research. 

2   An Intrusion Detection Model Based on DLL Profiles 

A Windows process comprises multiple (kernel-supported) threads, some of which 
are dedicated to GUI or system functions.  Windows applications make extensive use 
of DLLs that implement the operating system and supply additional functionality.  
The Windows kernel API is defined by ntdll.dll.  However, Windows applications 
rarely call ntdll.dll directly.  Indeed, the Microsoft Visual Studio development 
environment does not support calls to ntdll.dll.  Instead, kernel32.dll1 defines the 
standard interface to the operating system, although a few DLLs call ntdll directly.  
Many calls to kernel32 are mediated through higher-level DLLs.  As a result, the 
typical application cascades through layers of DLLs and results in multiple calls to 
ntdll and the kernel. 

Ground-breaking work by Forrest, et al. [4, 5] showed that kernel-call traces 
capture application behavior.  However, in systems and applications dominated by 
DLLs, much of the information in kernel-call traces characterizes the internal 
behavior of DLLs.  Therefore, a single N-gram in such a trace often reflects the 
behavior of multiple DLLs.  In the short execution of Outlook mentioned above, up to 
five DLLs at a time were represented on the call stack.  Other characterizations of the 
behavior of the application as a whole also describe the combined behavior of many 
shared libraries. 

In DLL profiling, we characterize each module (the application and the DLLs) by 
the calls it makes to other DLLs—not to the kernel.  When one DLL calls another, 
their combined state can be represented with a stack of traces of calls between 
modules, one for each current invocation of a module.  Figure 2 represents a snapshot 
of the stack.  Each box represents a separate sequence that is currently being 
accumulated.  In Figure 2, the most recent inter-module call by the application is to 
function f() in AAA, which in turn has called function c() in CCC.  When function c 
returns, the current inter-DLL sequence for function c() is complete.  If function f() 

                                                           
1 The name “Kernel32” suggests that this DLL defines an interface to the kernel.  Kernel32 

provides very basic operating system functionality, but it accesses the kernel only through 
ntdll, which implements the kernel API.  In this paper, we will commonly write DLL names 
without the .dll extension. 
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calls some other function in another DLL, a sequence for that function is pushed onto 
the stack.  Note that since DLLs are reentrant, the stack may include multiple 
instantiations of a single module.  

 

 

Fig. 2. (a) The stack of inter-DLL-call sequences in a thread.  Each stack element is a trace (b) 
of calls from an exported function of a DLL (or the application main) to other DLLs. 

DLL profiles support a new class of intrusion detection methods, depending on 
what information is recorded in the traces and the profile for each exported DLL 
function.  For example, if the profile focuses on control flow, training traces record 
the identity of the called functions.  N-grams, automata, or other methods may be 
used to represent the set of traces, as for kernel-call traces [4-11].  Alternatively, if the 
profile focuses on dataflow, the training traces can record not only the functions 
called, but also relations among the arguments to the function being profiled and the 
arguments of the functions it calls.  The experiments described in this paper used N-
grams, with N=6,2 but most of our results are more generally applicable. 

An IDS that uses the DLL stack model for intrusion detection can be realized in a 
straightforward way.  We posit that the IDS maintains a profile of each function 
exported by a Windows system DLL, in addition to a profile of each application 
module (binary or DLL) to be protected.  At run time, calls to each profiled DLL are 
captured, for example by mediating connectors [12, 13], and sent to the IDS.  For 
each thread, the IDS maintains a stack of currently executing modules (DLLs or the 
main application).  For each function in the stack, it records information about the 
external calls made by the function, as in Figure 2.  When an exported function of a 
DLL is called from another DLL, the instrumentation informs the IDS of the call.  
The IDS notes the call in the trace at the top of the DLL stack for that thread, checks 
for anomalies against the profile of the calling function, and pushes a trace for the 
called function onto the stack.  When the DLL function returns, its trace is popped off 
the DLL stack. 

                                                           
2 Although Forrest’s group used N=6 to model UNIX and Linux processes, a smaller value for 

N may be more appropriate for tracking behavior in terms of inter-DLL calls.   

Trace of application calls to DLLs 

Trace of inter-DLL calls by 
function c() in CCC.dll 

Trace of inter-DLL calls by 
function f() in AAA.dll 

(a) 

…;Kernel32.HeapAlloc();AAA.f() 

(b) 
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After an update to a DLL, the IDS continues to function but switches to training 
mode for the updated DLL.  When an exported function from the newly updated DLL 
is called, the IDS pushes the DLL onto the stack, but instead of comparing the trace of 
the DLL function to the old profile, it collects the trace for input into a new profile.  
When the DLL function returns, the completed trace is added to the collection of 
traces for that function, and the profile creation module of the IDS processes it.  At 
some point, the profile is deemed sufficiently mature to be used for detection.  At that 
point, the IDS switches back into detection mode for that DLL function.  Note that 
function profiles mature at different rates, depending on each function’s range of 
behavior and on how frequently it is exercised. 

3   Related Work 

Much work has been done on profiling programs by sequences of calls, analyzing 
such sequences, and evading detection based on such sequences.  The VtPath model 
of Feng et al. [14], who use much the same information as the process 
characterization of Figure 2.  They exploit the call stack at each system call to record 
calls and returns between successive system calls.  Like the VtPath model, DLL 
profiles are used to detect anomalies above the kernel-interface level.  Our model 
differs from theirs in that (1) it records the thread history per calling DLL, rather than 
for the application as a whole, and (2) it is sparser in that it includes only calls 
between modules.  At any one time, the expected number of functions on the DLL 
stack is much smaller than the number of functions on the call stack, because 
functions exported by a DLL are gateways to the DLL’s entire functionality, much of 
which may be implemented in other functions.  The exported function may make 
several calls within the DLL before some function makes a call to another DLL. 

We note the difference between our approach and that of Sekar [15]; that approach 
characterizes an application as a whole by the sequence of its kernel calls augmented 
by a notation of the origin of the kernel call in the application itself.  With Sekar’s 
approach, it is possible to avoid characterizing library functions and focus on the 
behavior of the application itself; our approach also characterizes the application per 
se.  However, by characterizing the intermediate shared library functions, we are able 
to identify attacks aimed precisely at these libraries.  Indeed, this accounts for a very 
large number of attacks on Windows systems.  Note that both [14] and [15] employ 
stack tracing in Linux to obtain data for the analysis.  In Windows systems, stack 
tracing is often infeasible because of stack optimization, in which the compiler may 
use idiosyncratic stack structures within a DLL. 

4   Experiments with DLL Profiles 

To investigate DLL profiles, we created a DLL profile for a small Windows 
application and used it to detect two recent exploits.  In this section, we describe the 
experiment.   

The first exploit, introduced in the Fall of 2004, exploits a vulnerability present in 
most versions of gdiplus [3] up to Windows XP, Service Pack 1.  It causes a heap 
overflow when gdiplus is used to display a malicious JPEG image.  To study the 
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exploit, we instrumented ImgViewer/32 [16], a freeware application for viewing 
pictures in GIF, JPEG, and other formats.  Like many image viewing applications, 
ImgViewer/32 relies on Microsoft’s graphics processing DLLs, gdi32 and gdiplus, 
and hence is vulnerable to the attack.   

The gdiplus attack, as described in [17], occurs in two stages.  In the first stage, a 
specially-crafted JPEG image header causes function GdipGetPropertyCount() to 
overwrite the heap with code contained in the “comments” section of the header.  
Later, during execution of the function GdiplusShutdown(), the overwritten code is 
executed.  The version of the exploit that we used [18] takes advantage of the heap 
overflow to create a new user with administrative privileges.   

Our experiment was conducted as follows.  We created a profile of normal behavior 
by exercising the ImgViewer application on harmless JPEG images in thirty training 
runs.  We then ran the application with a malicious image.  The exploit traces were 
compared with the profiles to find anomalies, and the anomalies were analyzed.  We 
obtained examples of harmless anomalies by exercising the ImgViewer application 
with JPEG comments against a profile that excluded images with comments.   

The ImgViewer application exercises the application binary and 24 DLLs in 
several threads; we monitored only threads that were governed by the application, 
which used 14 DLLs.  Using those threads, we constructed profiles as described in 
Section 2.  Individual profiles were expressed as sets of N-grams.   

We also profiled the effect of the recently discovered WMF exploit [19].  In 
January 2006, a vulnerability in gdi32.dll was discovered that had existed in all 
Windows systems since 1990.  The vulnerability, which lies in the part of gdi32 that 
displays WMF pictures, enables a picture to specify arbitrary code to be executed 
when the picture is displayed.  To exercise the vulnerability, we created a small WMF 
exploit that simply halts the process when invoked.  We then used DLL profiles based 
on a short training period to detect the WMF exploit.  Training consisted of the 
previous thirty executions of ImgViewer on JPEG images, followed by three 
executions of ImgViewer on benign WMF images. 

We discuss the first example in some detail in Section 5.  Results from the second 
example were similar. 

We used two types of instrumentation in our experiments.  Our first efforts were 
performed using mediating connectors [12, 13], which are wrappers placed at the 
point of entry into functions exported by a DLL.  These connectors are ideal for 
intercepting calls into ntdll, but using them to capture calls from modules requires that 
the signature of each exported function of each DLL be known in advance.  An 
alternative is to start with an application and automatically instrument each DLL as it 
is invoked; the result is a cascade of wrappers.  We have implemented such a cascade 
and used it for our experiments.  When the application or a DLL is linked, the 
instrumentation modifies its import table so that when a call is made, the 
instrumentation obtains control and writes a log entry. 

5   Benefits of DLL Profiles 

In this section, we claim several benefits for DLL profiles and illustrate them with 
experimental evidence from the gdiplus experiment. 
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Localization of anomalous behavior to code modules. The gdiplus exploit manifested 
in anomalies in traces of five exported DLL functions.  First, GdipGetPropertyCount, in 
which the heap overflows, exhibited many calls to five functions that were not in its 
profile.  Second, GdiplusShutdown, which executes the attack code, exhibited four 
anomalies—all to novel functions—as shown in Table 1.  Third, during the execution of 
GdipGetPropertyCount, the HeapAlloc() function of kernel32 exhibited a call to 
RtlUnwind, which unwinds the stack after an exception.  RtlUnwind() did not appear in 
the RtlUnwind’s profile. 

Table 1. Anomalous calls from GdiplusShutdown during the attack  

DLL Function Comment 

kernel32 LoadLibraryA Loads netapi32 

netapi32 NetUserAdd Adds a new user for the machine 

netapi32 NetLocalGroupAddMembers Gives the new user privilege 

kernel32 ExitProcess End application  

Two other functions—CoCreateInstance() in ole32.dll and NdrClientCall2() in 
rpcrt4.dll—also exhibited anomalies with respect to the available profiles.  However, 
the profiles of those functions had not converged by the end of training.  An IDS 
based on DLL profiles as described above would still be accumulating these two 
profiles.  Thus, it would not (yet) be using them for detection.   

False negatives and resistance to mimicry attacks. The DLL functions we have 
profiled typically have a narrow range of behavior.  90% of all traces are of length 6 
or less, and half call just one other function.  This dramatically reduces the chances of 
a false negative, since it is unlikely that attack behavior happens to fall into the 
narrow range of the function’s normal behavior.  For example, GdiplusShutdown() 
normally executes 10 functions in 2 DLLs, as shown in Table 2. 

The narrow range of normal behavior reduces the probability of false negatives and 
makes mimicry attacks infeasible by making the target much smaller: 2 DLLs instead 
of 14 and 10 functions instead of over 800.  Consider the gdiplus exploit, for example.  
Our exploit payload created a new user through calls to the netapi32 DLL.  A clever 
attacker will avoid such blatantly malicious behavior, but will find himself 
constrained by the normal profile of the vulnerable function, in our case 
GdiplusShutdown.  A mimicry attacker has to find a function that is not only 
vulnerable but also enables the desired functionality.  In the case of 
GdiplusShutdown, it is hard to imagine any malicious behavior (other than crashing 
the application) that an attacker could accomplish using the functions in Table 2. 

Anomaly analysis.  Localizing anomalies to one or more DLLs makes it possible to 
draw on knowledge about the DLLs to analyze anomalies.  Anomaly analysis in real 
time helps the IDS decide whether to treat the anomaly as novel application behavior 
or an attack.  For example, the WMF exploit, described earlier, was in operating 
system code that had been stable for fifteen years.  Suppose that an IDS based on 
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DLL behavior, as described here, had been in use for that whole time.  The behavior 
profiles for that DLL would have been stable for much of that time.  Thus, the 
anomalous behavior, when it appeared, would be very suspicious, in contrast with 
anomalies from a DLL whose profile has only recently converged. 

Table 2. Functions invoked by GdiplusShutdown 

DLL Function Comment 

EnterCriticalSection Wait for mutex object 

LeaveCriticalSection Release mutex object 

SetEvent Signal on (parameter) event 

WaitForSingleObject Wait on locked object 

CloseHandle Release object 

DeleteCriticalSection Release resources for mutex 

HeapFree Free block in heap 

Kernel32 

HeapDestroy Destroy user-created heap 

DeleteObject Delete object created by gdiplus 
Gdi32 

DeleteDC Delete gdi32 device context 

Anomaly analysis can also consider the distance of the anomaly from the profile.  
For example, the gdiplus exploit called two functions in netapi32, which creates new 
users; netapi32 does not appear in the profile.  Other factors of interest are the 
provenance and change history of the DLL.   

Anomaly analysis can sometimes use information about functions to estimate their 
potential harm.  A call to NetUserAdd() in the context of gdiplus is highly suspicious.  
We obtained examples of harmless anomalies by exercising the ImgViewer on JPEG 
images with comments against a profile based on images without comments.  This 
resulted in three anomalous calls to the two functions of Table 3.  An IDS armed with 
knowledge about common functions could guess that these two functions, which 
collect information about a device (the screen), are probably benign. 

Table 3. Harmless anomalies 

DLL Function Description 
user32 GetDC Retrieves a handle to a display device context (DC) for 

the client area of a specified window or for the entire 
screen. 

gdi32 GetDeviceCaps Retrieves device-specific information for the specified 
device, specified by a handle. 

Easing the burden of training (and retraining). In a system whose architecture is 
dominated by DLLs, when one DLL is updated the system-call profiles of all 
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applications that use that DLL are invalidated, and must be retrained.  In contrast,  an 
IDS based on DLL profiles can retrain just the profile of the one changed DLL, and 
can continue to use all other profiles mature profiles for detection.  Retraining a given 
DLL occurs less frequently and is quicker than training an entire application; it also 
allows detection of anomalies in other DLLs to continue while the updated DLL is 
being trained. 

The rate at which profiles converge is apt to vary from one DLL function to 
another.  In our experiments, the profiles for two functions never converged; we were 
nevertheless able to feel quite confident about anomalies detected in other functions 
whose profiles had converged quickly and unambiguously. 

6   Conclusion and Future Work 

We have presented a novel approach to host-based anomaly detection that relies on 
profiles of functions exported by shared libraries.  We have argued and shown 
evidence that such profiles reduce false negatives, localize anomalies to code modules 
and provide opportunities analyze them, and reduce the burden of training. 

Much research remains to be done to realize the potential benefits of DLL profiles.  
A major question is the performance cost of deploying various types of profiles and 
how to minimize that cost.  Our preliminary measurements with Outlook suggest a 
performance penalty of 5-10%.  This number assumes an IDS in which most anomaly 
checks are simple (like a table lookup) and the remainder represent state changes. 

In addition, an IDS system based on DLL profiles faces non-trivial “bookkeeping” 
and security challenges.  To make retraining practical, ways to base updated function 
profiles on the profiles for the previous version must be developed. 

Finally, DLL profiles open new possibilities for anomaly analysis.  Additional 
information about shared libraries and their functions, as well about connections 
between libraries (including static analysis of binaries) may lead to algorithms and 
heuristics for estimating the potential harmfulness of a large class of program 
anomalies. 
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