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Abstract. In this paper, we describe generic attacks on unbalanced Feis-
tel schemes with contracting functions. These schemes are used to con-
struct pseudo-random permutations from kn bits to kn Dbits by
using d pseudo-random functions from (k — 1)n bits to n bits. We
describe known plaintext attacks (KPA) and non-adaptive chosen plain-
text attacks (CPA-1) against these schemes with less than 2F"
plaintext /ciphertext pairs and complexity strictly less than O(2%") for a
number of rounds d < 2k — 1. Consequently at least 2k rounds are neces-
sary to avoid generic attacks. For k = 3, we found attacks up to 6 rounds,
so 7 rounds are required. When d > 2k, we also describe some attacks on
schemes with generators, (i.e. schemes where the d pseudo-random func-
tions are generated) and where more than one permutation is required.

Keywords: unbalanced Feistel permutations, pseudo-random permuta-
tions, generic attacks, Luby-Rackoff theory, block ciphers.

1 Introduction

Feistel schemes are widely used in symmetric cryptography in order to construct
pseudo-random permutations. In trying to design such scheme, one of the natural
questions is: what is the the minimum number of rounds required to avoid all
the “generic attacks”. By generic attacks we mean all the attacks effective with
high probability when the round functions are randomly chosen. We are mainly
interested in generic attacks with a complexity that is much smaller than a search
on all possible inputs of the permutation.

Many results are known on classical (balanced) Feistel schemes. In [7], Luby
and Rackoff have shown their famous result: for more than 3 rounds all the
generic chosen plaintext attacks on Feistel schemes require at least O(22 ) inputs.
Moreover for more than 4 rounds all the generic attacks on adaptive chosen
plaintext /ciphertext require at least O(2 2 ) inputs. These bounds are tight [1/10].
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It has also been proved that to avoid all attacks with less than 22" computations
at least 6 rounds of balanced Feistel schemes are needed [2IITIT2]. This result is
still valid if the round functions are permutations [5/6]. For more than 6 rounds,
some attacks are still possible but with more than 22" computations [I1]. All
these results on classical Feistel schemes are summarized in Table 1:

Table 1. Results (from [12]) on G3. For more than 6 rounds more that one permutation
is needed or more than 22" computations are needed in the best known attacks to
distinguish G¢ from a random permutation with an even signature.

KPA CPA-1 CPCA-2

G} 1 1 1
G2 2% 2 2
G3 2% 23 3
G 2 on/? 2%
Gg 2377./2 on on
Gg 22n 22n 22n
Gg 23n 23n 2377.
Gg 24n 24n 24n

Gg,d > 8 2(k—4)n 2(k—4)n 2(k—4)n

The aim of this paper is to look for similar results for the case of unbalanced
Feistel schemes with contracting functions: we call such schemes “contracting
Feistel Schemes”. A precise definition of these schemes is given in Sect. 2l The
case of unbalanced Feistel schemes with expanding functions instead of contract-
ing functions is studied in [4[T4JT5]. Some results on contracting Feistel schemes
or on small transformations of these schemes can be found in [8[9]. In [9], Naor
and Reingold studied the security of contracting Feistel schemes with pairwise
independent permutations. They show lower bounds for the security of such
schemes. Lucks [8] gives some security results on contracting Feistel schemes
built with hash functions.

The paper is organized as follows. In Sect. 2] and B, we introduce notations
and present precise definitions of the considered schemes and an overview of our
attacks. In Sect. @l we study attacks for k = 3 and d < 6. Then in Sect.[5, we give
attacks for any k and d < 2k — 1. Finally, Sect. [@is devoted to what can be done
with more than 2F" computations. In particular, we describe attacks against
permutation generators. All the results are summarized in the conclusion: these
tables extend the above Table 1 to the case of unbalanced Feistel schemes with
contracting functions.

2 Notation

Our notation is very similar to that used in [7] and [9]. We also follow the
construction given in [9]. [a, b] denotes the concatenation of strings a and b. An
Unbalanced Feistel Scheme with Contracting Functions G¢ is a Feistel scheme
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with d rounds. At round j, we denote by f; the round function from (k — 1)n
bits to n bits. On some input [I*, I2,..., I*], G¢ produces an output denoted by
[St,S2,...,S%] by going through d rounds. At each round, the last (k — 1)n bits
of the round entry are used as an input to the round function f;, which produces
n bits. Those bits are xored to the first n bits of the round entry. Finally before
going to round j + 1, the kn bit value is rotated by n bits.

We introduce the internal variable X7: it is the only n-bit value which is
modified at round j and which becomes the k coordinate of the internal state
after j rounds. For example, we have:

X'=I'o f(1%...,17),
X2=re (5. 1" X"),
X3 =D (4., 1% X1, X)),

The first round of GZ is represented in Fig. 1 below.

It I? A I*

A 4

D

I? 3 I* X'=I'o f([I12,...,1%)

Fig. 1. First Round of G

3 Overview of the Attacks

We present several attacks that allow us to distinguish Gg from a random permu-
tation. Depending on the number of rounds, it is possible to find some relations
between the input variables and output variables. Those relations hold condi-
tionally to equalities of some internal variables due to the structure of the Feistel
scheme. Our attacks consist in using m plaintexts and ciphertexts tuples and in
counting the number NGZ of pairs of these tuples that satisfy the above relations.
We then compare NGZ with the equivalent number Npe,py, if a random permuta-

tion is used instead of G¢. Our attack is successful, i.e. it is able to distinguish
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G¢ from a random permutation if the difference |[EWNga) = E(Nperm)| is much
larger than the standard deviation operp, and than the standard deviation fer s
where E denotes the expectancy function.More general cases of succes are also
given in the extended version of this paper [I3].

In order to compute these values, we need to take into account the fact that the
m? pairs obtained from the m plaintext/ciphertext tuples are not independent.
However their mutual dependence is very small. To compute operrm and oG, we
will use this well-known formula that we will call the “Covariance Formula:

V(sz ZV X; +Z ‘rlij ($Z)E($])]

i<j

where the x; are random variables.

We can note that for a small number of rounds d < k, a distinguishing at-
tack is very easy to find. The output of G¢ is [S1, S?,..., S*] which is equal to
[19+1 ..., 1% X' ... X9]. This shows that we can easily mount a KPA attack
with one single message. We just have to test if the first coordinate of the out-
put is equal to the coordinate of rank d + 1 of the input. This leads us to start
investigating attacks for scheme with at least k rounds.

4 Generic Attacks When k =3 and 3 <d < 6

We first study schemes with & = 3 since this case is slightly different from the
general case k > 4 and since it gives simple examples of what we will do. We
have [S}, S2, 53] = G([1}, 12, I?)).

1771
4.1 Attacks on 3 Rounds: G3

G3: 3 rounds, CPA-1 with m = 2 messages. Let us choose I3 = I?, I3 = I} and
I} # I}. Then the attack just tests if S] @ S3 = I} @ I}. This will occur with
probability 1 if f is a G3, and with probability ~ 2171 if fis a random permutation.
So with three rounds there is a generic attack with two non-adaptive chosen
queries and O(1) computations.

G3: 8 rounds, KPA with m ~ 2" messages. It is possible to transform this non-
adaptive chosen plaintext attack into a known plaintext attack as follows. If we
have m > 2" random inputs [I}, I?, I?], then (since m? > 22") with a good
probability we will have a collision I? = I7 and I} = I?,i # j. Then we test if
Slo 5]2 =Il® I]l. Now the attack requires O(2") random queries and O(2")

computations.

4.2 Attacks on 4 Rounds: Gg

When the output [I!, 1%, I3] is given, we have introduced the internal variable
X' =T1'a® f1([I% I?]) and the following conditions hold:
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=0 andP=1 =X'eX =Ilal]
B=0I andX!=X!=SleS=Fal’
X/!=Xjand S} =S =SoS;=LFal
St=S and S} =57 = S}e S =X oX]

The attack exploits the second condition. It proceeds as follows: we choose m
messages such that Vi, I3 = 0 and I? # 1]2 for all 4 # j. We then count Ncg the
number of pairs (i,j) with i < j such that I? ® Ij2 =Sl o S}. For a random
permutation, this condition appears only by chance. Thus we get:

m2 m

Nperm ~ 92.9n +O<2721 )

Here 0(2"725 ) denotes the standard deviation. This can be easily proved using the
Covariance Formula, see Appendix [A] or full version of this article [13].

For G3, the equation I? @ I7 = S} @ S} can occur at random with probability
27" or from the internal collision X} = X. Since I} is equal to zero for all i, we
have X}! = I @ f1([I?,0]). Sine f; is a random function and the I? are pairwise
distinct, the values f;([I?,0]) and consequently the X} are uniformly distributed

random variables. Consequently the internal collision X = X appears with
probability 27" and we have:

2

m m
NG% ~ on +O(2721)

where 0(2’% ) denotes the standard deviation (proof is given below). We can
distinguish the two permutations when the difference between the mean values

is larger than the standard deviation i.e. when g’: > 2”5 , i.e. for m > 22 . This

generic attack requires O(22) random queries and O(22) computations.
As explained previously, we can transform this attack in a known plaintext
attack with m ~ 2.

Proof of the Standard Deviation o4
We introduce the following random variables:

bij=1if ;& I; =S ®S;
di,; = 0 otherwise.

Since we have chosen all the I} equal to zero, we can say equivalently that
8;j is equal to one when fo([0, X}!]) = f2([0, X]]). Ngs is defined as ), d;
and it is easy to compute E(d; ;) = 22n — 25". We now compute the variance
V(0ij) = E(07;) — E(0ij)* = E(0ij) — E(0ij)* = 5. — 030 + g0 — gin- We
recall the Covariance Formula:

VO 6ig) =Y V(ij)+ > [E(6ij 0k) — E(8i5) E(6k,)]

i<j i<y 1<j,k<l,(i,5)#(k,1)
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We need to compute Cov(i, j, k,1) = E(d; j 0x;1) — E(d; ;) E(dk,;1) Let us first
consider the case, where 1, j, k,[ are pairwise distinct We need to consider the
influence of the equality fa([0, X}']) = f2([0, X}]) over the equality fa([0, X}}]) =
f2([0, X}']). It can only happen if X} # X' and if either X} = X} and X = X;
or X} = X; and X' = X!. In that case we have also X} # X;. This event
happens with probability (1 — zln) 22%” and both equalities have a probability 2171
instead of Q%H. This gives a covariance equals to

2 4 2
23n o 24n + 25n'

The second case is if both equations are sharing an index, for example ¢ = k
We need to consider the influence of the equality fo([0, X!]) = fa([0, X}]) over
the equality f>([0, X!]) = f2([0, X}']). It can only happen if X} # X}. This event
happens with probability (1 — an) an and both equalities have a probability 2171
instead of 221". This gives a covariance equals to

1 2 1

22n o 23n + 24n'

Consequently we have

m2 m3 m4
V(N(;%) = on +O (22n> +O (23n)

Since m is smaller than 2", we get:

2 m

m
V(./\[Gg)ﬁ 23

on and og1 ~

4.3 Attacks on 5 Rounds: G}

For 5 rounds, the internal variables are X! and X2 = I* & fo([13, X']). We have
the following conditions:

=0 adP=0I =X'eX =Ilal]
B=0I andX!=XI=X}eX?=Ial;
X! =Xland X} =X’ => Sl oS =)ol
X =X7and S} =S5} = S7 087 =X 0X;
S} =5} and S} =57 = S}oSI=X?0X;

The attack proceeds as follows: we choose m messages such that Vi, I? = 0,
I? = 0 and the I} values are pairwise distinct. Notice that this directly implies
Xl X} =Ilo® 1]17 so the X} values are pairwise distinct. Let A/ be the number
of pairs (i, ), i < j such that S} =S} and I} ® I} = S} @© S7. With a random
permutation, these two conditions appear by chance and we have:

m2 m
2. 92n )

Nperm =~ on

+0(
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2’71
appear at random or as a consequence of X? = ij and S} = Sjl. This gives:

Here O( ) is the standard deviation. For a G3, S} = Sj and I} © I} = 57 & S}

m2

NG% = 922n :
We can distinguish the two permutations when the difference between the mean
values is larger than the standard deviation i.e. when ;Zi > 2mn, or m > 2",
Remark: here m < 2" since I? = 0 and I? = 0; so the attack will succeed when
m ~ 2™,

As before this attack leads to a KPA attack with 22" messages. But there is
a better attack as we can see now.

G3: 5 rounds, KPA with m = 2% messages
For this attack, let A/ be the number of pairs (4, j), i < j, such that I} @ Ij?’ =
S} @ Sj. For a random permutation, we have:

m2 m
Nperm — 2~2" +O(\/2n)

where \/’;Ln is the standard deviation, while for G we obtain
2 2
m m
NG? ~ 9. 9n + 9.92n"

We can distinguish the two permutations when the difference between the
2
mean values is larger than the standard deviation i.e. when ;Zn > \/m i.e. for

on?
3
m > 22",

4.4 Attacks on 6 Rounds: Gg

For 6 rounds, the internal variables are X!, X? and X3 = I*® f3([X!, X?]). We
have the following conditions:

= and}=I =X'eX =I'al]
=0 andX!=X]=>X?0X? =1}l
X/ =Xand X} =X = X} o X} =T}
X?=Xand X} =X} =Sl @5 = X! ® X!
X} =X}and S} =S5; =S oS} =X 0X;
S} =5} and S} =57 = S}oSi=X} o X}

The attack proceeds as follows: we choose m messages such that Vi, I? = 0. Let
N be the number of pairs (4, ), i < j, such that I? = Ij2 and I} 69]} =Sl S}.
With a random permutation, we have:

m
Nperm — on )

2.22n +0(
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where O(;2) is the standard deviation. For a G$, since all the I} values are
equal, I? = I and X? = X]2 and X} = X;) imply I} @ Ijl =Sl S]l. We get

m? m?

Nog > 5 gon ¥ 5. g
We can distinguish the two permutations when the difference between the
mean values is larger than the standard deviation i.e. when ga‘i > ;"m i.e. for
m > 22",
We can obviously transform this CPA-1 attack into a KPA attack which will
succeed as soon as we have m > 2% .

4.5 Experimental Results on Gg

We have implemented our CPA-1 and KPA attacks against G§ for small values
of n (n =6 and n = 8). Our experimental values confirm the theoretical results.
Our experiments were performed as follows:

— choose randomly an instance of G§

— choose randomly a permutation: for this we use classical balanced Feistel
scheme with a large number of rounds (more than 20)

— launch the attack in CPA-1 with m = 22", in KPA with m = 23" (m = 2%
also works).

— count the number of plaintext/ciphertext pairs satisfying the relations for
the GY function and for the permutation

— iterate this procedure a large number of times (here 1000 times) to evaluate
the mean values and the standard deviations

— compute the mean value and the standard deviation for both the G function
and the permutation

Table 2. Experimental results for KPA and CPA attacks on GS

2

Attack|n NGg Nperm NGg —Nperm % 0G§ |Tperm ﬁ
KPA ||6] 131006 | 129011 1995 2048 | 159 | 372 | 362.038
KPA ||8]8388308|8355787 32521 32768|2862| 2833 [2896.309
CPA ||6| 2058 2009 49 32 | 45 | 44 | 45.254
CPA ||8] 32781 | 32601 180 128 | 178 | 185 | 182.019

Conclusion. Our experimental values for NGe - Nperm are very close to the

theoretical expected values (zfgjn in KPA and 27’2‘3n in CPA-1). Similarly, our
experimental values for eperm are very close to the theoretical expected values

(\/2 ap in KPA and \/2 - in CPA-1) . So these simulations confirm that we can

distinguish G§ from a random permutation with the complexity that we have
given.
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5 Generic Attacks When k >4 and k< d <2k —1
5.1 Attacks for k Rounds

We first describe a CPA-1 attack with two messages. All the blocks of these two
messages are equal to zero except the first one. We test if I @ I3 = S] @ S1.
Since S = X! = I'' @ f,([I?,...I¥]), this will occur with probability 1 if f is
a GF, and with probability 27" if f is a random permutation. This gives the
result.

As usual, we transform this attack into a KPA attack with m = O(2n(k2_1) )
In that case with a high probability I? = 1]27 I} = I;’, oy IF = I]]-“. We test again
S!S = Il ® I,

5.2 Attacks for kK +t Rounds, with 1 <t <k —1

In the CPA-1 attack, we choose Vi, IitJr2 = ... = IF = 0 and pairwise distinct
[I},...I!]. This choice limits the maximal number of plaintext/ciphertext tuples
to m < 24" We then count the number N of pairs (i,7), i < j, such that
e I;H =Sl® S}. For a random permutation, we have:

3

m(m — 1)

/V;ernL:: 9.9n

+o(h).

N3

2

Here 0(2’% ) denotes the standard deviation. This can be easily proved using the

Covariance Formula, see Appendix [A] or full version of this article [13].
For an unbalanced Feistel scheme, the preceding condition appears at random,
but we also have the following property:

X} =Xj,... X{=X=Ses;j=IT"aer"
since S} = X't = **l @ f, ([IF2,. .. 1%, XY, ..., XY]). This gives

m(m —1)
2. 9tn

m(m—1) m(m—

)
o S0 B W) = B(Nperm)| =

NG«ZH ~
Here again for Nva the standard deviation can be computed by using the Co-
variance Formula, as we have shown for G (see full version of this article for the
details [I3]). Thus we distinguish when gfj > 2"725 i.e. when m > 2(t=2)" which
is compatible with the bound given above.

As usual, we are able transform this attack into a KPA attack which succeeds
ktt—2

if m > 207

5.3 Attacks for 2k — 1 Rounds
In that case we can only mount a KPA attack. We consider the following KPA
attack: let N be the number of pairs (i, 7), i < j, such that I} @ I} = S} ® S}.

For a random permutation, we have Nperm =~ m(;;l) + O( \/’;L") and for an
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unbalanced Feistel scheme, NGik—l o~ m(;;l) + 2772((77:;1}1 , since IF 6‘9]]}?c =5oS]
is also implied by the following equations: X} = X]17XZ-2 = X]27~-~7Xik71 =
Xf_l. This is because S = X* = I* @ for_1([X*,..., X*71]). Thus we can
distinguish when 2'2(7,?:)" >y, - This gives m > k=5

We can remark that for more than 2k rounds we will have to proceed with
different attacks, since X = X1,..., X} = X implies i = j because we have a
permutation.

6 Attacks with More Than 2** Computations

Until now we have studied Unbalanced Feistel schemes with random functions.
In practice, for example in designing block ciphers we need to consider gener-
ators of pseudo-random permutations. In this section, we will describe attacks
against a generator of permutations (and not only against a single permuta-
tion randomly generated by a generator of permutations), i.e. we will be able to
study several permutations generated by the generator. This allows more than
2k computations.

Let G be a “G¢ generator”, i.e. from a binary string K, G generates a d
round unbalanced Feistel permutation G¢. Let G’ be a truly random permutation
generator, i.e. from a string K, G’ generates a truly random permutation G’ of
Bgpn. Let G” be a truly random even permutation generator, i.e. from a string
K, G" generates a truly random permutation G% of Ay, with Ay, being the
group of all the permutations of {0,1}*" — {0,1}*¥" with even signature. We
are looking for attacks that distinguish G from G’, and also for attacks that will
distinguish G from G”.

Adversarial model: An attacker can choose some strings K, ... Ky, can ask for
some inputs [I', ..., I*], and can ask for some G [I,..., I¥] (with K, being
one of the K;). Here the attack is more general than in the previous sections,
since the attacker can have access to many different permutations generated by
the same generator.

Adversarial goal: The aim of the attacker is to distinguish G from G’ (or from
G") with a high probability and with a complexity as small as possible.

6.1 Brute Force Attacks

A possible attack is an exhaustive search for the d round functions fi,..., fq
from {0,1}(*=17 to {0,1}" that have been used in the unbalanced Feistel con-
struction. This attack always exists, but since we have gdn-2E7Dn possibilities
for f1,..., fq, this attack requires about gdn-2h7 1" computations and about
g 20— random queries but only for one permutation of the generator. This
attacks means that an adversary with infinite computing power will be able to
distinguish G¢ from a random permutation (or from a truly random permutation
with even signature) when m > g .ok=1)n_
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6.2 Attack by the Signature

Theorem 1. Let ¥ be an unbalanced Feistel permutation on {0,1}*+F —
{0,1}2%8 with round functions of {0,1}% — {0,1}*. Then if « > 2 and 3 > 1,
¥ has an even signature.

The proof of this theorem is quite similar to the proof in the case of a symmetric
Feistel scheme [I1I3]. However the fact that oo > 2 changes a few things. Conse-
quently a complete proof is included in the full version [I3], available from the
authors.
Let f be a permutation from kn bits to kn bits. Then using O(2*") compu-
tations on the 2*™ input/output values of f, we can compute the signature of f.
[e3
To achieve this we just compute all the cycles ¢; of f, f = ][] ¢; and use the
i=1

formula:
«

signature(f) = [ [(=1)teroth(ea+t,

=1

The consequence is that it is possible to distinguish G a generator of Gz from
a generator of truly random permutations from kn bits to kn bits after O(2%")
computations on O(2F") input/output values.

Remark: To compute the signature of a permutation g we need however to know
all the input/outputs of g (or all of them minus one, since the last one can be
found from the others if g is a permutation).

6.3 Attacks of Gg Generators When d = 2k

Let 1 be the number of permutations that we will use. After 2k rounds, the
output is given by [S1,52%,... 8% = [XFF XF+2 . X?F] where we have
XF = X' fri1([X2, ..., X*]). Remember that X! = I'' @ f,([I2,...,I¥)).
Let us describe the KPA attack which concentrates on S' = X**!. Let A be
the number of pairs (i, ), ¢ < j, such that

=0, I1f=1If

VR

XfeXxi=IleI]. (1)

There we have necessary I} # I jl and X! # X jl When we are testing random
permutations, Nperm > - QTg,fn +O0(/p- 2’,?" ). For G],z, since I? = 1]27 oI =
2
E y2 _ y2 E_ yk: .
I7, X7 = X5, X) = Xj imply @) we have:

m? m?

+p- 2.9(2k=2)n"

2
Thus we can distinguish the two generators when: pu- "), > /1t 22”2" , Or

when p-m > 26G5=9" When m = 2", we find g = 29" and p-m = 22k=n,
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6.4 Attacks G‘,i Generators for d Rounds with d > 2k

It is possible to generalize the attack given above for any d > 2k. We give here
only the main ideas. We concentrate the attack on X?~**1 In the constraints,
there are d conditions and d — k internal variables X?. We choose conditions
number k, 2k, ... , until we get £ = LZJ conditions. This gives ¢ (internal or

external) -(k — 1)-multiple equations. When they are satisfied, we have:

1. One equation between the input and output variables.
2. p equations between the output variables where

o=(k—1)— <d— m k) = (k—1) — (dmod k)

We have p permutations and the attack proceeds as follows: let A be the number
of pairs (4,7), i < j, such that these ¢ + 1 equations are satisfied. When we are
testing a permutation generator, we have

m(m — 1) m

Nperm = N : 2 A 2(¢+1)n + O(\/lu’ ! 2(%31 )

n
With a G¢, the &(k — 1)-multiples equations imply the ¢+ 1 equations described
above. This shows that

m(m — 1) m(m — 1)

Nog=n- 2. 2(p+1)n

k

We get the condition:

2
m
e o k—1)n =V

1y, 9
«P-Z%— n

a(
e m?2 > 2@(k-1E—p-1)n

(k—1)¢—p—2k—1)n

For the maximal value m = 25", we find p = 2 and the com-

plexity is A = p - m = 2@FE=1E—0k—1)n_ Thyg we can write

3\ = 9Uk=1)| { | +(dmod k)—2k)n _ 2(d+(kf2)LgJ72k)n.

7 Conclusion

Until now, attacks and proofs of security on contracting unbalanced Feistel
Schemes have not received much attention. There are much more papers on clas-
sical Feistel schemes and even attacks on expanding unbalanced Feistel schemes
have been more studied than attacks on contracting unbalanced Feistel schemes.
This may be not justified since contracting Feistel schemes seem to have very
good security properties. For example, to avoid all known generic attacks with
the number of messages less than 2*" (where kn is the number of bits of the
input and the output) with these schemes, we need only 2k rounds (if k& > 4)
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Table 3. Results on G%. For more than 7 rounds more that one permutation is needed
or more than 25" computations are needed in the best known attacks to distinguish
from a random permutation with an even signature.

KPA  CPA-1°

G} 1 1
G2 1 1
G3 2" 2
Gs o on/2
G5 23n/2 on
Gg 25n/2 22n
G§ 24n 24n
Gg 26n 26n
Géo 27n 27n
Gél 28n 28n
GéZ 210n 210n

Gg,d > 12 2(d+L§J—6) 2(d+L§J—6)

¢ Here we do not show CPA-2, CPCA-1 and CPCA-2 since for G¢, no better attacks
are found compared with CPA-1.

Table 4. Results on G¢ for any k > 4. For more than 2k rounds more that one
permutation is needed or more than 2(2*~9" computations are needed in the best
known attacks to distinguish from a random permutation with an even signature.

KPA CPA-1°
Gl 1<d<k-1 1 1
& n(k—1)
el 2" 2
G+ oD .
Git? 25" 25m
GFts 2(*§hm 23n
Gitii<i<k  2hTm 2(*'3hm
G2 9(2k—4)n 9(2k—4)n

Gl d>ok  2W@HE=2LEI=2kn o(dt (k=21 -2k)n

® Here we do not show CPA-2, CPCA-1 and CPCA-2 since for G¢, no better attacks
are found compared with CPA-1.

or 7 rounds (if & = 3). So each bit will be changed only 2 times (if & > 4) un-
like with balanced Feistel schemes where 3 changes (i.e. 6 rounds) are necessary
and unlike expanding unbalanced Feistel schemes where much more changes are
needed [4UTTIT4].

Storing a random function of (k — 1)n bits to n bits requires a large mem-
ory and this may be a practical disadvantage of Gg compared with balanced
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Feistel schemes or Feistel schemes with expanding functions. However if a func-
tion generator is used to generate pseudo-random functions, this may not be a
problem.

There are still many open problems on contracting unbalanced Feistel schemes.
Naor and Reingold have shown a very nice security result [9]: we have security un-
til the birthday bound when we use pairwise independent functions for the first
and the last rounds. However, if we do not use such first and last rounds, the ex-
act security is still an open problem and even the birthday security bound is not
proved yet.

In conclusion, contracting unbalanced Feistel schemes seem to be one of the
best designs for permutation generators. In this paper, we have presented attacks
on these schemes with fewer than 2k rounds.
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A Computation of the Variance for Random
Permutations

In this section, we compute the value of the variance when we are testing a
random permutation and we want to distinguish it from a G5, 1 <t <k — 1.
The input is [I',...,I*] and the output is [S',..., I*]. We want to compute
Nperm which is the number of (4,7), i < j satisfying the relation If“ ® S} =
I @ S1. We have the condition Vi, I{*? = I*® = ... = IF = 0. This implies
that m § 2+ We introduce the following random variables:

;=1 [T es=I" oS
di,; = 0 otherwise

Then Nperm = Y, 815 and B(d;;) = Prye,n,, i © 8} = [ & S]],
Notice that if m < 2", we may assume that the I'T! values are pairwise
distinct (or are all equal) and if m > 2", we may assume that each element
of {0,1}" is reached by about Jo values of I/*! (in CPA-1, we can choose m
to be a multiple of 2" and each element of {0,1}" is reached by exactly .7
values of I/™'. Tt is also possible to choose that I'™' are random values). If
I = 117 B(8:5) = Prieys,, St = S} = 2401 and i 1 2 I
E; ) = 22(:n 1); ~ !.. This gives us the average value:
m(m — 1) m
2.on T yeyyn)

We now compute the variance V' (4; ;) = E(éfj) — E(06;;)? = E(6; ,j) E(5 32
H‘I;E+1:]ji}+17 V((si,j): 1 711 _ 1 _(1 . 11 _an 1) And if

an 1o 1T 2kmog 20 T L
2 .
AL V) =0yt = () Finally V(0;5) ~ 5, (1= 5,)

2n Shn on Shn — 92n on

S v =" as )

1<j

E<Nperm) =

and

We recall the formula:

V per'm = Z 51 ] Z V((SZ,]) + Z [E((s’b,J 5?71) - E((s'baJ) E((Sp,l)]

i<j i<j 1<j,p<l,(i,5)#(p,l)
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The second term is the covariance term. We will see that

m(m — 1) m? m* m3
V(Nperm) = 2.9n +0 (22n> +0 (22n . 2(2k=1)n +0 22n . 9(k—=1)n

where the two first terms correspond to the sum of the variance of d; ;, the third
term corresponds to the covariance of four distinct indexes (4, j, k, 1), and the last
term corresponds to the covariance of 4-tuples of indexes with one in common,
like for example (7, j,4,1). Therefore, for m larger than 2" but smaller than 27,
we have as claimed

~m(m—1) m? m?
VNoerm) =5 on +0<2") T 2.2n

In order to exactly compute the covariance term, we can separate the com-
putation into several cases. Here we only study the main case, i.e. we sup-
pose that 4, j, p,1 are pairwise distinct and that I # I]Hl, IEF # I and
e I§+1 @ Il @ I/ # 0. For all other cases, computation is similar and is
included in the full version of this paper [13].

To compute this probability we need to count the total number A of possi-
bilities for the outputs [S},...,SF], [S],...,SF], [S},...,SE] and [S}, ..., SF].
Since we are using a permutation, we have A = 2. (2kn _1).(2kn _2).(2kn _3),

We also have to compute B the number of outputs [S},...,S], [S],...,SF],
[Sy,..., 5k and [S},..., 5] satisfying the above relations in the case we con-
sider. For [S},...,S¥], there are 2k possibilities. When this output is fixed,
S}=Stel™ oI*'. Thus there are 2=V" possibilities for [S},.. ., 5¥]. Now
we have to fix [S}, ..., SF] and S}y S]k] There are 5 cases that we are going
to study now. If S} = S} @ I'*!' @ I/t then Sy # S}, Sy # S and S} = S}

Thus we have 2(F= 1. (2(k=1n _ 1) possibilities for [Sp.....SFand [S},...,S}].
Then we consider the case where S} = S} @ I'*1 @ Ij*!. This case is different
from the previous one since S} # S}. We get again 2(k=17 . (2(k=Dn _ 1) pos-
sibilities for [S},...,S¥] and [S},...,SF]. If S} = S} or if S} = S}, there are
(2(k=Dn —1).2(k=Dn poggibilities for [S}, ..., S5 and [S}, ..., SF]. The last case
is when we have eliminated the previous cases. This gives (2" —4)-2(k=1)n.2(k=1)n
possibilities for [S},...,S¥ and [S},...,S}]. Finally B = 2Wk=2m (1 — L.

Consequently, since E(8; ; 6,) = 5 we get:

1 2 1

ESi5 81) = BGii) 1) = 0 (= g + Oy

. . _ 4 4
Finally these terms of covariance are equal to 4'223"3%" <0 (22n_2@k,1)n> as
claimed.
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