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Abstract. Proxy encryption schemes transform cipher-text from one key to an-
other without revealing the plain-text. Agents that execute such transformations
are therefore minimally trusted in distributed systems leading to their usefulness
in many applications. However, till date no application of proxy encryption has
been deployed and used in practice. In this work we describe our efforts in de-
veloping a deployable secure mailing list solution based on proxy encryption
techniques. Securing emails exchanged on mailing lists requires that confiden-
tiality, integrity, and authentication of the emails be provided. This includes en-
suring their confidentiality while in transit at the list server; a functionality that
is uniquely supported by proxy encryption. In developing this solution we ad-
dressed the challenges of identifying requirements for deployability, defining a
component architecture that maximizes the use of COTS components to help in
deployment, developing the proxy encryption protocol to satisfy requirements
and to fit within the component architecture, implementing and testing the so-
lution, and packaging the release. As evidence of its deployability, the resulting
secure mailing list solution is compatible with common email clients including
Outlook, Thunderbird, Mac Mail, Emacs, and Mutt.

1 Introduction

Proxy encryption techniques enable the transformation of cipher-text from one pub-
lic key to another without revealing the plain-text to the transforming agent. These
techniques have been developed and studied for almost a decade since they were pro-
posed by Mambo and Okamoto [25] and Blaze et al. [4]. Since then researchers have
identified useful properties of proxy encryption schemes and developed several pro-
tocols that satisfy these properties [2], [18]], [19], [33]. An important consequence of
this cipher-text transformation capability of proxy encryption is that the transformation
agent can participate in distributed protocols with minimal trust as it never gets access
to the plain-text while still providing useful processing capabilities. Centered around
this consequence of trust minimization several applications have been identified includ-
ing simplification of key distribution [4]], key escrow [18]], file sharing [2], security
in publish/subscribe systems [22], multicast encryption [10], and secure and certified
email mailing lists [20], [21]. Furthermore, [2]], [20] demonstrate practical feasibility of
proxy encryption via prototype development and testing.

In this work we take on the task of building a deployable application that requires
proxy encryption. Doing so for any new cryptographic technique in general, and proxy
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encryption in particular, requires that several challenges be addressed. First, there is the
need to identify requirements of the security application geared towards deployability.
This involves a requirement analysis and an in-depth study of both the application do-
main (e.g., file systems, mailing lists) and, if available, the lessons learned from success-
ful security applications deployed in the domain. Second, the system design task must
be undertaken to satisfy these requirements. This effort should attempt to maximize
the use of COTS (Common-Off-The-Shelf) components in order to make deployment
easier. Third, the proxy encryption based protocol must be designed and implemented
using available cryptographic libraries. The protocol design must address the needs of
the security application and it is often the case that protocol and system design steps
are inter-linked and iterative. Fourth, the implemented components must be integrated
with the application and then tested for performance and presence of vulnerabilities and
errors. Finally, the integrated security application must be packaged and released along
with an identified maintenance process. The security application that we develop by
addressing these challenges is secure email mailing lists.

As more and more user communities are engaging in collaborative tasks, use of
Email List Services (or simply Mailing Lists - MLs) is becoming common; i.e., emails
exchanged with the help of a list server (examples of commonly used list server software
include Mailman (http://list.org) and Majordomo (http://www.greatcircle.
com/majordomo/))). Many tasks where MLs are used require exchange of private infor-
mation. For example, a ML of security administrators that manage critical infrastructure
would not want their emails publicly disclosed to prevent hackers from getting that in-
formation. Specific instances of this include the LHC Grid (http://lcg.web.cern.
ch/LCG/) and TeraGrid (http://security.teragrid.org/) systems where the In-
cident Handling and Response policies recommend the use of encrypted and signed
mailing lists. In general, use of encrypted and signed lists is recommended for incident
response by IETF [7]] and CERT [29]]. Additional examples include a list of (1) health-
care and pharmaceutical researchers would not the want their emails publicly disclosed
to protect patient privacy, and (2) corporate executives would not want their emails
disclosed to protect proprietary information. For such lists cryptographic solutions are
needed that provide adequate protection (i.e., confidentiality, integrity, and authentica-
tion) for the private content from threats at the client side, at the network paths where
the emails are in transit, and at the server side where the emails are processed for distrib-
ution to the list. That is, there is a need to develop Secure Mailing Lists (SMLs). Threats
to the server side are an important concern in practice and lack of good solutions today
has forced users to develop their own clunky ones; e.g., distribution of passwords to list
members out-of-band and requiring members to use password-based-encryption so that
the list server does not have access to email plain-tex. It is in addressing this threat
that proxy encryption provides a good solution by allowing the list server to transform
email cipher-text between list members without gaining access to the plain-text.

By addressing the outlined challenges for mailing lists we developed PSELS — a
Practical Secure Email List Service. Looking at the history of secure email develop-
ment and deployment as well as the needs of mailing lists, we identified requirements in

! This particular approach has been adopted by several critical infrastructure security protection
groups today.
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the categories of security properties (i.e., confidentiality, integrity, and authentication),
infrastructure compatibility, key management and performance. A primary requirement
here is the minimization of trust in the list server. We then designed the architecture
to include several COTS components that minimize development effort and maximize
ease of deployment. In particular, we were able to use the OpenPGP message format
[8] and standard GnuPG plugins at the client side to eliminate the need for develop-
ing email client-specific plugins. We then developed the PSELS protocol to satisfy the
identified requirements and to fit with the system architecture and design. In particular,
PSELS uses proxy encryption to minimize trust in the list server. This proxy encryption
protocol is a modified version of that proposed in [20], however, unlike [20] it focuses
on deployment and practical use. We then implemented the protocol and the system
using the Mailman list server, GnuPG and BouncyCastle cryptographic libraries, and
standard GnuPG plugins and APIs. We then tested our implementation in a test-bed
environment for functionality, email client compatibility, and performance. Our results
show the viability of PSELS in enterprise settings, compatibility with Microsoft Out-
look, Emacs, Mac Mail, Mutt and Thunderbird, and satisfactory performance that scales
to support enterprise mail servers that process hundreds of thousands of emails per day.

An initial version of the software has been packaged and released for community
evaluation and is available at http://sels.ncsa.uiuc.edul We plan to support the
release in terms of software patching and update as well as enhancing the software with
additional features.

The rest of this paper is organized as follows. In Section 2 we identify the require-
ments. In Section 3 we present the PSELS component architecture. In Section 4 we
present the PSELS protocol. In Section 5 we discuss the implementation and testing ef-
forts. In Section 6 we analyze the security of our design, protocol, and implementation.
In Section 7 we discuss related work and conclude in Section 8.

2 Requirements

In this relatively new area of Secure Mailing Lists (SMLs) there is both a need and an
opportunity to define a set of technical requirements such that the resulting tools and
solutions that satisfy these requirements have a high likelihood of being deployed and
used in practice. Fortunately, this area can benefit from the long history of solutions for
secure two-party email exchange (or simply, secure email). Though secure email is not
used nearly as commonly as the security research community would like, availability of
inexpensive tools and solutions based on the S/MIME [26]] and OpenPGP [§]] standards
bring us closer to this vision of ubiquitous secure email use with every passing year.
We identify three important lessons for SMLs from the history of secure email (i.e.,
history of standards and tools such as S/MIME and OpenPGP). First, a secure email so-
lution must provide the necessary security properties, namely, confidentiality, integrity,
and authentication. Second, a secure email solution will be adopted by users only if
it comes with support for easily obtaining, trusting, and managing public and private
keys. Third, a secure email solution is deployable only if it is compatible with existing
email infrastructure and if its hardware, software and administrative costs are reason-
able. These lessons form the basis of our design and implementation efforts geared
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towards deployability. We now define the various entities in SMLs and the technical
requirements for PSELS.

2.1 SML Entities

— List Moderator (LM). LM 1is a user (or process) that creates a list to be maintained
at the list server, authenticates users, and helps them subscribe to and unsubscribe
from the list.

— List Server (LS). LS creates lists, maintains membership information (e-mail ad-
dresses and key material), adds and removes subscribers based on information re-
ceived from LM, and forwards e-mails sent by a valid list subscriber to all current
subscribers of that list.

— Users/Subscribers. Users subscribe to lists by sending join requests to LM, and
send emails to the list with the help of LS.

2.2 Technical Requirements

Security Properties. A SML solution must provide confidentiality, integrity, and au-
thentication for all emails exchanged on the list. Confidentiality of emails means that
only authorized users (i.e. subscribers of the list) should be able to access the plain-text
contents. Note that this definition excludes the list server from being able to read emails
as it is not a valid subscriber. Example scenarios where the list server is not trusted to
have access to cleartext contents include: (1) when protecting a distributed critical in-
frastructure the system administrators may not trust the list server as it may be located
in a part of the network where most of the administrators have no control but, at the
same time, its compromise will affect the security of their own networks, and (2) in
military settings, the list server administrator may have a lower security clearance than
the list subscribers and, therefore, should preferably not have access to the cleartext con-
tents. In addition, this requirement also protects email content from an adversary that
compromises the list server. Arguably, an adversary can more easily compromise a list
subscriber to get access to email contents; however, if the email contents are available at
the list server then its compromise would allow the adversary access to all messages on
all lists managed by the server. Integrity of emails ensures that they cannot be modified
in transit without such modifications being detected. Authentication of emails means
that recipients can verify the identity of the sender.

Conceptually, by requiring a list server that provides message processing and for-
warding functions but does not have access to message contents, we essentially deem it
to be a semi-trusted third party. Such an approach minimizes trust liabilities in essen-
tial services for multi-party protocols and is often used; e.g., in fair exchange of digital
goods [15].

Infrastructure Compatibility. In order to enable the deployment and use of SMLs,
the protocols and tools must be compatible with existing email infrastructure. This in-
cludes the existing email servers, list servers, and email clients. All of this infrastructure
will typically comply with a subset of existing email standards (http://www.imc.org/
rfcs.html). While it is challenging to support all possible infrastructure systems and
configurations, the choice of supported ones greatly influences the spread of SML use.
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Key Management. To adopt SML solutions, users need to obtain, trust and manage
cryptographic keys. These key management functions should either be built into the
SML solutions or must be accessible through easily available, inexpensive means. In
contrast, consider the fact that subscribers of a ML can come from a large number of
domains. If, in order to use an SML solution, they need to obtain and trust CA certifi-
cates of all the domains then the key management becomes too complex.

Performance. Busy mail servers in medium-sized organizations today process more
than 50,000 emails a day on average. Since SMLs will depend on existing mail servers
for their delivery, it is essential that their performance not overburden them. Requiring
additional servers for SMLs would significantly increase their infrastructure deploy-
ment costs.

3 Component Architecture

In Figure [T we illustrate the component architecture of PSELS. We identify compo-
nents on the server, the list moderator, and subscribers. Where appropriate we identify

(/ Server \\,
MTA List Server N PSELS
(e.g., Sendmail)| Process [(e.g., Mailman)|Handlers Transformation Agent
invocation
v v
Key Mgmt Crypto Functions
| (e.g., GPG) || (e.g., GPG, BC Libs) /
. /
f/ List Moderator \ / Subscriber \\1
Interface
(e.q.,GPG Plugin]‘_.{ MUA ‘ Interface | MUA
| (e.g.,GPG Plugin)

Crypto Functions | | Key
{e.g., GPG, BC Libs) List Mgmt Crypto Functions Key Mgmt
. Crypto Functions | | Mgmt (e.9., GPG) (e.g., GPG Lib) (e.g, GPG)

:{gg., GPG,BCLibs)| | | _‘ ) \\ /

Legend: [ 1COTS component; Developed component
GPG: The GNU Privacy Guard (www.gnupg.org); BC: Bouncy Castle Library (www.bouncycastle.org)

Fig. 1. Component Architecture



From Proxy Encryption Primitives to a Deployable Secure-Mailing-List Solution 265

examples of COTS tools that can be used for the component functionality as is or with
suitable modifications. This architecture is based on the requirements identified earlier,
namely, security properties, infrastructure compatibility, key management, and perfor-
mance.

Server Components

We envisioned the use of public-key based proxy encryption schemes to address the
confidentiality requirements and the PSELS Transformation Agent provides that func-
tionality. The Agent needs to include Crypto Functions that execute proxy encryptions
as well as Key Management functions that provide generation, storage, and use of cryp-
tographic keying material. Standard libraries such as GPG and BC can be used to de-
velop the necessary crypto functions while for key management the use of COTS tools
such as GPG is appropriate. For infrastructure compatibility we envisioned the use of
COTS list servers and mail servers with a commonly used example of each being Mail-
man and Sendmail respectively. It is at the server side that performance is a major
concern (as opposed to list moderator or subscriber side) because of a potentially large
number of proxy encryption operations that may need to be executed. We study this
performance via extensive experimentation but as a design parameter we envisioned
the use of appropriate message passing interfaces (e.g., Mailman handlers) to connect
the transformation agent with the list server so that, if needed, the agent can run on a
separate machine or on multiple machines.

Subscriber Components

We observed that the development of new components on the client-side will greatly im-
pact the infrastructure compatibility requirement because (1) users have preference for
email clients (or, MUAs- Mail User Agents) so the new components must be compati-
ble with their existing MUAs and (2) users are reluctant to install new software as well
as updates to the software. At the same time, subscribers will need Key management
and Crypto Functions to use PSELS; e.g., to store encryption and signature verification
keys and to encrypt, decrypt, sign, and verify emails. To address this requirement we
envisioned the use of a COTS Interface component that (1) provides the necessary key
management and crypto functions for commonly used email clients and (2) complies
with standardized messaging formats to ensure interoperability. Two examples of such
a component are S/MIME tools for the S/MIME messaging format [26] and GPG tools
for the OpenPGP messaging format [8]]. These components are available today either
as easy-to-install plugins or provided natively for many MUAs. S/MIME standards and
tools are RSA based and since our proxy encryption protocol is El Gamal based these
standards and tools cannot be used. Therefore, we chose to go with OpenPGP message
formats and GPG tools. Furthermore, we argue in later sections that developing RSA
based proxy encryption schemes for PSELS is especially challenging because it can
result in sharing of the RSA modulus, which is considered insecure. As a result of the
design choice of using a COTS Interface component, we require no development on the
client side and yet ensure compatibility with a large number of commonly used email
clients.
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List Moderator Components

LM helps in creating lists and subscribing users with capabilities provided by the List
Management and Key Management components. Since user subscription will require
generation and distribution of proxy keys, LM will need to access crypto functions
that are developed using appropriate crypto libraries (such as GPG and BC). Other LM
components include a MUA and an Interface that provides access to basic crypto and
key management functions for which tools such as GPG will suffice.

4 PSELS Protocol

For developing a protocol for PSELS that satisfies the outlined requirements and the
component architecture, we evaluated existing protocols for multi-recipient email en-
cryption and encrypted mailing lists [20], [28], and [32]. Of these SELS [20] offered
a good starting point. However, the protocol required several modifications for satisfy-
ing the infrastructure compatibility and key management requirements. For example,
SELS requires modifications to messaging formats and special processing capabilities
on the client-side making it impossible to satisfy our client-side infrastructure compat-
ibility requirements as well as the client-side component architecture. In this section,
we present the PSELS protocol, which is a modified version of SELS. After we present
the PSELS protocol we discuss the specific differences and improvements over SELS.

4.1 Proxy Encryption Scheme

We present the EIGamal public-key encryption scheme E,, and the PSELS public-key
encryption scheme, ‘E, which is based on the discrete log problem like El Gamal. £
specifies an encryption transformation function that enables LS to transform an e-mail
message encrypted with the list public-key into messages encrypted with the receivers’
public keys.

Let E., = (Gen,Enc,Dec) be the notation for standard ElGamal encryption [16].
Gen is the key generating function. Hence Gen(1*) outputs parameters (g, p,q,a,g%)
where g, p and ¢ are group parameters, (p being k bits), a is the private key, and y =
g mod p is the public key. The Enc algorithm is the standard El Gamal encryption
algorithm and is defined as e = (mg® mod p, g" mod p), where r is chosen at random
from Z,. To denote the action of encrypting message m with public key y, we write
Encpg,(m). Dec is the standard El1 Gamal decryption algorithm and requires dividing
mg®" (obtained from e) by (g")* mod p. We assume all arithmetic to be modulo p unless
stated otherwise.

We denote the PSELS encryption scheme by £ = (IGen, UGen,AEnc,ADec,T).
Here IGen is a distributed protocol executed by LM and LS to generate group para-
meters g, p and g, private decryption keys Ky and K;g and public encryption keys
PKpy = g% PK;g = g&is, and PK x = g%m gKis. Kppy is simply a random number
in Z,; chosen by LM, and K;s is a random number chosen by LS. UGen is a distrib-
uted protocol executed by user U;, LM, and LS to generate private keys for U; and LS.
UGen(Kwm, KLs) outputs private keys Ky;, K7, and the public keys PKy; = gXui, PKy, =

gKi/i. K{,i is called user U;’s proxy key and is held by LS. Furthermore, it is guaranteed
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that Ky, + K[’j[_ = Krm + Krs mod g. This protocol requires LM, and LS to generate ran-
dom numbers and add/subtract them from Kj s and K7 5. AEnc and ADec are identical to
Enc and Dec defined above for E,. FKZ/. is a transformation function that uses user U;’s

proxy key to transform messages encrylpted with PKykx into messages encrypted with
user U;’s public key. It takes as input an encrypted message of the form (g"%tx M, g")

1 (=1)
and outputs (g"%UiM, g") = ((ngUi) g"K1k M, g"). Once UGen has been executed for
users U; and Uj, then sending a message between the users requires user U; calling
AEncpk, ., LS calling er'/ , and user Uj; calling ADecKUj. The encryption scheme ‘E is
j

correct because ADecKUj (Tk;, (AEncpi;y(m))) = m. In practice, hybrid encryption is

used for efficiency as illustratéd in Figure[2l

The encryption scheme E is secure if it retains the same level of security as the stan-
dard El Gamal scheme against all adversaries A4, and if LS cannot distinguish between
encryptions of two messages even with access to multiple proxy keys. The formal the-
orem and proof of E’s security is provided in [21]].

Keyring: Members' proxy

Keyring: (S_KAJ' PKy) keys K'y;

L |

Alice >LS
Encrypt, (m,Sig(m)) Encrypt k w/
; Email Sig(m) w/ 5K, PK,
Email Header Plaintet 11 (RSA, DSA)A
(AES, 3DES) (E1 Gamal)
| Key Store: (PK,, SK;) |
Bob « LS
Encrypt, (m,Sig(m)) Trac:ﬁgn k
) Email Sig(m) w/ 5K, ‘ 8
Email Header ‘ ; A
Pl RSA, DSA
laintext m (RSA, DSA) (ReELS Provy
(AES, 3DES) - :

Fig. 2. Sending Emails in PSELS

4.2 Protocol Steps

We now present the protocol steps for creating a list, subscribing users, sending e-
mails, and unsubscribing users. The step for sending emails is illustrated in Figure 2]
which follows standard secure email messaging formats of S/MIME and OpenPGP. In
the protocol description, Encpk,(m) denotes the encryption of message m with public-
key PK;, and Sigy (m) denotes the message m along with its signature with private
key K;. We distinguish between encryption/decryption keys and signature/verification
keys by placing a bar on top of signature/verification keys; i.e., (K;, PK;) represents a
signature and verification key pair and (K, PK;) represents a decryption and encryption
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key pair. As illustrated in the figure, hybrid encryption is used in standard email message
formats as using bulk encryption with public key technologies is expensive. However,
to simplify the protocol description we do not include details of the hybrid encryption.
Therefore, Encpg,(m) is actually {Ency(m), Encpk,(k)} where k is a symmetric key
and Ency is a symmetric encryption function such as AES. That is, for simplicity of
representation we just use Encpg,(m).

Creating a List. To create a new list L, LM and LS execute the following steps:

1. LM begins the execution of /Gen and generates parameters (g, p, g, Kry, g™ ), and
associates the key pair (Kzy, PKyys) with the list.

2. LM then sends LS a message with the values g, p, and ¢, and the new list ID L.
Formally, LM — LS: Sigy,  (“Create” List L, g, p,q).

3. LS then completes the execution of /Gen by choosing a new private key Ky s using
the group parameters sent by LM, computing public key PKys = gXLs and associat-
ing the key pair with the list. LS then sends the computed public key back to LM.
Formally, LS — LM: SigKLS( L, PK;s).

Both LM and LS implicitly agree that the sum Ky g = Krp + Krs (mod q) is the list key
but neither knows its value since neither knows the other’s private key. The list is now
ready for subscription.

Subscribing and Unsubscribing Users. To subscribe user U; to list L, U;, LM and LS
execute the following steps. Here we distinguish between encryption keys generated by
PSELS and those that users get from an external PKI (e.g., GPG keys that they generate
themselves) with a superscript Ext on the external PKI keys; i.e., (KiEM, PKI.EX’) is an

external decryption/encryption key pair.
1. U; sends a signed “join” request to LM. Formally, U; — LM : Sig (“Join” List

L, PK,"), PKy;.

2. LM authenticates U; and generates a random value r and then computes the user’s
private key Ky, = Kpp + r mod g. LM then sends this key to U; encrypted with
his external encryption key PKZ”, along with the list encryption key PKyg. Users

then decrypt this message and store their decryption/encryption key pair. Formally,
LM — Uj;: EnCPKng (SigKLM (PKUi,KUi,PKLK)).

3. LM sends the value r to LS. Formally, LM — LS: Encpg, (SigKLM (“Join” L,U;,
PKy,,1)).
4. LS obtains r from LM, and computes and stores the proxy key K(//,- =Krs - rmodgq.

To unsubscribe from list L, user U;, LM, and LS execute the following steps:

1. U; sends a signed “leave” request to LM. Formally, U; — LM : Sigg,  (“Leave”
List L). '

2. LM authenticates U; and, deletes U;’s signature verification and external encryption
keys from its key ring, and sends a request to LS to delete the user’s proxy keys.
Formally, LM — LS: Sigg, . (“Leave” L,U;, PKy,).

3. LS verifies LM’s signature on the message and deletes users U;’s proxy key K[/,I,
from its keyring.
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Sending E-mails. To send an e-mail to the list L, sender U;, LS, and all receivers Uj,
(b # i) execute the following steps:

1. U; first signs the e-mail m with his private key Ky, and then encrypts it with the
list public key PK; k. U; then sends to LS the encrypted e-mail message: Formally,
Ui — LS : (X = Encprx (Sigg,, (m))

2. To forward the e-mail to every user U, who is subscribed to list L, LS computes and
sends to Uy a transformation of X with Uj’s proxy key K[’jb. Formally, LS — Uy:
(¥ =Tx,, (X)),

3. Each recipient decrypts the e-mail message Y, from LS using his private key Ky,
with algorithm ADec. The receiver can then verify the sender’s signature on the
decrypted e-mail.

4.3 Differences with the SELS protocol [20]

The PSELS protocol specified above differs from the one presented in [20] in three
ways and all of these changes were needed to enable satisfaction of the infrastructure
compatibility and key management requirements. First, the proxy encryption scheme
is modified to encrypt outgoing emails with the list public key, PK; g, as opposed to
the sender’s public-key. This simplifies the proxy re-encryption step and is also more
aligned with the manner in which email encryption is used today with standard crypto
interface components (like GPG); i.e., associating the list encryption key with the list
email address. Second, we simplify user subscription by allowing LM to compute and
send users’ decryption keys. In SELS a distributed protocol is used so that LM does
not have access to users’ decryption keys. We argue that this is not needed in practice
because LM anyway has access to all emails exchanged on the list and our simplification
allows us to satisfy the infrastructure compatibility requirement by not developing any
new software on the client side. Third, as opposed to SELS, we do not use keyed MACs
on email messages for authentication at LS. Such MACing capabilities will require
modifications on the client side and, therefore, were excluded from PSELS.

5 Implementation, Testing, and Experiments

5.1 Component Design and Development

Server Components

On the server side we were able to use COTS components for the Mail Server and the
List Server and then had to develop components for the PSELS Transformation Agent
along with the needed Crypto Functions and Key Management components. For the
List Server we chose the open source Mailman tool, which has extensible features and
is widely deployed today. Mailman works with most SMTP servers and we chose Send-
Mail in keeping with our open source approach. To connect the Transformation Agent
with Mailman we used Mailman handlers to allow for easy installation of developed
server components on new and existing Mailman setups. The handlers also allow for
the Transformation Agent to run on a different machine if needed; e.g., for reasons of
performance or security. The Transformation Agent was developed in C, Python and
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Java leveraging the GPG and BC crypto libraries for proxy key generation and encryp-
tion functions, the GPG key management component for key storage and access, and the
Python GnuPGlnterface (http: //py-gnupg. sourceforge.net/) for the interface be-
tween Mailman and GPG functions. Since the PSELS proxy encryption scheme is based
on El Gamal we decided to go with GPG tools and the standardized OpenPGP message
format. Both GPG and BC crypto libraries are open source and provide suitable capa-
bilities to implement the proxy key generation and encryption functions while the GPG
key management functions provide suitable capabilities for storing and accessing proxy
keys.

For each of the four protocol steps, namely, list creation, list subscription, email
sending, and list unsubscription, we define a unique Mailman handler that leads to an
execution of that step at LS. Most of the operations in executing these steps involve the
use of standard GPG functions with the following two exceptions: creating a proxy key
on user join and proxy transformation on email forwarding. To generate a proxy key on
user join the Agent uses a specialized crypto function developed using BC to extract
the random value r from the LM’s message and the private key, Ky s, and compute the
user’s proxy key as specified in the protocol.

To send an email to list L, a user first signs the email and then encrypts it with the
list public key all using any email client that works with a GPG plugin. The resulting
email message is a standard OpenPGP message, which consists of one or more pack-
ets. Each encrypted message has a Public-Key Encrypted Session Key Packet followed
by a Symmetrically Encrypted Data Packet. The Public-Key Encrypted Session Key
packet contains the randomly generated session key (symmetric key) used to encrypt
a message and key IDs of public keys used to encrypt the session key. The Symmet-
rically Encrypted Data Packet contains email contents encrypted with the session key.
The data can further be compressed or signed. A handler at LS, extracts the Public-
Key Encrypted Session Key Packet and uses specialized crypto functions developed
using GPG libraries to parse the incoming GPG messages into packets. After correctly
locating Public-Key Encrypted Session Key Packet, the functions apply proxy trans-
formation to this packet. This process is repeated for every recipient and the resulting
messages are passed to MTA for delivery to list members.

Subscriber Components
On the Subscriber side we were able to use COTS tools for the MUA, Key Management,
Crypto Functions, and Interface components. In keeping with the approach discussed
above, we use GPG tools and ensure compatibility with all MUA’s for which GPG
plugins are available. Among others this includes popular MUAs like Outlook, Thun-
derbird, Eudora, Emacs, Mac Mail, and Mutt. GPG plugins provide all the necessary
key management and crypto functions needed by subscribers to use PSELS.

For subscribing to lists, users send signed GPG messages to LM and receive back
a set of necessary GPG keys and certificates. That is, users receive the list encryption
key, their individual decryption keys (encrypted with their external GPG public keys),
LM’s signature verification key, and their own signature verification key signed by LM.
Depending on the features of their GPG plugin they either automatically or manually
add all these keys and certificates to their GPG keyring. To send an email to the list,
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subscribers sign the email with their GPG signature keys and encrypt it with the list
public key (which is again a standard GPG key in their keyring). Since the list encryp-
tion key is associated it with the list email address, the GPG plugin automatically finds
and encrypts the email with this key. On receiving an email on the list, subscribers sim-
ply use their GPG plugins to automatically find the appropriate keys and decrypt and
verify the message.

List Moderator Components

For the List Moderator we were able to use COTS tools for the MUA, Key Management,
Crypto Function and Interface components, and had to develop the List Management
component. Similar to the reasons discussed above, we chose to use GPG tools for the
Interface component along with the provided crypto and key management functions.
The List Management component was developed in Python and Java using the GPG
and BC libraries. For storing and accessing keys, the standard GPG key management
functions were used.

To create lists, the List Management component uses standard GPG functions (via
the command-line interface) to generate an ElGamal key pair and then sends the public
key to LS via email in a GPG signed message. When LM receives LS’s public key back
via email, a special crypto function developed using BC computes the list public key,
PK; g, by multiplying LM’s and LS’s public keys.

To subscribe users, the List Management component executes the following steps
after receiving the user’s subscription request: (1) verify the user’s signature on the re-
quest, (2) use a special crypto function developed using BC to generate a private key
for the user as specified in the protocol, and (3) send signed and encrypted emails to the
user and to LS with the appropriate keying material. Once the emails have been sent,
LM deletes the user’s decryption keys for security reasons.

Additional Functions: Trust Management and Key Update

In addition to implementing the protocol steps as described above, PSELS components
also implement two additional features: Trust Management and Key Update. Trust man-
agement involves distribution of signature verification keys to allow subscribers to ver-
ify signatures on emails sent to the list. Key Update involves the distribution of an
updated set of decryption and proxy keys.

Subscribers in a mailing list may belong to different organizations, which make it
difficult for them to distribute and trust their signature verification keys. In PSELS we
address this problem by using LM as the trust anchor for the lists. Since LM is trusted to
distribute decryption keys and to help in generation of proxy keys at LS, it is an appro-
priate entity to enable the establishment of trust in subscribers’ signature verification
keys. To do so, LM signs every subscriber’s signature verification key in list subscrip-
tion step and stores this signed key in the list key ring (as noted above, LM also sends the
signed key back to the subscriber). Since subscribers already have LM’s signature key
in their key rings and trust this key, they can place transitive trust in other subscribers’
signature verification keys. Furthermore, LM can also distribute the signed verification
keys to subscribers on request by extracting them from the list key ring and sending it
to the subscribers as an email attachment.
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The PSELS solution works on the assumption that an adversary cannot get access to
the decryption key Kj g by simultaneously compromising either LM and LS (as Kix =
Kim + Kis mod g) or any user U; and LS (as K; ¢ = Ky, + Kl//,- mod q). Though unlikely,
such compromise is possible. To address this concern, the protocol includes a key up-
date step that allows LM to easily initiate and complete the process of changing all list
encryption/decryption keys. This key update step would be executed either on a peri-
odic basis for proactive security or when a compromise is detected. Key update can also
be used to change the LM for a given list. To initiate a key update, LM sends a “Update
L” message to LS, which includes a new key PK} ). On receiving this message, LS (via
a handler ‘Updatel’) computes a new key pair (Krs, PKrs) and a new list key PK;x. LS
also deletes all proxy keys for this list. LM then generates a new encryption/decryption

key pair for each subscriber and sends it encrypted with the subscriber’s GPG encryp-
tion key stored in LM’s key ring (this is the external encryption key referred to as PKEM
in the protocol described in Section 4.2.2). On receiving the message from LM, a sub-
scriber simply adds the new certificates to his key ring and associates them with the
list. LM also sends a “U; JOIN LIST L” message to LS for each subscriber, which is

processed as usual. The list has now been re-keyed.

5.2 Testing

We have tested the PSELS implementation for correct functionality and for compatibil-
ity with multiple platforms and MUAs. To do so, we have set up a test-bed that includes
a linux Debian server (which includes Sendmail and Mailman) and a set of client ma-
chines each of which have a different platform (including Windows, Mac, and different
flavors of *-nix). Since Mailman only works on *-nix platforms, which are similar in
nature, we felt that for initial testing on the server side using any one *-nix platform is
sufficient. (In the future, we will test other *-nix server platforms as well.) For the List
Moderator and Subscriber side, however, we needed to test compatibility with a variety
of platforms.

Functional Testing. We wrote scripts that automate all of the protocol steps, namely,
list creation, list subscription, email sending, and list unsubscription. We ran these
scripts on the test-bed to verify that the implementation works correctly. The scripts
use both correct and incorrect inputs and check whether the results are correspondingly
correct or incorrect. This process helped us identify several useful checks that were then
included in the implementation. For example, the scripts used incorrect list public keys
for encrypting emails. Initially, this resulted in undecipherable messages being deliv-
ered to the subscribers. To address this we included a check at LS to ensure that only
emails encrypted with the correct public key are delivered to subscribers.

Compatibility Testing. We’ve tested the combination of the COTS and developed List
Moderator components on three platforms successfully: *-nix (in particular, Debian,
Fedora, and Red Hat Linux), Mac, and Windows (XP). In each case a configuration file
is generated to allow the developed components access to installed GPG tools.

For the client side, we’ve successfully tested PSELS with five commonly used email
clients each of which has its own GPG plugin (http://www.gnupg.org/ (en)/
related software/frontends.html): (1) Thunderbird with Enigmail, (2) Microsoft
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Outloook with gpg4win, (3) Emacs with Mailcrypt, (4) Mutt with built-in GPG sup-
port, and (5) Mac Mail with MacGPG. Testing efforts resulted in a few changes at LS to
accommodate slight differences in email encryption between the various GPG plugins
(e.g., the gpgdwin plugin adds an additional attachment to encrypted html messages).
We’ve documented the steps necessary to ensure correct configuration and setup with
each email client.

5.3 Experiments

In this section we evaluate the performance of the PSELS implementation. In most
organizations the ML software is co-located with the MTA in the mail server. The main
goal of the experiments is to observe how the addition of our security solution affects the
overall performance of the mail server. To evaluate the performance of these solutions
we use an insecure ML setup as a common baseline.

Experimental Setup

For all experiments shown in this paper, we run both Mailman and Sendmail on the
same machine. The mail server machine we use for our experiments is equipped with
two 3GHZ Dual Core Intel Xeon processors and 3GB RAM. The machine runs Debian
Linux with kernel version 2.6.8 (compiled with SMP option turned on). We use version
2.1.5 of Mailman, which was the most recent version when we started this research. For
the MTA, we use the Debian linux distribution of Sendmail version 8.13.4. For PSELS,
we have developed Mailman handlers and crypto functions using GPG 1.4.2 to perform
proxy transformations.

To gauge the overhead of PSELS we use throughput as our performance metric;
i.e., the maximum number of emails per unit time that the mail server can process
and deliver. We focus exclusively on MLs so we assume that the mail server does not
process any two-party email exchange. Since we are only interested in the through-
put of the mail server, we ignore networking delays by placing list subscribers on
the same server machine. In our setup the emails for the subscribers are delivered to
/var/spool/mail/userid.|To estimate the throughput we measure the average delay
for processing one email message sent from a list subscriber and delivered to all list sub-
scribers. We then compute the normalized throughput = de}av x list size where list size
represents the number of subscribers in the list. Here /ist size is the normalization factor
and is important for our experiments because PSELS executes cryptographic operations
per email per recipient. For a more detailed analysis of the results we measure the de-
lay in two cases: (1) for Mailman alone, and (2) for Mailman and Sendmail combined;
i.e., from receiving the message at Sendmail, its processing at Mailman via handlers, to
completing delivery for all subscribers. In the first case we use the Mailman log entries
to measure the delay. In the second case we use the wall clock time when the email is
sent by our test client as the start time and the log entry of Sendmail when it finishes
delivering the email to all subscriber inboxes as the end time.

Measurements

In order to get an idea of how PSELS affects throughput we vary both the list size (num-
ber of subscribers) as well as the size of the email message. We use 10, 25, 50, 100, and
200 as the different list sizes and 1KB, 10KB, and 100KB as the different email sizes.
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We limit the list size to 200 because we argue that any sensitive message that needs to
be encrypted is unlikely to be sent to a large number of recipients. (If the list has only
signed but otherwise cleartext contents then the list server need not do any additional
work.) Since in MLs subscribers usually do not send large attachments and most of the
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posted messages are text (including HTML, RTF formats), we believe that 100KB is a
reasonable maximum size.

To run the experiments we first populate the lists by generating user keys (stored in
GPG key rings) and subscribing users. The subscription process in PSELS also results
in generation of proxy keys for LS, which are stored using a GPG key ring. We also
pre-generate the signed and encrypted messages of the different sizes to be sent on
the lists. We then run the experiments as follows. For each of the two setups (Insecure
baseline and PSELS) we first fix the list size as well as the email size. We then execute
a script at the sender to send 20 emails (one at a time waiting for complete processing
and delivery) and measure the delays for Mailman as well as for Mailman and Sendmail
combined for email processing and delivery. We average the result over these 20 runs.
We then vary the email size and the list size and measure the delays similarly.

Figure [ (a), (c), and (e) shows the measured throughput using Mailman, and Fig-
ure 3 (b), (d), and (f) shows the measured throughput using Mailman and Sendmail
combined. In all of the figures, the x axis represents list size and the y axis shows the
throughput in terms of messages per second (processed and delivered). Figures [3] (a),
(c), and (e) show the expected result of the baseline case having the better performance
with the throughput reaching up to 40 messages/sec regardless of list size. PSELS has
lower performance that degrades as the list size increases. Figures[3(b), (d), and (f) are
similar in that the baseline case has better performance with one big difference being
that here the throughput of the two setups increases with list size and varies greatly.

Analysis

In all experiments the baseline insecure setup show the better performance, as expected,
since there are no cryptographic operations involved. Also, the performance of the base
case is not affected by list size because besides delivery to individual subscriber inboxes
there is no additional processing of an email message per recipient.

Mailman Throughput. We first discuss the throughput for Mailman, which is shown
in figures 3] (a), (¢), and (e). In PSELS, across all measurements, throughput decreases
as the list size increases. This is because increase in list size leads to large key ring files
and our measurements indicate that the overhead of searching and reading through the
key ring files begins to dominate. A general observation for these set of experiments
is that as the email message size increases, the throughput decreases. The difference
is significant and owes to the overhead of managing larger sized buffers for the email
messages.

Combined Mailman and Sendmail throughput. Figures [3| (b), (d), and (f) indicate
that the throughput increases with list size and varies greatly. This is because Sendmail
has a constant overhead in processing an incoming mail message — about 3 sec in our
setup. The effect of this overhead reduces as the list size increases and, therefore, the
throughput increases with list size. This is true for both setups and the performance
of PSELS lags behind the Insecure case. Similar to the case above, as we increase the
email message size the throughput decreases.

Average throughput. In the case of Mailman, PSELS shows a 42.2% average through-
put degradation against the baseline. For combined Mailman and Sendmail throughput,
PSELS shows a 28.8% average throughput degradation. Overall, we see that even the
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worst throughput of 2.5 messages/sec for PSELS with list size 10 and message size
100KB corresponds to a throughput of more than 200,000 messages per day. Since
most mail servers in small and medium-sized organizations do not typically process
more than 100,000 messages per day (of which only a subset are ML messages) we
conclude that adding security to MLs will not impose an undue overhead on the mail
servers.

6 Security Analysis

After the functional, compatibility, and performance testing of the PSELS implementa-
tion, we analyzed the design and implementation and identified the following security
concerns.

List Key Compromise

If an adversary compromises either LM and LS or any user U; and LS then he can com-
pute the list decryption key K k. This is because Ky x = Kiy + Ki.s mod q = Ky, + Kl’ji
mod q. This would allow the adversary to read all emails encrypted with PK;g. Fur-
thermore, it would also allow him to compute every list subscribers decryption keys as
Vi Ku; = Kk — KZ/j mod q. This latter capability is a known property of proxy encryp-
tion schemes sometimes referred to as the “collusion” property [2]. The consequence
of this attack is that recovery requires re-keying of the entire list rather than revoking
one member. However, note that this would not allow the adversary to arbitrarily im-
personate a list subscribers because all emails are signed with the subscribers’ signature
keys that are not compromised in this attack. In [2] they develop signcryption schemes
that provide combined signing and proxy encryption capability and provide similar pro-
tection against impersonation by ensuring that compromise of decryption key does not
imply compromise of signing capability.

To resolve this problem one can consider both a theoretical and a practical approach.
Theoretically, the design of collusion-resistant proxy encryption schemes is an open
problem. Designing such schemes to work with COTS components in a deployable ar-
chitecture compounds this problem further. In practice, one can argue that simultaneous
compromise of LS and LM (or U;) is very unlikely. Furthermore, the provided key up-
date functionality provides a mechanism to (1) prevent Ky x compromise by executing it
as soon any one entity is compromised and (2) limit the adversary’s access to email con-
tents in case of successful Ky x compromise by executing it periodically to change list
encryption keys. However, there are cases where this risk may be unacceptable. In such
cases, additional security can be provided by splitting the list key, Kj k, three or more
ways with the additional splits being hosted in different servers or by using threshold
cryptographic approaches such as the one proposed by Jakobsson [[19]. Now, the adver-
sary would have to compromise multiple servers in order to get access to Ky x. However,
this security comes at significant infrastructure costs of managing multiple servers that
execute appropriate distributed protocols for proxy transformation. We argue that these
costs would be unacceptable in most enterprises today, however, in the future world of
virtual machines it may be possible to split the key across multiple virtual machines on
the same physical server with lower costs.
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Denial of Service Against LS

A potential attack against our design that was also observed in initial testing efforts
is denial-of-service against LS. This attack would involve an adversary composing a
large number of encrypted messages and sending them to valid list aliases from valid
subscriber email addresses (which can be spoofed). In the PSELS protocol LS does not
cryptographically verify authenticity of emails sent by subscribers because the senders’
signatures are enveloped by the encryption. Consequently, LS may end up executing a
large number of cryptographic proxy transformation operations leading to a potential
denial-of-service attack.

In our current implementation we mitigate this attack by requiring LS to check
whether incoming emails are encrypted with the list encryption key, PK; g, using the
encrypted session key packet of OpenPGP. Though the adversary can spoof this packet,
it imposes an additional hurdle in the adversary’s path. SELS [20] addresses this prob-
lem by using HMAC based authentication at LS, which unfortunately requires funda-
mental changes to email message formats and is therefore not a deployable solution.
Fortunately, the S/MIME Extended Security Services [17] (ESS) include an additional
signature wrapping around encrypted envelopes that would enable LS to verify sender
signatures prior to the transformation. Since RSA signature verification is much cheaper
that proxy transformation, the denial-of-service threat would get significantly mitigated.
As these ESS services are deployed we will look at integrating them with PSELS.

LM Generated Decryption Keys

In the PSELS protocol and implementation LM generates every user’s decryption key,
Ky, and sends it to the user. As part of the protocol, LM then deletes the key. This can
be viewed as a weak security design because ideally only the true owner of the decryp-
tion key (in this case user U;) should generate and have access to the key. In fact, in
the original SELS protocol, users added a random number in the proxy key generation
process to ensure a strong security design.

In PSELS LM generates the decryption keys so as to avoid the need for developing
new client-side software and achieve our deployability goals. We see three potential
consequences of this design choice: (1) a corrupt LM can choose to retain Ky, and
decrypt messages intended for the user, (2) a corrupt LM can share Ky, with users
outside of the list, and (3) a corrupt LM can retain Ky, and attempt to avoid revocation
at a later point in time. For the first two consequences we argue that LM already has his
own decryption key, Kj s, that allows him to decrypt all emails sent on the list and one
that he can share with adversaries if he chooses to do so. For the third consequence, the
key update protocol can be used whenever the list moderator changes to ensure that the
previous list moderator cannot continue to be a part of the list.

7 Related Work

Proxy Encryption. Previous proxy encryption schemes enable unidirectional and bidi-
rectional proxy transformations by first setting up a transformation agent that is given
the proxy key and then sending messages to the agent for transformation [4], [18] and
[25]. Unidirectional schemes only allow transformations from some entity A to an-
other entity B with a given proxy key while bidirectional schemes additionally allow
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transformations from B to A with the same proxy key. For PSELS we need a proxy
encryption scheme that allows for the transformation from one entity, LS, to many sub-
scriber entities (i.e., to all list subscribers). The El Gamal based unidirectional proxy
encryption scheme of Ivan and Dodis [[L8] is closest in nature to PSELS with the addi-
tional relationship between the proxy keys (i.e., V; Kz,i + Ky, = K x) imposed to allow
for a single list encryption key, PK;k, to suffice. Extending the RSA based unidirec-
tional scheme of [18] in a similar manner will not work because it would require the
sharing of the modulus across all list subscribers. Jakobsson [19]] and Zhou et al. [33] al-
low for proxy transformation without the need for distributing proxy keys but use costly
threshold crypto-systems to ensure the necessary security. Ateniese ef al. [2] extend
proxy encryption schemes with useful properties such as non-interactiveness, which for
PSELS might allow for generation of proxy keys without involving both LM’s and LS’s
decryption keys; however, their scheme uses proprietary message formats and bilinear
maps that are not easily available in standard cryptographic libraries or tools with inter-
faces to email systems making deployability very challenging.

Multi-recipient Email Encryption. The problem of sending confidential messages to
multiple recipients has been addressed in past via multi-recipient email encryption [28]],
multi-party certified email [32], secure group communication and broadcast encryption.
A major difference between these approaches and ours is that by using a mailing list we
remove the user’s burden of managing recipient addresses and public keys while still
satisfying the confidentiality requirement. In these approaches the sender must man-
age the sender list and address all of the intended recipient’s directly. In multi-recipient
email encryption, Wei et al. [28] combine techniques from identity-based mediated
RSA and re-encryption mixnets to enable a sender to encrypt messages to multiple
recipients with only two encryptions (as opposed to one encryption for each recipi-
ent in the trivial case). To do so, they use a partially trusted demultiplexer that is akin
to LS in terms of its security properties but also use an additional fully trusted CA.
Their scheme is not intended for mailing lists and, furthermore, requires development
of client-specific plugins. In PSELS the sender needs to execute only one encryption
allowing compatibility with existing messaging formats and tools thereby avoiding the
need to develop client-specific plugins. In multi-party certified email [32]], the sender
must maintain each recipient’s public key and encrypt the message individually to each
recipient. This overhead is avoided in PSELS via the use of mailing lists while still
providing confidentiality.

In secure group communication either a trusted group controller (e.g., LKH [30])
distributes session keys to group members or the group members generate session keys
in a distributed manner (e.g., TGDH [23]). In either case, list subscribers would have
to maintain state on current session keys and update them on every membership change
(in PSELS existing subscribers are not affected by the joins and leaves of other mem-
bers). This makes the use of secure group communication techniques impractical for
secure mailing lists as it goes against the nature of the largely offline email use. So-
called “stateless” broadcast encryption schemes (e.g., [[14], [6]) allow for encryption
of messages to a dynamic set of group members without the members requiring to
maintain state and executing key updates on membership changes. However, they vary
the encryption key and cipher-text sizes depending on the group membership. This
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variation cannot be supported by today’s mailing lists making such solutions difficult to
implement. PSELS, on the other hand, addresses the confidentiality and deployability
requirements of secure mailing lists in a practical way.

Secure Mailing Lists. Simple approaches that extend security solutions for two-party
email to mailing lists have already been developed; e.g., (http://non-gnu.uvt.nl/
mailman-ssls). In these solutions, subscribers send emails to the list server encrypted
with the list server’s public key. The list server decrypts the emails and then re-encrypts
them for every subscriber using their registered public keys. Clearly, these solutions
do not satisfy the confidentiality requirement as they allow the list server access to de-
crypted emails. Previously we have developed a Secure Email List Service solution that
satisfies the confidentiality problem in mailing lists by using proxy encryption [20].
However, as we discussed in Section 4 this work is not practical for deployment in
today’s email systems. We have also developed a Certified Mailing List protocol that
uses proxy encryption techniques to provide certified delivery in mailing lists [21]. This
protocol provides confidentiality using proxy encryption similar to that in PSELS. How-
ever, since the primary motivation is a protocol for certified delivery, the protocol results
in modifications of messaging formats and special processing at client-side making it
impractical for deployment in today’s email systems.

8 Conclusions and Future Work

In this work we have described the process of going from the new cryptographic primi-
tive of proxy encryption to a deployable application that secures mailing lists. We chose
mailing lists because there is a need to secure sensitive messages in multi-party settings
for which email is a convenient, default method. In designing secure mailing lists we
identify the need to minimize trust liabilities in the list server for which proxy encryp-
tion provides the necessary capabilities. We then defined a component architecture and
a protocol geared towards deployability taking into account available COTS tools and
configurations of deployed email infrastructures. The resulting PSELS implementation
was then tested for functionality, compatibility, and performance.

The PSELS software is now available for community evaluation. We look forward to
supporting the software in terms of software patching and update as well enhancing it
with new features that the community desires. In addition, we will undertake usability
studies to understand the effectiveness of the solution and report the results back to the
community.
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