
I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 473 – 486, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Semantic Context-Aware Access Control Framework
for Secure Collaborations in Pervasive Computing

Environments

Alessandra Toninelli1, Rebecca Montanari1, Lalana Kagal2, and Ora Lassila3

1 Dipartimento di Elettronica, Informatica e Sistemistica
Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - Italy
{atoninelli, rmontanari}@deis.unibo.it

2 MIT CSAIL
32 Vassar Street, Cambridge, MA 02139, USA

lkagal@csail.mit.edu
3 Nokia Research Center Cambridge

3 Cambridge Center, Cambridge, MA 02142, USA
ora.lassila@nokia.com

Abstract. Wireless connectivity and widespread diffusion of portable devices
offer novel opportunities for users to share resources anywhere and anytime,
and to form ad-hoc coalitions. Resource access control is crucial to leverage
these ad-hoc collaborations. In pervasive scenarios, however, collaborating
entities cannot be predetermined and resource availability frequently varies,
even unpredictably, due to user/device mobility, thus complicating resource
access control. Access control policies cannot be defined based on entity’s
identities/roles, as in traditional access control solutions, or be specified a priori
to face any operative run time condition, but require continuous adjustments to
adapt to the current situation. To address these issues, this paper advocates the
adoption of novel access control policy models that follow two main design
guidelines: context-awareness to control resource access on the basis of context
visibility and to enable dynamic adaptation of policies depending on context
changes, and semantic technologies for context/policy specification to allow
high-level description and reasoning about context and policies. The paper also
describes the design of a semantic context-aware policy model that adopts
ontologies and rules to express context and context-aware access control
policies and supports policy adaptation.

1 Introduction

Telecommunication systems and the Internet are converging towards an integrated
pervasive scenario that permits users to access services anytime and anywhere even
when they are on the move. Recent technological advances in both computational
capabilities and connectivity of portable devices are also enabling mobile users in
physical proximity of each other to form ad-hoc networks for spontaneous coalitions
and to engage in opportunistic and temporary resource sharing without relying on the
availability of a fixed network infrastructure.

474 A. Toninelli et al.

However, these ad-hoc collaborations impose several challenges to the secure
retrieval of and operation on distributed resources, undermining several assumptions
of traditional access control solutions. These solutions usually assign permissions to
principals depending on their identity/role. In the new pervasive scenario, however,
users typically share services with unknown entities and, more importantly, with
entities whose identity may not be sufficiently trustworthy. In addition, since
spontaneous collaborations among users are typically established in an impromptu
and opportunistic fashion, it may not be possible to rely on formal collaboration
agreements to decide who can access which resources and how, thus excluding the
possibility to exploit access control policies defined on a contractual basis as in
medium or long-term inter-organizational coalitions. Access control in spontaneous
coalitions is further complicated by the high dynamicity in resource availability. Each
collaborating entity may alternatively play the role of either a service client or
provider or both, depending on dynamic conditions and the current status of
interaction. When playing the service provider role, an entity may introduce new
services into the environment, thus changing the set of available resources. Variations
in resource availability occur also because of the transience of ad-hoc coalitions
where entities -resource providers- leave and/or enter a coalition, unpredictably, at
any time.

Appropriate access control models are needed to enable resource sharing and
access in spontaneous coalition scenarios. It is crucial that the definition and
enforcement of access control policies take into account the heterogeneity
and dynamicity of the environment in terms of available services, computing devices,
and user characteristics. To address these issues, this paper advocates a paradigm shift
from subject-centric access control models to context-centric ones. Hereinafter, at a
high level, the term “context” is defined as any information that is useful for
characterizing the state or the activity of an entity or the world in which this entity
operates [1]. Differently from subject-centric solutions where context is an optional
element of policy definition that is simply used to restrict the applicability scope of
the permissions assigned to the subject, in context-centric solutions, context is the
first-class principle that explicitly guides both policy specification and enforcement
process and it is not possible to define a policy without the explicit specification of
the context that makes policy valid. We also claim that context-centric access control
solutions need to adopt ontological technologies as key building blocks for supporting
expressive policy modeling and reasoning. Semantically-rich policy representations
permit description of policies at different levels of abstraction and support reasoning
about both the structure and properties of the elements that constitute a pervasive
system, i.e., the context and the management policies, thus enabling policy analysis,
conflict detection, and harmonization.

This paper describes an implementation of these ideas in a policy model that
exploits context-awareness and ontological technologies for the specification and the
evaluation of access control policies. In our access control framework the role of
context exploitation for controlling access control is twofold. Drawing inspiration
from the RBAC model that exploits the concept of role as a mechanism for grouping
subjects based on their properties [2], we state that, the same as with role, the concept
of context can provide a level of indirection between entities requesting resource
access and their permitted set of actions on requested resources. Instead of assigning

 A Semantic Context-Aware Access Control Framework for Secure Collaborations 475

permissions directly to the subjects and defining the contexts in which these
permissions should be considered valid and applicable, a system administrator defines
for each resource the contextual conditions that enable one to operate on it. When an
entity operates in a specific context, she automatically acquires the ability to perform
the set of actions permitted in the current context.

In addition, we consider context crucial for enabling policy adaptation. In
pervasive environments the conditions that characterize interactions between users
and resources may be largely unpredictable. Consequently, policies cannot all be
specified a priori to face any operative run-time situations, but may require dynamic
adjustments to be able to control access to resources. We use the term “policy
adaptation” to describe the ability of the policy-based management system to adjust
policy specifications and evaluation mechanisms in order to enable their enforcement
in different, possibly unforeseen situations. In this scope, it is crucial to be able to
represent the various operative conditions under which policies should be applied, i.e.,
the context, and to define the expected behaviour of the policy framework on the basis
of such context variations.

Another fundamental design guideline of our access control model is the adoption
of an ontological approach using Description Logic (DL) to context/policy
specification to enable context/policy classification, comparison, and static conflict
detection. We also adopt a rule-based approach taking the perspective of Logic
Programming (LP) to encode rules that allows policy makers to specify policies based
on context variables whose value is unknown at policy definition time, thus enabling
the efficient enforcement of policies defined over dynamically determined context
values. Let us note that our work does not aim at providing a unifying logical
framework for DL and LP, which have well-known crucial logical mismatches, but
rather at combining the logical results obtained by means of their respective reasoning
features.

The paper is organized as follows. Section 2 outlines some crucial requirements for
the definition of access control policies in dynamic scenarios like inter-organizational
spontaneous coalitions. Section 3 presents our proposed semantic context-aware
policy model, while Section 4 compares it with related state-of-the art access control
solutions. Final remarks and future activities follow in Section 5.

2 Policy Requirements for Spontaneous Coalition Scenarios

To point out some unique challenges in dynamic mobile environments, we start by
considering the spontaneous coalition scenario of a meeting occurring during a
conference among members of different universities working on a common project. In
the remainder of the paper, we use this meeting scenario as a running example to
illustrate the main access control challenges and our solution guidelines. In this
meeting scenario, each participant may wish to grant access to her resources to other
participants, in order to enable cooperation and knowledge sharing. Access to
personal resources must be regulated in order to protect them from malicious access
or misuse. However, the specification of adequate access control policies in the
depicted scenario presents us with several challenges. For example, the complete list

476 A. Toninelli et al.

of participants may not be known in advance or it may be modified just before the
meeting starts or even during a meeting, thus making it infeasible to define access
control policies based on the requestor’s identity.

Even the role-based approach seems cumbersome in controlling access to cross-
organizational resources, since role definitions and hierarchies might vary across
parties, thus making their interpretation difficult outside the specific boundaries of
each organization. A possible solution might be the creation of a common ad-hoc role
for all meeting participants, to which each participant delegates her roles, so that
others are able to access her resources [3]. However, since roles required to access
resources have to be separately assigned by each participant to this ad-hoc role,
inconsistencies may arise between the access rights of the different members, e.g., in
the case of a member being allowed to access another member’s resources, but not
vice versa. Moreover, the activation/deactivation of such temporary roles represents a
critical security issue.

In order to properly control access to resources, we claim the need for a more
general and comprehensive approach that exploits not only identity and role
information but also other contextual information, such as location, time, ongoing
activities, etc. In particular, we believe that it may be advantageous for each
participant to define the access control policies for his managed resources simply
according to the current conditions of the requestor, the resource, and of the
surrounding environment, i.e., the current resource context. For instance, in an
informal meeting, access should be granted to those who are currently located in the
same room where the resource owner is located, if they actually participate in
the activity/project relating to the meeting, as long as current time corresponds to
the time scheduled for the meeting. Access control policies should be associated
with the combination of one or more context conditions and users should be
instantaneously granted/denied access to resources on the basis of those specific
context conditions.

The integration of access control with contextual information has two main
characteristics. First, it is an example of an active access control model [4]. Active
security models are aware of the context associated with an ongoing activity in
providing access control and thus distinguish the passive concept of permission
assignment from the active concept of context-based permission activation. Second, the
exploitation of context as a mechanism for grouping policies and for evaluating
applicable ones simplifies access control management by increasing policy specification
reuse and by making policy update and revocation easier. In fact, in subject-based
access control solutions, the tight coupling of the identities/roles of principals with their
permissions and with the operating conditions in the system to grant permitted actions
requires security administrators to foresee all contexts in which each principal is likely
to operate. In pervasive environments where principals are typically unknown and
where contextual conditions frequently change, this traditional approach may lead to a
combinatorial explosion of the number of policies to be written, force a long
development time, and even introduce potential bugs. The traditional approach, when
applied to pervasive scenarios, also lacks flexibility. New access control policies need to
be designed and implemented from scratch for any principal when new context
situations occur. In a context-centric access control approach, instead of managing

 A Semantic Context-Aware Access Control Framework for Secure Collaborations 477

principals and their permissions individually, administrators define the set of permitted
actions for each context. When a principal operates in a specific context, the evaluation
process of his permissions in that context is triggered.

Another difficulty in dynamic collaboration scenarios is that it is impossible to
define in advance all necessary policies for all possible situations. These
environments should permit new policies to be dynamically and easily specified on
demand as new situations occur as well as allow existing policies to be adapted to
meet changing conditions. For example, let us consider the case of a meeting that
continues beyond its originally scheduled end time. It is essential to ensure that
meeting participants can continue to access each other’s resources as long as the
meeting is actually taking place. It is therefore necessary to adapt previous policies to
reflect the new conditions of the meeting. In the absence of policy adaptation support,
access to the policy owner’s resources would be denied after the scheduled time, since
the conditions that limit the applicability of the policy, specifically the condition
concerning time, would be evaluated to be false. In a traditional approach, the policy
owner would have to specify another policy to grant access to her resources after the
scheduled end time of the meeting. However, this solution presents several
disadvantages. First, the resource owner might not be the policy administrator of her
resources, and might be unable to specify the policy when needed. In addition, the
specification of ad-hoc policies is not a correct approach to policy definition because
it does not favor clarity or traceability, thus complicating policy management. Finally,
in such a case, efficiency and security might collide. If the policy owner specifies an
access control policy that grants access to her resources for a short time interval, e.g.,
ten minutes, she might possibly be forced to specify the same policy several times
because the eventual end time of the meeting is not known in advance. Conversely, a
policy granting access for a longer period might allow undesired access to the user’s
resources after the meeting.

This simple example demonstrates the need for a new approach to policy
specification that not only defines policies based on context information, but also
allows the seamless adaptation of policies depending on current context. In this
example, we need to “instruct” the system such that, if certain context conditions
hold, the context activating the policy is still considered active. Essential for policy
adaptation is appropriate modeling of contextual information that enables the policy
framework to sense and reason about the current situation. This ensures adequate
access control even in changing and possibly unforeseen conditions.

Another important principle is the adoption of semantically-rich representations
for policy definition. A semantics-based approach allows description of contexts
and associated policies at a high level of abstraction, in a form that enables their
classification and comparison. This feature is essential, for instance, in order to
detect conflicts between policies before they are actually enforced. In addition,
semantic techniques can provide the reasoning features needed to deduce new
information from existing knowledge. This ability may be exploited by the policy
framework when faced with unexpected situations to react in a contextually
appropriate way.

478 A. Toninelli et al.

3 A Semantic Context-Aware Access Control Policy Model

Our access control model is centered around the concept of context that we consider
to be any characterizing information about the controlled resources and about the
world surrounding them. We adopt a resource-centric approach to context modeling:
contexts are associated with the resources to be controlled and represent all and only
those conditions that enable access to the resources. Contexts act as intermediaries
between the entities requesting access to resources and the set of operations that can
be performed on these resources. Access control policies define for each context how
to operate on the associated resource(s). In particular, access control policies can be
viewed as one-to-one associations between contexts and allowed actions. Drawing
inspiration from Java protection domains [5], we call these contexts hereinafter as
protection contexts: they provide users with a controlled visibility of the considered
resource in terms of performable access actions on it (action view). Protection
contexts are determined by the defined policies. Entities can perform only those
actions that are associated with the protection contexts currently in effect (active
context), i.e., the contexts whose defining conditions match the operating conditions
of the requesting entity, requested resource, and environment as measured by specific
sensors. All entities sharing the same active protection context share the same abilities
to operate on the context-related resource.

3.1 Context Model

A protection context consists of all the characterizing information that is considered
relevant for access control, logically organized in parts that describe the state of the
resource associated with the protection context, such as availability or load (the
resource part), the entities operating on the resource (the policy/resource owner and
the requestor), such as their roles, identities or security credentials (the actor part),
and the surrounding environment conditions, such as time, or other available
resources (the environment part).

A protection context is a set of attributes and predetermined values, labelled in
some meaningful way and associated with desirable semantics [6]. Instead of a single
value, an attribute could also define constraints for a range of allowed values. Let us
note that an attribute value can be assigned to a fixed constant or can be a variable
over a value domain. The current state of the surrounding world is also represented in
terms of attribute/value pairs where the attribute values represent the output of sensors
(with the term “sensor” used loosely). For a protection context to be “in effect”, the
attribute values that define the current state of the world have to match the definition
of the context (as given above).

We adopt description logics (DL) and associated inferencing to model and process
protection context data. In particular, we use Web Ontology Language (OWL) -based
ontologies as shown in Figure 1a. A protection context is defined as a subclass of a
generic context and consists of the resource, the actor and the environment context
elements. Each context element is characterized by an identity property and a location
property defining the physical or logical position of an entity. Single context elements
are characterized by specific additional properties.

 A Semantic Context-Aware Access Control Framework for Secure Collaborations 479

Current_Project_Resource ≡ Project_Resource

∃is_resource_of_project.Current_Project

Meeting_Env ≡ Environment ∃time.In_Current_Meeting_Time

Meeting_Actor ≡ Actor ∃is_currently_working_on.Current_Project
∃located.Meeting_Space ∃is_involved_in.Current_Project

Meeting_Context ≡ Protection_Context ∃owner.Meeting_Actor
∃requestor.Co-located_Meeting_Actor ∃environment.Meeting_Env
∃resource.Current_Project_Resource

Co-located_Meeting_Actor ≡ ... (see Table 1)

Meeting Context Specification

Current_Project_Resource ≡ Project_Resource

∃is_resource_of_project.Current_Project

Meeting_Env ≡ Environment ∃time.In_Current_Meeting_Time

Meeting_Actor ≡ Actor ∃is_currently_working_on.Current_Project
∃located.Meeting_Space ∃is_involved_in.Current_Project

Meeting_Context ≡ Protection_Context ∃owner.Meeting_Actor
∃requestor.Co-located_Meeting_Actor ∃environment.Meeting_Env
∃resource.Current_Project_Resource

Co-located_Meeting_Actor ≡ ... (see Table 1)

Meeting Context Specification

a)

b)

Fig. 1. Context ontology model and an OWL context specification example

Figure 1b shows an OWL-based protection context representation example related
to the meeting scenario depicted in Section 2. This example assumes that each actor
taking part to the meeting owns a set of resources that relates to the project/activity
the meeting is about and shares these resources with the other participants. In
particular, the protection context shown in Figure 1b grants access to these resources
under certain conditions: the resources must be specifically pertaining the project
discussed at the current meeting; the resource owner must be involved in the
meeting’s project as “project partner”, must be currently work on the project-related
set of resources, and must be located in the place where the meeting is planned to take
place to guarantee that he is attending the meeting. The entities requesting access to
resources must be involved in the project as “project partners”, co-located with the
resource owner, and currently working on project-specific resources on their devices.
In addition, resources can be accessed when the time in the environment corresponds
to the time scheduled for the meeting. Let us note that the core context ontology has
been extended to model the specific meeting-related concepts. For example, a
resource is associated with the project it relates to, an actor has attributes describing
the project she is involved in or she is currently working on, and the environment time
can be expressed in terms of scheduled events in an actor’s calendar. The meeting
ontology also explicitly defines the concept of “current event”, which is an event or
activity occurring at the moment of context and policy evaluation. In addition, we
make use of a location ontology that is provided within the basic context model1.

1 All our ontologies are available at http://lia.deis.unibo.it/research/SemanticPolicies.

480 A. Toninelli et al.

Let us note that the use of DL in context modeling and reasoning has well-known
benefits. For instance, considering protection contexts as classes and a set of sensor
inputs (i.e., the current state of the world) as individuals, DL-based reasoning allows
one to determine which protection contexts are in effect by verifying which protection
context classes the current state is an instance of, and to figure out how defined
protection contexts relate to each other (nesting, etc.) [6].

However, DL-based reasoning may not always be sufficient. Our context-aware
access control model needs more expressive context reasoning in order to be
effective. On the one hand, we need to correlate contexts using not only class
definitions (as in pure DL-based reasoning) but also property path relationships
between anonymous individuals. For instance, in a meeting context we need to state
that if the resource owner is located in a certain place and the resource requestor is
located in the same place, the two are co-located. On the other hand, we need to bind
the context attribute values to specific instances depending on application-specific
context attribute/value relationships. For instance, to enforce the meeting-related
policies, we must be able to determine, at each moment, what the actual current
project is, so that the corresponding resources belonging to each actor are identified
and protected. To overcome some DL-based reasoning restrictions we combine it with
LP-based reasoning. In particular, we define two types of rules: context aggregation
rules to support reasoning using property path relationships and context instantiation
rules to provide OWL assertions for attribute values. For instance, the condition of
co-location between two collaborating entities at a conference is expressed with an
aggregation rule, whereas the condition of current project with an instantiation rule.
Both types of rules are expressed according to the following pattern:

if context attributes C
1
...C

n
 then context attribute C

m

that corresponds to a Horn clause, where predicates in the head and in the body are
represented by classes and properties defined in the context and application-specific
ontologies.

3.2 Context-Aware Access Control Policy Model

Our policy model consists of three distinct phases (see Figure 2a): policy
specification, policy refinement, and policy evaluation. In the policy specification
phase resource administrators specify OWL-based policies representing ontological
associations between actions and protection contexts ontology definitions. Figure 2b
shows an example of a policy that controls access to the meeting resources. The
protection contexts may have attribute values assigned to constants or may be
variables. In the latter case, attributes are assigned proper values by combining DL-
based and LP-based reasoning over the context ontology and the context aggregation
and activation rules. In particular, the output of LP rules is fed into the DL knowledge
base to determine the value of each attribute given the current context. This means
that OWL-based policies cannot be directly enforced into the system, but need to be
further processed. By adopting an object-oriented terminology, OWL-based policies
can be viewed as policy types: they define the actions that are allowed in a set of
context types. In order to be enforced in the real world, policy types need to be
transformed into policy objects that associate sets of actions with specific instantiated

 A Semantic Context-Aware Access Control Framework for Secure Collaborations 481

contextual conditions. In the policy specification phase, administrators have to define
aggregation and evaluation rules to enable effective enforcement and adaptation of
OWL policies. For instance, in the meeting scenario an instantiation rule is needed to
instantiate the current project attribute value included in the specification of the
Colocated_Meeting_Actor class. The resource administrator could also define an
aggregation rule to represent the “co-location” property as a relationship path based
on the “location” property by means of variables.

LP-BASED
INSTANTIATION

RULES

LP-BASED
AGGREGATION

RULES

DL-BASED
POLICIES

APPLICABLE
POLICIES

(CONTEXT-BASED)

VALID ACCESS
CONTROL
POLICIES

CURRENT
STATE

CURRENT
STATE

2. POLICY
REFINEMENT

3. POLICY
EVA LUATION

1. POLICY AND
RULES

SPECIFICATION

a)

Meeting_Policy ≡ Access_Control_Policy

∃controls.Access_Action
∃protection_context.Meeting_Context

b) Meeting_Policy

Access_Action Meeting_Context

controls protection_context

LP-BASED
INSTANTIATION

RULES

LP-BASED
AGGREGATION

RULES

DL-BASED
POLICIES

APPLICABLE
POLICIES

(CONTEXT-BASED)

VALID ACCESS
CONTROL
POLICIES

CURRENT
STATE

CURRENT
STATE

2. POLICY
REFINEMENT

3. POLICY
EVA LUATION

1. POLICY AND
RULES

SPECIFICATION

a)

Meeting_Policy ≡ Access_Control_Policy

∃controls.Access_Action
∃protection_context.Meeting_Context

b) Meeting_Policy

Access_Action Meeting_Context

controls protection_context

Fig. 2. The Context-Aware Policy Model and the DL-based meeting policy specification

In the policy refinement phase, OWL policies are instantiated by adapting them to
the particular state of the world, in order to obtain the set of applicable policies. In the
policy evaluation stage, the protection contexts of applicable policies are verified
against the current state of context elements as measured by sensors to determine the
set of currently active policies. Let us note that the context-aware transformation
process comprising of policy refinement and evaluation may be triggered by any
resource context change, such as a new user requesting to access the resource or a
significant change in the resource state, e.g., its location.

It is worth noticing that our policy model adopts a combined approach to policy
specification and reasoning. DL reasoning is exploited to perform static classification
and conflict resolution of context and policy ontologies. LP reasoning is used to adapt
the specification of OWL policies to the current state and allow their dynamic
evaluation at access request time by means of appropriate rules. Adopting a combined
approach allows us to benefit from the advantages of a pure ontology-based approach
and those of a pure rule-based approach, both of which exhibit some limitations with
respect to the definition and evaluation of policies and contexts [6, 7]. It is worth
noting that our context model does not require the tight integration of the DL and the
LP logical frameworks, which have well-known logical mismatches, but it is rather a
combination of the two aiming at achieving more expressive description and
reasoning capabilities about contexts and policies.

482 A. Toninelli et al.

In the following subsections we focus on the policy refinement and evaluation
phases which characterize our model and distinguish it from other state-of-the art
related access control solutions [8, 9, 3].

3.2.1 Policy Refinement
Let us recall the meeting scenario to describe how policy refinement works. In the
protection context of the meeting policy, shown before, the resource requestor
property must belong to the Co-located_Meeting_Actor class that imposes that the
resource requestor is co-located with the resource owner. Table 1 shows the definition
of this context element, using a compact DL notation instead of OWL. Let us consider
the restrictions applying to the properties is_currently_working_on and
is_involved_in. These properties are restricted to a variable value, represented by the
Current_Project class. This is an intrinsically variable value since the current project
varies over time due to the changing activities of the resource owner and requestor,
thus corresponding to different instances at different time instants.

Table 1. Co-located_Meeting_Actor class specification and instantiation and aggregation rules

Aggregation Rule to determine co-location
Actor(? x) ∧ Actor(?y) ∧ SymbolicSpace(?z) ∧ located(?x,?z)

∧ located(?y,?z) → colocated_with(?x,?y)

Colocation_Rule

Scheduled_Calendar_Slot(?x) ∧ Idle(?x) ∧
Past_Calendar_Slot(?y) ∧ Meeting(?y) Current_Project(?z) ∧
meeting_on_project(?y,?z) → Current_Meeting(?y)

Current_Meeting_Rule-2

Colocated Meeting Actor Specification
Meeting_Actor ≡ ∃is_currently_working_on.Current_Project

∃is_involved_in.Current_Project ∃colocated_with.Resource_Owner

Instantiation Rules to be applied in case of an ordinary scheduled meeting

Instantiation Rules to be applied in case of a meeting prolongation
Actor(?y) ∧ Last_Current_Project(?x) ∧
is_currently_working_on(?y,?x) ∧
Scheduled_Calendar_Slot(?z) ∧ Idle(?z) →
Current_Project(?x)

Current_Project_Rule-2

Scheduled_Calendar_Slot (?x) ∧ Meeting (?x) →
Current_Meeting (?x)

Current_Meeting_Rule

Current_Meeting(?x) ∧ Project(?y) ∧
meeting_on_project(?x,?y) → Current_Project(?y)

Current_Project_Rule

Aggregation Rule to determine co-location
Actor(? x) ∧ Actor(?y) ∧ SymbolicSpace(?z) ∧ located(?x,?z)

∧ located(?y,?z) → colocated_with(?x,?y)

Colocation_Rule

Scheduled_Calendar_Slot(?x) ∧ Idle(?x) ∧
Past_Calendar_Slot(?y) ∧ Meeting(?y) Current_Project(?z) ∧
meeting_on_project(?y,?z) → Current_Meeting(?y)

Current_Meeting_Rule-2

Colocated Meeting Actor Specification
Meeting_Actor ≡ ∃is_currently_working_on.Current_Project

∃is_involved_in.Current_Project ∃colocated_with.Resource_Owner

Instantiation Rules to be applied in case of an ordinary scheduled meeting

Instantiation Rules to be applied in case of a meeting prolongation
Actor(?y) ∧ Last_Current_Project(?x) ∧
is_currently_working_on(?y,?x) ∧
Scheduled_Calendar_Slot(?z) ∧ Idle(?z) →
Current_Project(?x)

Current_Project_Rule-2

Scheduled_Calendar_Slot (?x) ∧ Meeting (?x) →
Current_Meeting (?x)

Current_Meeting_Rule

Current_Meeting(?x) ∧ Project(?y) ∧
meeting_on_project(?x,?y) → Current_Project(?y)

Current_Project_Rule

The defined context instantiation rules are used to determine the correct instance of
the current project class at access request time. In particular, let us consider the first
couple of rules shown in Table 1. The first rule establishes that, if the user’s calendar
shows a meeting for the current time, then that meeting has to be considered the
current meeting. The second rule states that the project discussed at the current
meeting is the current project. Once the facts about the user’s calendar are inserted
into the refinement fact base, the first rule is triggered and the inferred current
meeting instance is used as a new fact to trigger the second rule. Then, the protection
context is instantiated by re-writing it with the inferred context element values. For
instance, if SwapMe-Meeting is scheduled on the user calendar, and SwapMe-Project

 A Semantic Context-Aware Access Control Framework for Secure Collaborations 483

is the corresponding project, then Current_Project is replaced by SwapMe-Project in
the Colocated_Meeting_Actor specification. A new protection context is thus
instantiated with the SwapMe-Project value and the corresponding policy generated
with the instantiated protection context.

The combined adoption of OWL policies and LP rules enables policy adaptation
when needed. For example, let us suppose that the meeting has gone beyond the
allotted time. Given this state, the first group of rules cannot be applied because there
are no valid facts in their head. Therefore, a new set of rules has to be defined during
the definition phase to cover the situation of an extended meeting. In particular, the
first rule determines the owner’s current project on the basis of her past and current
activities, independently from her calendar schedule. For instance, if the last instance
of current project (determined at pre-defined intervals or at access request time) was
the SwapMe-Project, if the calendar does not show any event for the current time, and
if the actor is working on the SwapMe-Project, then the SwapMe-Project is still the
current project instance. The second rules checks for the last and the current
scheduling in the actor calendar. If there is no current event, and the last event was a
meeting, and that meeting was about the current project (as determined with the first
rule), then the last meeting is also the current one. In our example, the current meeting
instance is the SwapMe-Meeting.

3.2.2 Policy Evaluation
We now describe the evaluation phase by using the same meeting scenario. When the
current state of context elements, measured by sensors, is matched against the
protection context of the meeting applicable policy, it is necessary to determine
whether the protection context is currently in effect. During the evaluation phase the
Co-located_Meeting_Actor definition of Table 1 is considered as well as the
aggregation rule of Table 1 stating that if two actors are located in the same place
(defined with the use of variables), they are co-located. Then, the resource owner’s
and the requestor’s location are determined and inserted as facts into the evaluation
fact base, which causes the execution of the co-location aggregation rule. Let us
suppose that the requestor is co-located with the resource owner. In this case, a new
fact is inferred that states that the resource requestor is co-located with the owner.
This information is used to build the description of the current state of the world. In
particular, an instance of the resource requestor element is created using the resource
owner (which is known) as the value for the attribute co-location, and this instance of
requestor is used in the protection context instance that describes the current state of
the world. The created protection context instance is then compared with the
protection context of the meeting policy by making use of ontology classification to
recognize whether the former is an instance of the latter.

4 Related Work

Several research efforts have addressed the issue of access control in dynamic
environments. We do not intend to provide a general survey of the state-of-the-art
access control solutions in dynamic environments, but only to focus on the research
that either integrates context-awareness and semantic technologies into access control

484 A. Toninelli et al.

policy frameworks for pervasive environments or addresses access control issues in
similar coalition application scenarios.

Considering context explicitly for access control is a very recent research direction
with only few context-dependent policy model proposals. The importance of taking
context into account for securing pervasive applications is particularly evident in [8]
that allows policy designers to represent contexts through a new type of role called
environment role. Environment roles capture relevant environmental conditions that
are used for restricting and regulating user privileges. Permissions are assigned both
to roles (both traditional and environmental ones) and role activation/deactivation
mechanisms regulate the access to resources. Environmental roles are similar to our
contexts in that they act as intermediaries between users and permissions. However,
because environmental roles are statically defined in terms of attribute-constant value
pairs their evaluation cannot provide support for policy adaptation as in our proposed
semantic context-aware approach. In addition, differently from our approach, in [8]
there is no integrated support for representing at a high level of abstraction and
reasoning about environmental roles and policies.

By focusing on access control in spontaneous coalitions in pervasive environments,
[3] proposes a delegation-based approach, where users participating to a
communication session can delegate a set of their permissions to a temporary session
role, in order to enable access to each other’s resources. In particular, one end-point
user assigns the session role to the entities he is willing to communicate with.
Contextual information is used to define the conditions that must hold in the system in
order for the assignment to take place, thus limiting the applicability scope of this
process. Only a limited set of contextual information can be specified and no semantic
technologies are exploited to represent nor the session role nor the delegation context
constraint. In addition, security problems may arise whenever an entity delegated to
play the session role leaves the communication session. In fact, unless the user
explicitly states she is leaving the session, there is no way for the framework to be
aware that the session role must be revoked for the departing user.

The importance of adopting a high level of abstraction for the specification of all
security policy building elements (subjects, actions, context, etc..) is starting to
emerge in well-known policy frameworks, such as KAoS and Rei [9]. KAoS and Rei
represent, respectively, significant examples of DL-based and LP-based policy
languages. In particular, KAoS uses OWL as the basis for representing and reasoning
about policies within Web Services, Grid Computing, and multi-agent system
platforms [10]. Contextual information is represented as ontologies and is used to
constrain the applicability of policies. The KAoS approach, however, relying on pure
OWL capabilities, encounters some difficulties with regard to the definition of certain
kinds of policies, specifically those requiring the definition of variables. Rei adopts
OWL-Lite to specify policies and can reason over any domain knowledge expressed
in either RDF or OWL [11]. A policy basically consists of a list of rules expressed as
OWL properties of the policy and a context represented in terms of ontologies that is
used to restrict the policy’s applicability. Though represented in OWL-Lite, Rei still
allows the definition of variables that are used as placeholders as in Prolog. In this
way, Rei overcomes one of the major limitations of the OWL language, and more
generally of description logics. i.e., the inability to define variables. On the other
hand, the choice of expressing Rei rules similarly to declarative logic programs

 A Semantic Context-Aware Access Control Framework for Secure Collaborations 485

prevents it from exploiting the full potential of the OWL language. In particular, the
Rei engine is able to reason about domain-specific knowledge, but not about policy
specification. Our policy model shares some commonalities with regard to
context/policy representation with both KAoS and Rei, but differs in how it deals with
context. Our approach considers context as the primary basis that allows one to
deduce which policies apply to a subject acting in the system whereas KAoS and Rei,
similarly to traditional approaches, exploit context to build filtering mechanisms for
policy applicability.

5 Conclusions and Future Work

The dynamicity and heterogeneity of pervasive scenarios introduce new access
control challenges. A paradigm shift in policy models is needed to move focus from
the identity/role of the principal to the context that the principal is operating in. We
propose a semantic context-aware policy model, which treats context as a first-class
principle for policy specification and adopts a hybrid approach to policy definition
based on DL ontologies and LP rules. We are currently working on implementing
a prototype for the meeting scenario using OWL to specify ontologies and
SWRL to encode rules. For this implementation, we are using Pellet
[www.mindswap.org/2003/pellet/] to reason about ontologies and Jess
[herzberg.ca.sandia.gov/jess/] for forward-chained reasoning about rules, both
accessed through a Java interface (via Jena [jena.sourceforge.net/] with Pellet). We
are also working on the design of a deployment model that includes different
components in charge of monitoring contexts, installing policies into the system,
performing policy refinement and evaluation, and enforcing policies. Future work will
include providing alternative implementations of the model using different languages,
such as N3Logic [http://www.w3.org/DesignIssues/Notation3.html], which provides a
uniform notation for ontology and rule specification, and the cwm reasoner
[http://www.w3.org/2000/10/swap/doc/cwm.html]. We also plan to further develop
application scenarios in order to analyse the usability and effectiveness of our
semantic context-aware model.

References

[1] Dey, A., Abowd, G., and Salber: D.. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16:97-166, 2001.

[2] Sandu, R., et al. : “Role based access control models”, IEEE Computer, Vol.29, No.2,
February (1996).

[3] Liscano, R. and Wang, K.: “A SIP-based Architecture model for Contextual Coalition
Access Control for Ubiquitous Computing”, In: Proceedings of the Second Annual
Conference on Mobile and Ubiquitous Systems (MobiQuitous ’05). IEEE Computer
Society Press (2005).

[4] Georgiadis, C.K., et al.: “Flexible Team-Based Access Control Using Contexts”, In:
Proc. of the 6th ACM Symposium on Access Control Models and Technologies
(SACMAT 2001), May 3-4, Chantilly, Virginia, USA. ACM (2001).

486 A. Toninelli et al.

[5] Gong, L.: “Inside Java 2 Platform Security”, Addison Wesley, 1999.
[6] Lassila, O. and Khushraj: D., “Contextualizing Applications via Semantic Middleware”,

In: Proc. of the Second Annual Conference on Mobile and Ubiquitous Systems
(MobiQuitous ’05). IEEE Computer Society Press (2005).

[7] Toninelli, A., Kagal, L., Bradshaw, J.M., and Montanari, R.: “Rule-based and Ontology-
based Policies: Toward a Hybrid Approach to Control Agents in Pervasive
Environments.” In: Proc. of the Semantic Web and Policy Workshop (SWPW), in conj.
with ISWC 2005, Galway, Ireland, Nov. 7 (2005).

[8] Covington, M.J., et al.: “Securing Context-Aware Applications Using Environmental
Roles”, In: Proc. of the 6th ACM Symposium on Access Control Models and
Technologies (SACMAT 2001), May 3-4, Chantilly, Virginia, USA. ACM (2001).

[9] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: “Semantic
Web languages for policy representation and reasoning: A comparison of KAoS, Rei, and
Ponder”, In: Proc. of the Second International Semantic Web Conference (ISWC2003),
LNCS, Vol. 2870. Springer-Verlag, Berlin, pp. 419-437, Sanibel Island, Florida, USA,
October 2003.

[10] Uszok, A., et al.: “KAoS policy management for semantic web services”. IEEE
Intelligent Systems, 19(4), p. 32-41, 2004.

[11] Kagal, L., Finin, T., Joshi, A.: “A Policy Language for Pervasive Computing
Environment” In: Proc. of IEEE Fourth International Workshop on Policy (Policy 2003).
Lake Como, Italy, pp. 63-76, IEEE Computer Society Press 4-6 June 2003.

	Introduction
	Policy Requirements for Spontaneous Coalition Scenarios
	A Semantic Context-Aware Access Control Policy Model
	Context Model
	Context-Aware Access Control Policy Model

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

