
I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 172 – 186, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Software Engineering Approach to Design and
Development of Semantic Web Service Applications

Marco Brambilla1, Irene Celino2, Stefano Ceri1, Dario Cerizza2,
Emanuele Della Valle2, and Federico Michele Facca1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione, 20133 Milano, Italy
{Marco.Brambilla, Stefano.Ceri, Federico.Facca}@polimi.it

2 CEFRIEL, 20133 Milano, Italy
{celino, cerizza, dellavalle}@cefriel.it

Abstract. We present a framework for designing and developing Semantic Web
Service applications that span over several enterprises by applying techniques,
methodologies, and notations offered by Software engineering, Web
engineering, and Business Process modeling. In particular, we propose to
exploit existing standards for the specification of business processes (e.g.,
BPMN), for modeling the cross enterprise process, combined with powerful
methodologies, tools and notations (e.g., WebML) borrowed from the Web
engineering field for designing and developing semantically rich Web
applications, with semi-automatic elicitation of semantic descriptions (i.e.,
WSMO Ontologies, Goals, Web Services and Mediators) from the design of the
applications, with huge advantages in terms of efficiency of the design and
reduction of the extra work necessary for semantically annotating the
information crossing the organization boundaries.

Keywords: Business Process Modeling, Semantic Web Services, Software
Engineering, Web Engineering, Model Driven Design, Methodology.

1 Introduction

Taking the e-challenges (e-business, e-government, e-health, etc.) seriously means
dealing with business processes that: (i) span over several enterprises; (ii) involve
multiple actors, (iii) require asynchronous communication; and (iv) are situated in
frequently changing scenarios. Current ICT solutions have serious technological and
methodological limitations when addressing the abovementioned aspects; the
emerging field of Semantic Web Services is offering the most promising approach to
overcome such limitations, providing paradigms based on program annotation and
self-descriptive implementation, for building cross-enterprise applications which
favor flexibility, automatic resource discovery, and dynamic evolution. However, the
development of applications based on Semantic Web Services is currently lacking a
set of high level software engineering abstractions that may push the spreading of
such technology. One of the main problems faced by developers to adopt Semantic
Web technologies is the extra cost of semantic annotation of the developed software
components. This is mostly because software engineering techniques are seldom used
in the context of Semantic Web; hence, no automatic mechanism can be applied for

 A Software Engineering Approach to Design and Development 173

extracting semantic descriptions. Therefore, annotations are still added manually, in a
very expensive and subjective manner.

In this work, we propose both a method and a toolset for fostering the adoption of
Semantic Web Services (i.e., WSMO) in cross-enterprise applications. We exploit
Web engineering methods, including visual declarative modeling (i.e., WebML),
automatic code generation (locally and globally executable through Semantic
Execution Environments such as WSMX), and automatic elicitation of semantic
descriptions (i.e., WSMO Ontologies, Goals, Web Services and Mediators) from the
design of the application. Global choreography (in W3C sense), front-end, and
services implementations are modeled from Business Process models and WebML
models, whereas goals, descriptions of Web services (i.e., capability and
choreography interface), and descriptions of mediators are automatically generated.
The approach also comprises the importing/ exporting of ontologies. The following
techniques and notations shall be used for covering the various design aspects:

• High-level design of the global choreography of the interaction between services:
we adopt BPMN (Business Process Management Notation) to build process
models, involving several actors possibly from different enterprises.

• Design of the underlying data model of the cross-enterprise application: we use
extended E-R (Entity Relationship) diagrams or equivalent subset of object
oriented class diagrams (whose expressive power is equivalent to WSML Flight) to
model the local ontology of the application and to import existing ontologies; we
expose the resulting set of ontologies to the underling WSMX;

• Design of web services interfaces, of integration platform, and of application front
end: we use visual diagrams representing Web sites and services according to the
WebML models [5], including specific hypertext primitives for Web service
invocation and publishing [18], and explicit representation of workflows [6].

In this way, instead of coping with textual semantic descriptions of Semantic Web
Services, application developers will obtain them from the use of abstractions that are
supported by software engineering tools. The use of description generators,
sometimes helped by designer’s annotations, guarantees the benefits of Semantic Web
Services at nearly zero extra-cost, thus positioning the implemented applications
within an infrastructure that allows for flexible and dynamic reconfiguration.

The paper is structured as follows: Section 2 presents a running example; Section 3
reviews the background; Section 4 presents the proposed approach to the elicitation of
semantic descriptions; Section 5 briefly outlines our implementation experience;
Section 6 offers a view of the related work and finally Section 7 concludes.

2 Running Example

We will consider a running example derived by the Purchase Order Mediation and the
Shipment Discovery scenarios proposed at the SWS Challenge 2006 [8], properly
extended to represent a classical B2B application. In this scenario, two companies, Blue
and Moon, need to integrate their purchase process. In summary (Fig. 1), the
architecture includes the two companies, the mediation service, a general-purpose web
service built by Blue for interacting with external services, and a discovery engine.Blue

174 M. Brambilla et al.

usually handles its purchase orders towards its partners by using a standard RosettaNet
PIP 3A4 conversation, while the Moon partner offers a set of legacy Web Services. Blue
employees want to use their usual RosettaNet Purchase Order Interface to interact with
their counterparts in the Moon company, therefore a mediation component is needed.
The mediator is in charge of (i) transforming the single RosettaNet message (containing
all the order details) to the various messages needed by Moon to create and handle a
purchase order (data mediation); and (ii) of translating the set of confirmation messages
by Moon into a whole RosettaNet Purchase Order Confirmation to be sent back to Blue
(process mediation). After completing the purchase of a set of products, Blue
employees organize the shipment of the products through the Shipment Organize
Interface. This interface is implemented by a Blue Web Service, whose internal
orchestration relies on a WSMX compliant Discovery Engine for retrieving available
shipment services, and hence needs the shipment goal to be described according to the
WSMO standard. The Web Services returned by the Discovery Engine are then
invoked to obtain the actual shipment offers. Finally, the system proceeds with the
orchestration of the chosen service.

Fig. 1. The B2B scenario derived from the Semantic Web Service Challenge 2006

 A Software Engineering Approach to Design and Development 175

3 Background

Our approach relies on methodologies, tools and techniques from the fields of
Software Engineering, Web Engineering, and Business Process Management.

3.1 Modeling Business Processes Using BPMN

All the B2B Web applications implement a business process, which is represented by
using a workflow model. Several notations have been proposed for workflow design.
We adopt Business Process Management Notation (http://bpmn.org), which is
associated to the BPML standard, issued by the Business Process Management
Initiative. The BPMN notation allows one to represent all the basic process concepts
defined by the WfMC (http://wfmc.org) model and others, such as data and control
flow, activity, actor, conditional/split/join gateways, event and exception
management, and others. BPMN activities can be grouped into pools, and one pool
contains all activities that are to be enacted by a given process participant. The BPMN
formalization of the running case scenario can be seen in Fig. 4.

3.2 Semantic Web Service Modeling Using WSMO

The Web Service Modeling Ontology (WSMO) [23] aims at solving the application
integration problem for Web services by defining a coherent technology for Semantic
Web services, using four modeling elements: ontologies, Web services, goals, and
mediators [13]. Ontologies provide the formal semantics to the information used by all
other components, by describing concepts, relations, axioms, instances and so on. Web
services represent the functional and behavioral aspects, which must be semantically
described in order to allow semi-automated use. Each Web service represents an atomic
piece of functionality that can be reused to build more complex ones. Web services are
described in WSMO in terms of non-functional properties, functionality (capabilities),
and behavior. The behavior of a Web service is described in its interface from two
perspectives: communication and collaboration. A Web service can be described by
multiple interfaces, but has one and only one capability. Goals specify objectives that a
client might have when invoking a Web service. Finally, mediators provide
interoperability facilities among the other elements, aiming at overcoming structural,
semantic or conceptual mismatches between the components of a WSMO description.

3.3 Model-Driven Web Application Design Using WebML

Several Web engineering methodologies provide conceptual models, notations, and
tools for the design of Web applications ([20], [14], [12], and others). In this paper, we
adopt the WebML methodology [5], envisioning the following steps in the development
process: (i) design of workflow model of the business process to be implemented; (ii)
automatic generation of hypertext model and data model skeletons implementing the
workflow; (iii) refinement of the produced skeletons by designers; (iv) automatic
generation of the running Web application starting from the specified models.

The specification of a WebML application consists of a set of models: the application
data model (an extended Entity-Relationship or UML Class Diagram), one or more
hypertext models (i.e., different site views for different types of users), describing the

176 M. Brambilla et al.

Web application structure; the presentation model, describing the visual aspects. The
hypertext main concept is the site view, which is a graph of pages; pages are composed
by units, representing publishing of atomic pieces of information, and operations for
modifying data or performing arbitrary business actions. Units are connected by links,
to allow navigation, parameter passing, and computation of the hypertext. The WebML
service model includes a set of Web service units [18], corresponding to the WSDL
classes of Web service operations, and components for workflow management and
tracking [6].

The Web services units include request-response and one-way operations, which
model services invocation, and notification and solicit-response operations, which are
instead triggered by the reception of a message (thus they represent the publishing of a
Web service). The model supports both the grounding of Web services to the XML
format of Web service messages, and data-mediation capabilities.

WebML covers also the development Web applications implementing business
processes [6], thereby supporting full-fledged collaborative workflow-based appli-
cations, spanning multiple individuals, services, and organizations. The data model is
extended with the meta-data necessary for tracking the execution of the business
process; in particular, Case stores information about each instantiation of the process
and Activity stores the status of each executed activity. The hypertext model is extended
by specifying activity boundaries and business-dependent navigation links. Activities
are represented by areas tagged with a marker “A”; workflow links traverse the
boundary of activity areas, starting or ending the activity. Distributed processes can be
obtained by combining workflow and Web services primitives.

Fig. 2. The Blue Web interface to organize shipments for successful orders

Fig. 2 shows a WebML hypertext model representing a fragment of the Blue Web
application: a home page (Select Order to Ship) allows the user to choose an Order
(with Status “Not shipped”) from the Order List index unit. When an order is chosen,
the “S” link starts the Organize Shipment activity, showing the Order Details data unit
and a form (Search Shipment Offers). The data submission triggers the invocation of a
remote service (searchShipmentOffers), whose results are lifted by storeShipmentOffer
XML-in. The activity is completed (link “C”) and the following one is started. The
Select Shipment Offer page is shown, containing a list of Shipment Offers (the results of
the service call). The user chooses an offer and thus triggers the confirmShipmentOffer.

 A Software Engineering Approach to Design and Development 177

4 Design of Semantic Web Service Applications

This section describes our proposal for semi-automatically generating WSMO-
compliant semantic specifications of a Web application. Our approach extends the
WebML methodology presented in section 3.3 towards the design of semantic Web
services and Web applications. Fig. 3 summarizes the envisioned development
process. The main design flow, supported on conventional Web technology [6],
seamlessly leads the designer from the process modeling to the running Web
application, by producing some intermediate artifacts (BPMN models, WebML
skeletons, data models, hypertext models) and by delegating part of the execution to a
Semantic Execution Environment (e.g. WSMX). Such models are enriched by
imported ontological descriptions (on top of the figure) and are exploited for devising
the set of WSMO specifications (at the bottom of the figure): the ontology is derived
from BP model, data model, and hypertext model; the web services capability
description is derived from hypertext model; the choreography information is derived
from BP model and hypertext model; the user goals are derived from the BP model.

Fig. 3. Overall picture of the approach.

4.1 Design of the Business Process

The business process (BP) design task, focusing on the high-level schematization of
the processes underlying the application, results in one or more BP diagrams. The
reader may refer to [6] for a methodology for the design of business process-based
Web applications. The BP diagram of the running case is represented in Fig. 4, with a
well-defined workflow semantics (lacking in Fig. 1): for sake of clarity, the process is
split into two sub-processes: part (a) describes the purchase and part (b) describes the
shipment management. In the following, we will exemplify the design of the mediator
of part (a), and the extraction of ontology, capability and choreography of part (b).

4.2 Design of the Data Model and Extraction of the Ontologies

The elicitation of the ontologies involved in the application is addressed by four steps,
each addressing different aspects of the application ontology (see Fig. 3 again):

178 M. Brambilla et al.

1. First, existing remote ontologies, possibly provided by third parties, can be imported.
2. Then, the data model is considered as a piece of ontology. This means that an

appropriate transformation of the WebML data model transforms it into a WSMO-
compliant ontology, which is then registered on the WSMX resource manager [23];

3. Then, the process ontology is extracted from the BPMN specification. The
elements of the workflow model (e.g., activity names, lanes) are extracted as
semantic concepts and used as additional piece of the ontology that will be useful
in defining the state signature of the choreography interfaces of the Web services;

4. Finally, the BPMN model and the WebML data model are annotated with concepts
imported from existing ontologies.

This approach is oriented towards T. Berners-Lee vision for Web applications
connected by concept annotations [2].

Fig. 4. Workflow representing the interaction of the running example (BPMN notation)

Fig. 5 shows the data model used by the Shipment Web Service. It includes three
main domain entities: Shipment, ShipmentService (shipment partners), and Location
(geographical places). The diagram includes Case and Activity entities described in

 A Software Engineering Approach to Design and Development 179

Section 3.3. Each Shipment is related to a ShipmentService, to an origin and a
destination Location, and to an Activity indicating its current state. ShipmentService is
connected to Location through the shipTo relationship, describing the set of possible
shipment locations for each partner; the hasLocation relationship specifies the set of
valid pick up points for each carrier.

Fig. 5. A portion of the WebML data model used by the Shipment Web Service

WebML data model can be easily converted to a WSML-Flight ontology
maintaining all its constraints. E.g., the EuropeanShipmentService entity is a sub
entity of the InternationalShipmentService that is located in Europe. This subentity is
described in the WebML-OQL syntax as:

InternationalShipmentService(as SuperEntity) where
 InternationalShipmentService.hasLocation isa Europe.

Its translation to WSML-Flight is:

concept EuropeanShipmentService subConceptOf InternationalShipmentService
 nfp dc#relation hasValue { EuShipmentServiceDef } endnfp
axiom EuShipmentServiceDef
 definedBy
?x memberOf InternationlShipmentService
and hasLocation(?x,?nation) and ?nation memberOf Europe
implies ?x memberOf EuropeanShipmentService.

The process of WSML ontologies generation starts by importing external ontologies
used in the WebML data model to enrich WebML data types definitions. Then, for
each entity in the data model, a corresponding WSML concept is generated with its
direct super concept, attributes (also relationships are mapped to attributes), and
possible axioms.

4.3 Design of the Service and the User Interfaces in WebML

Once the business process has been designed, workflow constraints must be turned
into navigation constraints among the pages of the activities of the hypertext and into
data queries on the workflow metadata for checking the status of the process. This
applies both to the human-consumed pieces of contents (i.e., site interfaces) and to the
machine-consumed contents (i.e., Semantic Web Services interactions).

180 M. Brambilla et al.

A flexible transformation, depending on several tuning and styling parameters, has
been devised for transforming workflow models into skeletons of WebML hypertext
diagrams [6]. Since no a-priori semantics is implied by the activity descriptions, the
generated skeleton can only implement with the hypertext and queries that are needed
for enforcing the workflow constraints. The designer remains in charge of
implementing the internals of each activity. Additionally, it is possible to annotate the
activities, thus allowing automatic generation of a coarse hypertext that implements
the specified behavior, which then needs to be refined by the designer.

Fig. 6. The Blue Shipment Web Service

For instance, Fig. 6 shows a possible WebML specification of the Blue Shipment
service. The upper part in Fig. 6 presents the searchShipmentRequest operation: the
ShipmentObject, is passed to the Goal Composition that transforms it to a Goal
description for the WSMX compliant Discovery Engine; the obtained goal description is
passed to the Send Goal, which sends the goal to Web Service exposed by the
Discovery Engine. The Discovery Engine returns a result with a set of Web Services
compatible with the original shipment goal. For each Web Service the Lowering and
Lifting operations by an appropriate XSLT Stylesheet are applied. Then, for each Web
Service returned, a request for a shipment offer is made. The results are combined and
converted to the Blue data model and the set of offers is returned the service requester.
Once the service requester selects one of the offers and he sends it to the
confirmShipmentRequest operation (lower part of Fig. 6), the offer is purchased by
invoking the appropriate Web Service and the confirmation message is sent back.

4.4 Extraction of the Description of the Web Services

Another important aspect that can be semi-automatically derived from the design
specification is the description of Web services. Some information about the services
can be directly extracted by the high-level BPMN description of the interactions (in
particular, information about possible choreography of the service and basic interface
and parameter specification). More details can be elicited from the WebML diagrams,
which provide a more refined representation of the specification of the application.

 A Software Engineering Approach to Design and Development 181

Extraction of Web Services capabilities. The BPMN and WebML models of the
Web services provide enough information for describing its behavior. Assuming a
BPMN activity as an atomic Web service call, we can exploit the BPMN data flow for
providing good hints for the extraction of inputs and outputs of the service. Indeed,
the data flow specifies the objects that are passed between the various activities. By
isolating a single activity, it is possible to automatically extract the WSML pre-
conditions (inputs) and post-conditions (outputs). However, designer refinements are
then typically required.

WSML pre-conditions are obtained from the first unit of WebML chain describing a
Web Service operation (Solicit Unit), while post-conditions are obtained from the last
one (Response Unit). These two units contain information about the exact structure of
the exchanged message and eventually the mapping of message elements to the domain
model and hence to the extracted ontologies (see Section 4.2). Effects are extracted by
searching for WebML units that modify or create instances of entities that are related to
the activities involved by the process described in WebML Web Service. Shared
variables are obtained from the generated conditions by grouping all the variables
involved in the operations data flow.

The following WSML description of the Web Service capabilities is automatically
generated once the WebML models are fully specified.

capability
 sharedVariables (?Req)
 precondition
 definedBy
 (?Req memberOf searchShipmentRequest) or
 (?Req memberOf ConfirmShipmentRequest).
 postcondition
 definedBy
 (?Req[
 pickupdate hasValue ?pkd, deliverydate hasValue ?dd,

 start hasValue ?s, destination hasValue ?dest,
 weight hasValue ?w, maxCost hasValue ?maxc
] memberOf searchShipmentRequest)

 implies
 exists ?Res (
 ?Res memberOf ShipmentOfferContainer and
 forall ?offer (
 ?Res [offers hasValue ?offer]
 implies (
 ?offer [
 offerID hasValue ?OID, pickupdate hasValue ?pkd,
 deliverydate hasValue ?dd, start hasValue ?s,
 destination hasValue ?dest, weight hasValue ?w,
 cost hasValue ?c] memberOf ShipmentOffer
 and ?c<=?maxc
)))) and
 (?Req[offerID hasValue ?OID] memberOf ConfirmShipmentRequest)
 implies
 exists ?Confirmation (
 ?Confirmation[
 offerID hasValue ?OID, confirmationID hasValue ?CID
] memberOf ShipmentConfirmation
))

182 M. Brambilla et al.

Extraction of the service choreography. The service choreography is a piece of
information that typically requires some annotation by the designer, in order to
establish all the possible interaction sequences with the service. However, at least one
of the choreography sequences can be extracted from the BPMN model, by analyzing
the order of invocation of the different operations of the service. Obviously, this does
not guarantee that all the possible scenarios are considered, since only one enactment
can be analyzed. The extraction of this kind of information is rather simple: provided
that a lane describes a single Web service, we can assume that all the control flow
links traversing its borders contribute to specifying a possible invocation order of the
operations, i.e., a choreography interface of the Web service. The automatically
generated WSML description of the Web Service choreography is the following:

interface
 choreography
 stateSignature
 in
 searchShipmentRequest withGrounding […]
 ConfirmShipmentRequest withGrounding […]
 out
 ShipmentOfferContainer withGrounding […]
 ShipmentConfirmation withGrounding […]
 controlled oasm#ControlState
 transitionRules
 forall {?x, ?state} with (
 ?state[oasm#value hasValue oasm#InitialState]
 memberOf oasm#ControlState and
 ?x memberOf ShipmentRequest
) do
 add(?state[oasm#value hasValue ShipmentOfferRequested])
 delete(?state[oasm#value hasValue oasm#InitialState])
 add(_# memberOf ShipmentOfferContainer)
 endForall
 forall {?x, ?state} with (
 ?state[oasm#value hasValue ShipmentOfferRequested] and
 ?x memberOf ConfirmShipmentRequest) do
 add(_# memberOf ShipmentConfirmation)
 endForall

4.5 Extraction of User’s Goal

Extraction of user’s goals can be performed by combining information available at the
BPMN level with information available at the WebML level. A first level of goal
elicitation can be achieved by extracting the sequence of conditions and objects
passed to the Web services by the user’s lane in the BPMN diagram.

A deeper level of details requires using the WebML hypertext models and analyzing
the semantics embedded in the navigation and composition of the pages. Such refined
goal is detailed in terms of the tasks performed by the user and of the data manipulated,
thus increasing the significance of the WSMO goals that can be generated. In this case
we omit the automatically generated code due to space limitation.

4.6 Design of wwMediators with WebML

One of the main strength points of the approach is the ease of design and
implementation of complex wwMediators. If a lane is identified as a wwMediator at

 A Software Engineering Approach to Design and Development 183

Fig. 7. The WebML model of wwMediator Web Service

the BPMN level, the basic information about the design of the mediation services can
be extracted from the high-level BPMN description of the interactions (in particular,
information about possible choreography of the service and basic interface and
parameter specification). The skeleton model of the mediator is automatically
generated and the designer can refine it at a conceptual design level. Then, the
WSMO description of the mediator can be derived from the WebML diagrams.

Fig. 7 presents the detailed specification of the wwMediator within WebML. This
specification can be used to generate a working Web Service providing mediation
between Blue and Moon Web Service. The WebML specification includes some
Lowering and Lifting operations corresponding to WSMO ooMediators and provides
mediation between the data model of the source Web Service and the destination one.
In WebML this mediation consists in XSLT stylesheets generated by a visual tool.

5 Implementation Experience

The presented approach relies on solid implementation of the background concepts:
the WebML methodology is supported by a commercial CASE tool called WebRatio
(www.webratio.com), providing visual design interfaces and automatic code
generation; the modeling of the business process requirements and their
transformation into WebML skeletons are implemented in a prototype tool [3].

184 M. Brambilla et al.

A proof of concepts of the integration with the semantic aspects discussed in this
paper has been presented at the SWS Challenge 2006 [4, 8]. The first phase of the
challenge allowed us to prove the advantages of a Software Engineering approach to
Semantic Web Services design. We presented the WebML design and implementation
of the wwMediator of the running case addressed in this paper (Fig. 9) and the usage
of the CASE tool WebRatio in the context of Semantic Web applications. For
validating our approach, we developed several prototypical transformers that generate
WSMO-compliant descriptions of Web applications and services starting from
WebML models of the applications and BPMN specifications of the processes. The
pieces of WSMO specification presented in Sections 4.2 and 4.4 are samples of the
generated output of the transformations.

6 Related Work

The Semantic Web is a quite new research area that grew up quickly and in few years
produced a great number of publications. However, few of them concern the
systematic and methodological development of Semantic Web applications. Some
early proposals (e.g., [9]) offered the definition of UML profiles for easily handling
ontological definitions; however they haven’t been adopted because of the lack of an
overall methodology. A number of researches concentrated on the development of
tools to support the generation of semantic descriptions for existing Web Services [17,
22, 10]. Most of these tools still require the learning of the annotation language used
(e.g., OWL-S or WSMO) and hence do not push enough the adoption of Semantic
Web Services towards the standard software development. Furthermore, they do not
exploit the advantages of conceptual models of the Web Services to semi-
automatically derive any part of the semantic descriptions.

Our research effort is more similar to the recent efforts of the Object Management
Group (http://www.omg.org). The OMG proposed the Ontology Definition Metamodel
(ODM) [19] to define a suitable language for modeling Semantic Web ontology
languages and hence Semantic Web applications in the context of the Model Driven
Architecture (http://www.omg.org/mda). In [1] MIDAS, a framework based on MDA to
model and develop Semantic Web applications, is introduced. The framework proposed
focuses on the creation of Semantic Web Services and associated WSML descriptions
using a UML model according to the MDA approach. This proposal inherits the limits
of the MDA approach: the use of a UML model is not always fitting the Semantic Web
needs, and often the model is too far from the implementation details to provide an
effective automatic code generation. Furthermore, MIDAS does not provide a clear
overall roadmap to the design of Semantic Web applications.

Other research efforts are converging on the proposal of combining Semantic Web
Services (SWS) and Business Process Management (BPM) to create one consolidated
technology, which we call Semantic Business Process Management (SBPM) [16]. This
is based on the fact that mechanization of BPM can be addressed through machine-
accessible semantics, that can be naturally provided by SWS frameworks (e.g., WSMO).

In the last years, realizing the benefits of the Semantic Web platform, some
research from the Web Engineering field is spent to design a methodology to develop
Semantic Web Information Systems. Traditional Web design methodologies (like
OOHDM [20]) and new approaches (like Hera [21]) are now focusing on designing

 A Software Engineering Approach to Design and Development 185

Semantic Web applications. However, these methodologies are not supported by an
effective CASE tool and do not consider the development of Semantic Web Services;
instead, they concentrate only on Semantic Web Portals.

7 Conclusions and Future Work

This paper presented an approach for designing Semantic web applications exploiting
software engineering techniques. The following results have been shown:

• ontologies can be imported as models of the data necessary for the cross-
enterprise application. They can be extended for addressing the specific needs of
the application and registered as shared resources in WSMX.

• WSMO Web Services functional capabilities for delegating sub-processes
execution from one enterprise to another are automatically provided for each
Web Service modelled in WebML. Choreography interfaces can be derived by
combining information in the Business Process Model and at application level in
the hypertext model of WebML. In particular, service (local) choreography can
be derived by taking the point of an external observer of the Web Services that
must know the order in which operation can be invoked and the constrains for
their successful invocation. In a similar manner we plan to derive an orchestration
interface by translating in WSMO the hypertext model of the application.

• WSMO goals can be produced (e.g., goals that triggers the discovery component
of WSMX) from gathering data required to perform a given action of the
business process, whereas its choreography interface is derived by the explicit
representation of workflow primitives within the hypertext.

• mediation services (except for ontology-to-ontology mediation) can be modeled
as WebML applications and registered in WSMX according to their roles (e.g., a
wwMediator).

At the current stage of development, we propose using existing software engineering
abstractions for the semi-automatic extraction of the components of the WSMO
architecture. Thus, by means of “conventional design” (although supported by an
advanced visual design studio), we build software that can run on conventional Web
technology and at the same time is ready to become part of a WSMO execution
environment (i.e. WSMX). Our next steps, which we will do in parallel with the wide-
spreading and enhancement of WSMO standards, will concentrate upon empowering
our design abstractions so as to further improve and simplify the design of native
WSMO components.

References

1. Acuña, C. J., Marcos, E.: Modeling semantic web services: a case study. In Proceedings of
the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto, California,
USA, 32-39.

2. Berners-Lee, T.: Web Services - Semantic Web Talk. http://www.w3.org/2003/Talks/
08-mitre-tbl

186 M. Brambilla et al.

3. Brambilla, M.: Generation of WebML Web Application Models from Business Process
Specifications. 6th International Conference on Web Engineering (ICWE) 2006, Palo Alto,
ACM press, p. 85-86, 2006.

4. Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F. M., Fraternali, P.,
Tziviskou, C.: Web Modeling-based Approach to Automating Web Services Mediation,
Choreography and Discovery. In SWS Challenge I , 2006, Palo Alto, CA. (http://sws-
challenge.org/wiki/index.php/Workshop_Stanford)

5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications, Morgan-Kaufmann, December 2002.

6. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. In ACM Transactions on Software Engineering and Methodology (TOSEM),
2006. In print.

7. Della Valle, E. and Cerizza, D.: The mediators centric approach to automatic webservice
discovery of Glue. In MEDIATE2005, volume 168 of CEUR. Workshop Proceedings, 35–50.

8. DERI Stanford. Semantic Web Services Challenge 2006. http://sws-challenge.org.
9. Djurić , D., Gašević , D., Devedžić, V. , Damjanović , V.: UML Profile for OWL. 4th

International Conference on Web Engineering (ICWE 2004), (LNCS 3140, Springer-
Verlag), pp. 607-608, 2004.

10. Elenius D., Denker G., Martin D., Gilham F., Khouri J., Sadaati S., Senanayake R.: The
owl-s editor – a development tool for semantic Web services. In 2nd European Semantic
Web Conference, May 2005.

11. Feier, C., Domingue, J.: WSMO Primer. http://www.wsmo.org/TR/d3/d3.1/v0.1/
12. Fernandez, M.F., Florescu, D., Levy, A.Y., Suciu, D.: Declarative Specification of Web

Sites with Strudel. In VLDB Journal, 9 (1), 38-55.
13. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic

Commerce Research and Applications, 1(2), 2002.
14. Fons, J., Pelechano, V., Albert, M. and Pastor, Ó. Development of Web Applications from

Web Enhanced Conceptual Schemas. In ER 2003, LNCS, 2813, 232-245.
15. Garrigós, I., Gómez, J. and Cachero, C., Modelling Dynamic Personalization in Web

Applications. In ICWE 2003, 472-475.
16. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process

Management: A Vision Towards Using Semantic Web Services for Business Process
Management. In Proceedings of the IEEE ICEBE 2005, October 18-20, Beijing, China, 535-540.

17. Jaeger M., Engel L, Geihs K.: A methodology for developing owl-s descriptions. 1st Int.
Conf. on Interoperability of Enterprise Software and Applications. Workshop on Web
Services and Interoperability. February 2005.

18. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design and
Deployment of Service-Enabled Web Applications. In ACM TOIT, Vol. 5, number 3
(August 2005).

19. OMG: Ontology Definition Metamodel (ODM). http://www.omg.org/cgi-bin/doc?ad/06-
05-01.pdf

20. Schwabe, D. and Rossi, G. The Object-Oriented Hypermedia Design Model. In
Communications of the ACM, 38 (8), 45-46.

21. Vdovjak, R., Frasincar, F., Houben, G. J., Barna, P.: Engineering semantic web
information systems in Hera. Journal of Web Engineering, Rinton Press, 2(1-2), 3 -26,
2003.

22. Web Service Modeling Toolkit. http://sourceforge.net/projects/wsmt
23. WSMO: Web Service Execution Environment (WSMX). http://www.w3.org/Submission/

WSMX.

	Introduction
	Running Example
	Background
	Modeling Business Processes Using BPMN
	Semantic Web Service Modeling Using WSMO
	Model-Driven Web Application Design Using WebML

	Design of Semantic Web Service Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

