On the Equivalence of RSA and Factoring
Regarding Generic Ring Algorithms

Gregor Leander and Andy Rupp

Horst Gortz Institute for IT Security,
Ruhr University Bochum, Germany
leander@itsc.rub.de, arupp@crypto.rub.de

Abstract. To prove or disprove the computational equivalence of solv
ing the RSA problem and factoring integers is a longstanding open prob
lem in cryptography This paper provides some evidence towards the
validity of this equivalence We show that any efficient generic ring al
gorithm which solves the (flexible) low exponent RSA problem can be
converted into an efficient factoring algorithm Thus, the low exponent
RSA problem is intractable w r t generic ring algorithms provided that
factoring is hard

Keywords: Computational Equivalence, RSA Problem, Factorization
Problem, Generic Algorithms

1 Introduction and Related Work

The security of the well known RSA encryption and signature scheme [I] relies on
the hardness of the so called RSA or root extraction problem: Let n = pg be the
product of two large primes and let e be a positive integer s t ged(e, ¢p(n)) =1
Then given n, e and an element xz € Z,, the challenge is to find an element
y € Zn st y© = x The RSA problem is closely related to the problem of
factoring integers, i e , in the case of an RSA modulus, finding p and ¢ given n
While it is well known that the RSA problem can be reduced to the factorization
problem it is a longstanding open problem whether the converse is true, i e, if
an algorithm for finding e th roots can be utilized in order to factor n efficiently

Theoretical results towards disproving resp proving the existence of such a
reduction from the factorization to the RSA problem have been provided by
Boneh and Venkatesan [2] resp Brown [3] In both papers the low exponent
variant of the RSA problem (LE RSA) is considered, where the public exponent
e is restricted to be smaller than some fixed constant or a product of small factors
Moreover, the results given in these papers are limited to (slight extensions)
of straight line programs (SLPs) These are non probabilistic algorithms only
allowed to perform a fixed sequence of addition, subtraction and multiplication
steps on their inputs without branching or looping Thus, the result of such a
program can be represented by a fixed integer polynomial in its inputs

Boneh and Venkatesan [2] show that any straight line program that efficiently
factors n given access to an oracle solving the LE RSA problem can be converted

X Lai and K Chen (Eds): ASIACRYPT 2006, LNCS 4284, pp 241 2511 2006
© International Association for Cryptologic Research 2006

242 G Leander and A Rupp

into a real polynomial time factoring algorithm This means, there exists no
straight line reduction from factoring to LE RSA, unless factoring is easy The
authors also show that this holds for algebraic reductions, which are straight line
reductions extended by basic branching steps based on equality tests

Recently, Brown [3] shows that any straight line program solving the LE RSA
problem also reveals the factorization of the RSA modulus In other words, the
LE RSA problem is intractable for SLPs provided that factoring is hard More
precisely, he proves that an efficient SLP for breaking LE RSA can always be
transformed into an efficient factoring algorithm Moreover, Brown outlines (see
Appendix F in [3]) how this result extends to a generalization of SLPs (called
SLEEPs) which are additionally allowed to perform basic branching steps based
on the equality of elements

At first sight, Brown’s result seems to be contradictory to [2], since an SLP
for breaking LE RSA aids in factoring the modulus However, the factoring algo
rithms considered by Brown which make use of the LE RSA SLP are no straight
line programs and in addition the LE RSA SLP is not simply used as a black box
as it is done in [2] So both results do not contradict but are results in opposite
directions

Another important theoretical result about the hardness of the RSA problem
is due to Damgard and Koprowski [4] They studied the problem of root extrac
tion in finite abelian groups of unknown order and prove that both the standard
and the flexible RSA problem, where the parameter e is no fixed input but can
be chosen freely, are intractable w r t generic group algorithms

The concept of generic group algorithms has been introduced by Nechaev [5]
and Shoup [6] Loosely speaking, generic algorithms are probabilistic algorithms
that given a group G as black box, may only perform a set of basic operations on
the elements of G such as applying the group law, inversion of group elements
and equality testing Since the group is treated as black box, the algorithms
cannot exploit any special properties of the representation of group elements

It is important to note that the generic algorithms for solving the (flexible)
RSA problem considered in [4] are restricted in the following respects: They
can only exploit the group structure of the multiplicative group Z; and not
the full ring structure of Z, which would be more natural in the case of the
RSA problem Moreover, the RSA modulus n is not given as input to them
Instead, the multiplicative group is chosen at random according to a publicly
known probability distribution and the algorithms know that the group order
lies in a certain interval Damgard and Koprowski leave it as an open problem
to consider the RSA problem in a more natural generic model not having the
restrictions described above

1.1 Owur Contribution

In this paper we propose a solution to the open problem stated in [4] by consider
ing the hardness of the flexible LE RSA problem w r t to generic ring algorithms
We consider the following model of a generic ring algorithm: Let o : Z,, — Sy,
where S,, {0,1}1°82(1 and |S,,| = n, denote a random encoding function for

On the Equivalence of RSA and Factoring 243

Z,, which is a function randomly chosen from the set of bijective mappings from
Z, into the set of bit strings of sufficient length A generic ring algorithm for the
flexible RSA problem is a probabilistic algorithm which is given n, S, and the
encodings ¢(0),0(1) and o(x) as input These encodings are the initial content of
the encoding list which contains all encodings o(z;) of ring elements x; occurring
during a computation In a computation the algorithm can query a ring oracle,
which given two indices ¢ and j into this list computes o(z; + ;) or o(z;z;)
and appends this encoding to the list After some queries the algorithm finally
outputs a pair (e,o(y)) where e > 1 and ged(e, p(n)) =1 It succeeds iff y¢ =z

Note that given the factorization of n, computing e th roots is possible using
O(log(n)) oracle queries So clearly it is not possible to prove that a generic ring
algorithm given n needs exponential many oracle queries to solve the problem,
since the algorithm might first factor n (without using the oracle) and then
compute the e th root using O(log(n)) queries Therefore any approach to prove
something about the hardness of the problem in this model has to relate the
RSA problem to the factorization problem

We show that any efficient generic ring algorithm which solves the flexible LE
RSA problem with non negligible probability can be converted into an efficient
factoring algorithm having non negligible probability The considered generic
algorithms can thereby only choose e from the set of exponents having some small
fixed constant factor Thus, the LE RSA problem is intractable w r t generic ring
algorithms unless factoring is easy

The paper at hand extends the results by Brown to a broader and more natural
class of algorithms: First, the class of generic ring algorithms is clearly larger than
the class of SLPs Moreover, each SLEEP can be implemented as generic ring al
gorithm However, it is not known if every generic ring algorithm can be realized
as a SLEEP We note that for part of our proof we use a Theorem given in [3]

2 Relating Flexible LE-RSA to Factoring

2.1 Generic Ring Algorithms

We formalize the notion of a generic algorithm for the ring Z,, based on Shoup’s
generic group model [6] To this end, the group oracle just needs to be extended
by a multiplication operation in order to make the full ring structure of Z,
available However, the ring oracle O we present slightly differs from such an
extended group oracle in the following sense: Instead of using the ring Z,, for
the internal representation of ring elements, these elements are represented by
polynomials in the variable X over Z, which are evaluated with x each time
the encoding of a newly computed element must be determined It is easy to
see that both versions of a generic ring oracle are actually equivalent However,
we believe that the presented version is a better starting point for doing and
understanding proofs in the generic model
The generic oracle O is defined as follows:

Input: As input O receives x €y Z,, the modulus n and a list {o1,...,0,} of
n pairwise distinct bit strings randomly chosen from S,

244 G Leander and A Rupp

Internal State: As internal state O maintains two lists L and E which always
have the same length For an index j € {1,...,|L|} let L; denote the j th ele
ment of L and E; the j the element of E In the list L, polynomials L; € Z,[X]
are stored which represent computed ring elements L;(x) The list E contains
the encodings E; of the corresponding ring elements L;(x) Moreover, O main
tains a counter ¢ which counts the number of different elements contained in F
and the encoding function o : Z,, — S,, which will be gradually defined during
computation by the assignments between computed ring elements and the bit
strings o1,...,0p

Encoding elements: Each time a polynomial P is appended to the list L
(during the initialization or query handling phase described below) it is checked
whether the corresponding element P(x) has already been computed More pre
cisely, O checks if there exists any j € {1,...,|L|} st

(P—Lj)(z) =0modn.

If this is not the case, O increases the counter ¢ and appends the random bit
string o. € S, \ F to E which is different from all encodings so far contained
in £ Additionally, the partially defined encoding function is updated with the
new assignment, ie, o : =0 U{P(z) — o.} If the equation holds for any j the
bit string E; is again appended to E

A run of O consists of three phases:

Initialization: In this phase all lists are first set to the empty list, ¢ is set to
zero and the encoding function o is set to be undefined for all x € Z, After
that, L is appended with the polynomials 0,1 and X, E is appended with the
respective encodings and ¢ and c¢ are updated accordingly

Query-handling: In the query handling phase O handles at most m queries A
query is a triple (o, j1,j2) where o € {+, —, -} identifies an operation and j1, ja
are indices identifying the list elements the operation should be applied to A
query (o, j1, j2) is handled by computing the polynomial P := L, o L;,, append
ing P to L and the respective encoding to F and updating o and c¢ accordingly
Finalization: After an algorithm A has made at most m queries to O, it sig
nals O to finalize the computation before it eventually does its final output
Upon receiving this signal, O updates the encoding function o by assigning (in
some fixed order) the n — ¢ ring elements x € Z,, \ {P(z)|P € L} which have not
already occurred during computation to the random bit strings o.y1,...,0,
After that, O signals A to output its solution (e, out), where out € Sp,, e > 1
and ged(e, ¢(n)) =1 We define the following success event

S: A outputs an encoding out = o(y) and an integer e such that
y® = x mod n

2.2 Main Theorem

Our result lower bounding the hardness of flexible RSA in terms of the hardness
of factoring integers can be stated as follows:

On the Equivalence of RSA and Factoring 245

Theorem 1. Let O be a generic ring oracle for the ring Z, of order n = pq
as defined above Let A be a generic algorithm that makes at most m oracle
queries to O and let (e,a(y)) — A°(n, S,,0(0),0(1),0(z)), where e > 1 and
ged(e, ¢(n)) = 1, be its final output Then the probability that y is an e th root
of x is upper bounded by

1

Prly* =a] < (4o(e) + 27+

where €' is the smallest factor of e and v is a lower bound on the probability
that n can be factored using A and O((¢(e’)? +log(n))m?) additional operations
mn Ly,

Note that the above theorem gives an upper bound on the probability that A
finds an e th root which depends on the particular exponent e chosen by A More
precisely, it is dependent on the size of the factors of e This in particular means
that we do not obtain a useful lower bound for exponents e consisting of “large”
factors only “Large” in this context means that the factors cannot be bounded
by a polynomial in the security parameter log(n) However, if we restrict the
class of allowed exponents A can choose from to “low exponents”, i e , exponents
having at least one factor which is smaller than some fixed constant C, we always
obtain a useful bound

Corollary 1 (Hardness of Flexible LE-RSA). Let O be a generic ring or
acle for the ring Z,, of order n = pq as defined above and let C be an arbitrary
constant Let A be a generic algorithm that makes at most m oracle queries to O
and let (e,0(y)) — A°(n,S,,C,c(0),0(1),0(x)) be its final output, where e > 1
has a factor smaller than C' and ged(e, d(n)) =1 Then the probability that y is
an e th root of = is upper bounded by

1

Pr[y® = 2] < (4C +2
My =a] < (@4C+2)y+ o,

where «y is a lower bound on the probability that n can be factored using A and
O((C? + log(n))m?) additional operations in Z,

Let us assume that the number of queries m is polynomial bounded Then observe
that the probability v is negligible if factoring is assumed to be hard since -y is
a lower bound on the probability of factoring n using a polynomial bounded
number of operations in Z, Thus, in this case also the upper bound on the
probability Pr[y® = z] given in the corollary is negligible because m and C are
polynomial bounded and ~ is negligible Hence, if factoring is hard Corollary [
implies that the standard and the flexible LE RSA problem are intractable w r t

generic ring algorithms On the other hand, if for some special n root extraction is
easy for generic algorithms, which might be possible, we know from our corollary
that n can easily be factored

Remark 1 In [4] special care has to be taken of the distribution of the group
orders More precisely, the order of the multiplicative group has to be randomly
chosen according to certain so called “hard” distributions in order to derive the

246 G Leander and A Rupp

desired exponential lower bounds on the running time of generic group algo
rithms This was an extension of Shoup’s original model for the purpose of
handling groups of hidden order From this perspective things are easier in our
model As the order n of the additive group of the ring is given we do not have
to worry about any special properties of the distribution according to which the
order of the multiplicative group is chosen

3 Proof of the Main Theorem

3.1 Outline

As usually done in proofs within the scope of the generic (group) model, we
replace the original oracle O with an oracle Og;,, that simulates O without us
ing the knowledge of the secret + Then we show that the behavior of Og, is
perfectly indistinguishable from O unless a certain simulation failure F occurs
From this, it immediately follows that the success probability of A when inter
acting with O is upper bounded by the sum of failure probability and the success
probability of A when interacting with Og;,,, We upper bound these probabilities
in terms of the probability v from Theorem [[l and the number of oracle queries

Remark 2 The main difficulty in proving Theorem [lis to bound the probability
of a simulation failure F Usually, Oy, is defined in a way that a simulation
failure occurs iff two distinct polynomials L;, L; € L become equal under evalu
ation with x and one can determine a useful (i e , negligible) upper bound on the
probability of F in terms of the maximal degree of such a difference polynomial
L; — L; However, here we face the problem that by using repeated squaring,
A can generate polynomials in L with exponential high degrees Thus, we can
not derive non trivial bounds anymore using this well known technique Note
that this difficulty is inherent to the ring structure and does usually not occur
when we consider cryptographic problems over generic groups We solve it by
simulating O in a new way and relating the probability of F to the probability

3.2 The Simulation Game

The simulation oracle Oy, is defined exactly like O except that it determines
the encoding of elements differently in order to be independent of the secret x
To this end, each time a polynomial P is appended to the end of list L (during
initialization or query handling), Og;,, does the following: Let L; = P denote the
last entry of the updated list Then for each j < i the oracle chooses a random

element xﬁi) €y Z, and checks whether
(Li — L;)(«\") = 0 mod n.

If this equation holds for some jy, ..., ji the encoding E;, where j = min(ji, . ..
Jk), is appended as the encoding of the newly computed element to the list E

! Note that it is not important how j is determined from {j1,---,Jr} Jj can be chosen
from this set in an arbitrary way

On the Equivalence of RSA and Factoring 247

If no j exists st the equation holds, counter c is increased and the random bit
string o. € S,, \ E which is different from all encodings already contained in F
is appended to E Moreover, o is updated by the assignment P(x) — o,

Note that due to the modifications to the computation of encodings, it is
now possible that both an element P(z) is assigned to two or more different
encodings and more than one element is assigned to the same encoding Thus,
the number 71 := n — ¢ of unused encodings remaining after the query handling
phase may be greater or smaller than the number r3 :=n — |{P(z)|P € L}| of
elements not occurring during computation In the finalization phase Og;,,, there
fore assigns only min(ry,r2) elements from Z,, \ {P(z)|P € L} to the encodings
Oct1s- -5 Octmin(ry,r,) (DUt using the same order as O)

Let us consider the following events which can occur in an interaction with
the simulation oracle:

F: There exists ¢ > j € {1,...,|L|} such that
(L; — Lj)(z) =0mod n and (L; — Lj)(a:y)) # 0 mod n

or

(L; — Lj)(z) # 0mod n and (L; — Lj)(m;i)) =0modn.

Ssim: A outputs (e, out) such that out is the encoding of an unique element
yand y¢ ==z

The event Sy, is the success event in a simulation game The event F is called
simulation failure It is important to observe that the original game and the
simulation game proceed identically unless F occurs: Assume that O and Ogp,
receive the same arbitrary but fixed input Then issuing the same sequence of
queries to O and Og;,, results in the same sequence of encodings contained in
E, the same sequence of polynomials contained in L and the same bijective
encoding function o, provided that F does not happen Furthermore, consider
an algorithm A with an arbitrary but fixed input on its random tape Since
A is deterministic, it issues the same sequence of queries in both interactions
if it receives the same sequence of encodings from O and Os;,, So assuming
that F does not happen, A outputs the same exponent and encoding in both
interactions and wins the simulation game if and only if it wins the original
game Thus, we have the following relation between the considered events

SA-F & Sgimm NF .

Using this relation we immediately obtain the desired upper bound on the success
probability Pr[S] in the original game in terms of the failure probability Pr[F]
and the probability Pr[Ssim A —F] that no failure occurs and the algorithm
succeeds in the simulation game

Pr[S] = Pr[S A ~F] + Pr[S A F]
= Pr[Ssim A ~F] + Pr[S A F]
< Pr[Ssim A ~F] + Pr[F]

In the following we relate these probabilities to the probability

248 G Leander and A Rupp

3.3 Simulation Failure Probability

For arbitrary but fixed indices i > j € {1,...,m + 3} we consider the difference
polynomial A := L; — L; Let

N(A):={a€Z, | Ala) =0mod n}
denote the set of zeros of this polynomial Using the Chinese Remainder Theo
rem we can split N(A) into two sets
N(A) =2 NP(A) x N1(A), where
NP(A)={a €Z,| A(a) =0 mod p} and N9 (A) ={a € Z, | A(a) =0 mod ¢} .

Let the value |[N?(A)|/p be denoted by pa and |[N9(A)|/q by va The probability
that a randomly chosen element a €y Z,, is a zero of the polynomial A can then
be written as

Pr[A(a) = 0mod nya €y Zy] = vapia -
Thus, the probability Pr[F] that for a fixed polynomial A a simulation failure
occurs is given by

Pr[Fa] = Pr[A(z) =0 mod n;z €y Z,](1 — Pr[A(mgi)) = 0 mod n; mgi) €u Zy))
+ Pr[A(x?) = 0 mod n; xy) €y Zp](1 = Pr[A(xz) = 0 mod n;x €y Zy])
=2vapa(l —vapa).

Now, we relate the failure probability Pr[Fa] with the probability v from The
orem [I] First observe that if we can find an element

a € ((Zp \ NP(4)) x N1(A)) U (NP(A) x (Zg \ NU(4))),

the polynomial A gives us the factorization of n by computing ged(A(a),n)
Thus, the probability 74 that the factorization can be revealed in this way by
choosing a random a €y Z,, is given by

Ya = pa(l —va)+ (1 —pa)va = pa+va —2pava.
The crucial observation is the following lemma
Lemma 1. For any polynomial A € Z,[X] it holds that Pr[Fa] < 2ya
Proof We can see that 2y4 — Pr[Fa] > 0 by considering the following function:
fRxR—=R
flu,v) = (w)* =3uv + p+v

In order to prove the lemma, we have to show that this function does not reach
any negative values in [0,1] The only critical point in the set [0,1] x [0, 1] and
therefor the only possible extremum is

V3—1 v3-1
(Moﬂ/o):(9 9 >

On the Equivalence of RSA and Factoring 249

and we have f(uo,v0) > 0 Furthermore for the boundaries of the set [0, 1] x [0, 1]
we get
f0,v)
fu,)=u>0
flLy)=@-17=>
Flp.1) = (p=1)* =
Thus it follows that for all (u,v) € [0, 1] x [0,1] we have f(u,v) >0 |

Now, given A consider an algorithm that evaluates all possible difference poly
nomials A with a randomly chosen element a €y Z, and computes for each
integer A(a) the value ged(A(a),n) The probability that n can be factored in

this way is given by
Z A -

1<j<i<|L|:A:=L;—L;

The evaluation of all polynomials A can be done using a total of O(m?) opera
tions Computing all greatest common divisors requires O(log(n)m?) operations
using the Euclidean algorithm So the probability of this factoring algorithm can
be upper bounded by v (cf Theorem [

Using Lemma, [Tl we obtain the following bound on the probability of a simu
lation failure

Pr[F] < > Pr[F 4]

1<j<i<|L|:A:=L;—Lj

< Z 274

1<j<i<|L|:A:=L;—Lj
< 2v.

3.4 Success Probability in the Simulation Game

Let us split up the success event Sy, in two sub events: We say that the generic
algorithm wins if either it outputs a new encoding out ¢ E corresponding to an
unique element y which is an e th root of x or if a polynomial in the list yields
an e th root when evaluated with the element x We denote these events by

SL. .. A outputs (e,out) st out ¢ E, out is the encoding of an unique
element y and y°* ==z
S2,.: There exists a polynomial P € L st P(z)° ==

stm*

Note that 8%, is more than actually needed: Here we do not require that A
actually outputs an encoding corresponding to P(x), the existence of such a

polynomial P in L is sufficient We therefore have
Ssim = Sslzm \ S?zm

and thus
Pr[Syim A ~F] < Pr[Sl,, A ~F] +Pr[S2,.].

250 G Leander and A Rupp

Probability of Event Sslim A—F. Assume that the event F has not happened
during computation and A outputs a pair (e,out) st out ¢ F Since no simula
tion failure has occurred, o is a bijective mapping and in particular the encodings
Oc+1,--.,0n Dot used in the query handling phase are uniquely associated with
the n — ¢ elements in Z, \ {P(x)|P € L} So the encoding out corresponds to a
randomly chosen element y € Z,, \ {P(z)|P € L} Thus, we have

1 1

1 - < — < N
Pr[Sk,, A ~F] < Pr[SL,, | onut¢E]fn_<m+3)

Probability of Event 82, . Here we use the following Lemma which corre
sponds to (a slight extension of) Theorem 6 in [3]

Lemma 2. Let n = pq, p,q prime and e € N with ged(e,d(n)) = 1 Let a
polynomial P € Z,[X] be given that can be evaluated for any element x € Z,,
using at most m additions and multiplications in Z, For random x €y Z,, let
the probability Pr[P(z)¢ = x] be denoted by ep Then using this polynomial n
can be factored with probability

(¢ =N -1)

TE genen

with at most O(3¢(e’)>m) operations in Z,, where €' is the smallest factor of e
and N is the base of the natural logarithm

The main idea behind this result is to evaluate P over an appropriate extension
of Z,,, where the mapping = +— z¢ is not a bijection anymore Then one can use
the well known techniques to factor n given two different ¢’ th roots of the same
element

We now apply this result in our setting First, observe that clearly all polyno
mials P € L can be evaluated using at most m operations in Z, Thus, we can
apply Lemma 2l to each P, ie, we consider an algorithm that applies the pro
cedure outlined in the proof of Theorem 6 in [3] to every polynomial in L The
running time of this algorithm is O(¢(e’)?m?) The probability that n can be
factored this way is given by > p; vp and by the definition of (cf Theorem)

it follows that
> p <.
PeL
Furthermore, it is easy to see that
¢(e')e'N /
< <4 .
€p = (¢ —1)(N — 1)'7P < 4é(e')vp
So we can conclude that the probability of the event S2,
Pr(Sszzm) S Z Ep

PcL

<Y Ag(e)vp < 46(e)y

PcL

is bounded by

On the Equivalence of RSA and Factoring 251

3.5 Putting Things Together

Using the bounds on the probabilities in the simulation game we can bound the
success probability in the original game For a generic algorithm A which makes
m queries to O and outputs a pair (e,o(y)) consider an algorithm which

chooses an element a €y Zy,
computes ged((L; — Lj)(a),n) for each i > j € {1,...,m+ 3} and
applies the procedure given in the proof of Theorem 6 in [3] to each L;

The running time of this algorithm is O((¢(e’)? + log(n))m?) and by definition
of v its probability to factor n is less than ~

Hence, the probability that y is an e th root of the randomly chosen element
x is bounded by

Prly® = 2| < Pr[Seim A ~F] + Pr[F]
< Pr[SL,, A =F] + Pr[S%,,] + Pr[F]

stm stm

1
< 4¢p(e’ 2
S g Ty T2y
1
= 4 ! 2 .
(4p(e’) +)7+n_m_3

This completes the proof of Theorem [I] and Corollary [l

Acknowledgments. We would like to thank Ivan Damgard, Daniel Brown as
well as the anonymous reviewers for their valuable comments

References

1 Rivest, R L, Shamir, A, Adleman, L : A method for obtaining digital signatures
and public key cryptosystems Commun ACM 21(2) (1978) 120 126

2 Boneh, D, Venkatesan, R : Breaking RSA may not be equivalent to factoring
In: Advances in Cryptology: Proceedings of EUROCRYPT 1998 Volume 1403 of
Lecture Notes in Computer Science , Springer Verlag (1998) 59 71

3 Brown, D R L: Breaking RSA may be as difficult as factoring Cryptology ePrint
Archive, Report 2005/380 (2006) http://eprint.iacr.org/

4 Damgard, I, Koprowski, M : Generic lower bounds for root extraction and signa
ture schemes in general groups In: Advances in Cryptology: Proceedings of EURO
CRYPT 2002 Volume 2332 of Lecture Notes in Computer Science , Springer Verlag
(2002) 256 271

5 Nechaev, VI: Complexity of a determinate algorithm for the discrete logarithm
Mathematical Notes 55(2) (1994) 165 172

6 Shoup, V : Lower bounds for discrete logarithms and related problems In: Advances
in Cryptology: Proceedings of EUROCRYPT 1997 Volume 1233 of Lecture Notes
in Computer Science , Springer Verlag (1997) 256 266

http://eprint.iacr.org/

	Introduction and Related Work
	Our Contribution

	Relating Flexible LE-RSA to Factoring
	Generic Ring Algorithms
	Main Theorem

	Proof of the Main Theorem
	Outline
	The Simulation Game
	Simulation Failure Probability
	Success Probability in the Simulation Game
	Putting Things Together

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

