
Viral Genome Compression

Lucian Ilie1,�,��, Liviu Tinta1,
Cristian Popescu1, and Kathleen A. Hill2

1 Department of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, Canada

ilie@csd.uwo.ca
2 Department of Biology, University of Western Ontario

London, Ontario, N6A 5B7, Canada

Abstract. Viruses compress their genome to reduce space. One of the
main techniques is overlapping genes. We model this process by the short-
est common superstring problem, that is, we look for the shortest genome
which still contains all genes. We give an algorithm for computing op-
timal solutions which is slow in the number of strings but fast (linear)
in their total length. This algorithm is used for a number of viruses
with relatively few genes. When the number of genes is larger, we com-
pute approximate solutions using the greedy algorithm which gives an
upper bound for the optimal solution. We give also a lower bound for
the shortest common superstring problem. The results obtained are then
compared with what happens in nature. Remarkably, the compression
obtained by viruses is quite high and also very close to the one achieved
by modern computers.

Keywords: viruses, viral genomes, genome compression, overlapping
genes, shortest common superstring problem, exact algorithms, approx-
imate solutions, lower bounds.

1 Introduction

According to [5], all virus genomes experience pressure to minimize their size.
For example, those with prokaryotic hosts must be able to replicate quickly to
keep up with their host cells. In the case of viruses with eukaryotic hosts, the
pressure on the genome size comes from the small size of the virus, that is, from
the amount of nucleic acid that can be incorporated.

One way to reduce the size of their genome is by overlapping genes. Some
viruses show tremendous compression of genetic information when compared
with the low density of information in the genomes of eukaryotic cells. As claimed
in [5], overlapping genes are common and “the maximum genetic capacity is
compressed into the minimum genome size.” This property looks very interesting
from mathematical point of view and we found it surprising that it was not much
investigated. Daley and McQuillan [9] introduces and investigates a number
� Corresponding author.

�� Research partially supported by NSERC.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 111–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 L. Ilie et al.

of formal language theory operations motivated by the biological phenomenon.
Krakauer [12] discusses genomic compression in general as achieved through
reduced redundancy, overlapping genes, or translational coupling.

In this paper, we investigate this property by naturally modelling it as the
shortest common superstring problem (SCS). The genes are seen as strings and
we look for the shortest superstring that contains them all. A variation is also
considered due to the retrograde overlaps which may be present in some viruses.

The SCS problem is known to be NP-hard. We give an algorithm to compute
optimal solutions which works well when the number of strings is not too high.
The algorithm is conceptually very simple and also very fast with respect to the
total length of all strings. We used this algorithm for those viral genomes whose
number of genes is not very high.

When the number of strings increases, we are no longer able to find optimal
solutions and use a greedy algorithm for an approximation. This gives an upper
bound for the length of a shortest superstring and, for a better estimate, we
provide also a lower bound.

Finally, our results are compared with those obtained by viruses. The amount
of compression using gene overlapping achieved by the viruses is remarkable; in
all examples considered, it is the same or very close to the one obtained by mod-
ern computers. The biological significance of these results is to be investigated.
Aside from the compression achieved in nature, any solution (or lower bound)
for the corresponding SCS problem provides a limitation on the size of a viral
genome which contains a given set of genes. Again, the biological relevance of
such results remains to be clarified.

2 Basic Definitions

Let Σ be an alphabet, that is, a finite non-empty set. Such an alphabet can
be the set of four nucleotides {A,T,C,G}. We denote by Σ∗ the set of all
finite strings over Σ. The empty word is denoted ε. Given a string w ∈ Σ∗,
w = a1a2 · · · an, ai ∈ Σ, the length of w is |w| = n; the length of ε is 0. We also
denote w[i] = ai and w[i..j] = aiai+1 · · · aj , for all 1 ≤ i ≤ j ≤ n. The reversal
of w is anan−1 · · · a1.

If w = xyz, for some w, x, y, z ∈ Σ∗, then x, y, and z are a prefix, factor (or
substring), and suffix of w, resp. The prefix (suffix) of length n of w is denoted
prefn(w) (suffn(w)).

For further notions and results on string combinatorics and algorithms we
refer to [14] and [7].

3 The Shortest Common Superstring Problem

The formal definition of the shortest common superstring problem (SCS) is: given
k strings w1, w2, . . ., wk, find a shortest string w which contains all wis as factors;
such a w is usually called a shortest common superstring. Any superstring will
be called a solution, whereas a shortest one is an optimal solution.

Viral Genome Compression 113

Example 1. Consider the strings w1 = baac, w2 = aacc, and w3 = acaa. A
shortest superstring has length 8; it is baacaacc.

The SCS problem has many applications. Data compression is one of the fields
where the SCS problem is very useful because data may be stored very efficiently
as a superstring; see [10], [15]. This superstring contains all the information in
a compressed form. Computational biology is another field where SCS can be
applied; see [13].

The SCS problem was proved to be NP-hard in [10] and then MAX SNP-
hard in [3]. Therefore, it is unlikely to have polynomial time exact algorithms
and research focussed mainly on approximation algorithms [17,8,11,1,2,4]. The
best approximation algorithm to date is due to Sweedyk [16] and can reach an
approximation ratio of 2 1

2 .
Still, in practice the very simple greedy algorithm is used with very good re-

sults. Blum et al. [3] proved that greedy is a 4-approximation algorithm. The still
open conjecture is that the approximation factor is 2, which would be optimal
as there are examples for which greedy produces no better approximations.

4 Viral Genome Compression

As already mentioned in the introduction, viruses can overlap their genes. There
are several types of overlaps. First we need to recall the DNA complementarity:
the two strands of DNA are complementary and have opposite direction. The
complementarity is such that whenever an A occurs on one strand, a T must
appear on the other; we say that A and T are complementary. Similarly, C and
G are complementary. We denote the complement of a nucleotide N by N . That
is, we have A = T, C = G, and vice versa. Also, A = A. Complementarity is
needed to understand retrograde overlapping.

For a string w = a1a2 · · · a|w|, we construct the complemented reversal of w,
w = a|w|a|w|−1 · · · a1. When w appears in one strand, w occurs opposite it in the
other strand.

Example 2. Let x = ACCGTGTAC and y = GTGTACCGTAC be two hy-
pothetical genes. The complemented reversal of x is x = GTACACGGT. The
possible overlaps between x and y are shown in Figs. 1 and 2. In Fig. 1 we have
overlaps on the same strand, that is, direct overlaps; one is called suffix overlap
and the other prefix overlap but such a difference is irrelevant for us.

In Fig. 2 we have retrograde overlaps (as can appear, for instance, in double
stranded DNA viral genomes). As seen in the figure, each x in the upper strand

y
GT GT ACCGT ACCGT GT AC

x

y

x
AC CCGT ACCGT GT A

Fig. 1. Direct overlaps (same strand)

114 L. Ilie et al.

AC
GCACATG

xx
CAT GT GCT

TGGCA
GGTACACGTACGG C

GCATGCCATGTG
yy

T
ACAT GT GCCA

CATGCCATG

Fig. 2. Retrograde overlaps (opposite strands)

correspond to an x in the lower strand. Again, one is called head-on overlap, the
other end-on overlap, without relevance for our purpose.

5 Computing Overlaps

In order to give some algorithms for optimal or approximate solutions for the
SCS problem, we need to compute overlaps between strings. Also, we need to
eliminate those strings which are factors of others.

An overlap between two given strings u and v is any suffix of u that is also a
prefix of v. We shall need only the longest overlaps but our algorithm computes
them all in the same optimal time. The set overlaps(u, v) contains the lengths
of all suffixes of u that are prefixes of v. We denote by overlap(u, v) the length
of the longest overlap. Here is an example.

Example 3. For the strings u = abaababa and v = abababb we have

overlaps(u, v) = {1, 3, 5}, overlap(u, v) = 5,
overlaps(v, u) = ∅, overlap(v, u) = 0.

To compute overlaps, we shall use a classical notion in pattern matching: a
border of a string w is any string which is both a prefix and a suffix of w; the
border of w, denoted border(w), is the longest non-trivial border of w, that is,
different from w itself. Notice that all borders of w are: border(w), border2(w) =
border(border(w)), border3(w), . . . , ε.

Denote |w| = n and consider the array borderw[0..n], where, for all 1 ≤ i ≤
n, borderw[i] = | border(w[1..i])|; borderw[0] = −1 for technical purposes.

Example 4. For the string w = abaababaaba we have

borderw = [−1, 0, 0, 1, 1, 2, 3, 2, 3, 4, 5, 6]

and all borders of w are

borderw(|w|) = 6, border(w) = abaaba,
border

2
w(|w|) = 3, border2(w) = aba,

border
3
w(|w|) = 1, border3(w) = a.

The array borderw can be computed in time linear in |w| by a classical
algorithm. The idea is to compute the elements from first to last. Then, when
computing borderw[i], all previous elements are known. The border of w[1..i]
is either an extension of a border of w[1..i − 1] or empty if this is not possible.

Viral Genome Compression 115

We use borders to solve our problem. Assume we are given two strings u and
v. Consider a new letters # (which does not appear in u or v) and construct
the string w = v#u. It is clear that any border of w gives an overlap of u and v
and vice versa. Therefore, using borders, we obtain an algorithm for computing
overlaps which is linear in terms of |u| + |v|. Notice, however, that if one of the
strings is much longer than the other, then we do not need the whole long string
but just a short piece of it. An algorithm which works in linear time in the size
of the shorter string would simply consider the string prefs(v)# suffs(u), where
s = min(|u| − 1, |v| − 1).

We can also do it all at once. For the SCS problem, we always exclude from
calculations the strings which are included as factors in others. This is pattern
searching and there are many linear time algorithms for it. We can also use the
borders as above to give a simple algorithm to both identify factors and compute
overlaps. We consider w = v#u. Assuming |v| ≤ |u|, v is a factor of u if and
only if there is i such that borderw(i) = |v|.

overlaps-and-factors(u, v)
1. w ← v#u
2. n ← |w|
3. borderw[0] ← −1
4. b ← −1
5. for i from 1 to n do
6. while b ≥ 0 and w[b + 1] �= w[i] do
7. b ← borderw[b]
8. b ← b + 1
9. borderw[i] ← b

10. if borderw[i] = |v| and |v| ≤ |u| then
11. return overlap(u, v) = −1 [v is a factor of u]
12. return overlap(u, v) = borderw[|w|]

This algorithm is linear in |u| + |v|; this is optimal since it is the minimum
required for searching.

Lemma 1. The algorithm overlaps-and-factors(u, v) returns −1 iff v is a
factor of u and otherwise computes the longest overlap of u and v. It runs in
time O(|u| + |v|).

6 Optimal Solutions of SCS

We may assume that none of the strings wi appears as factor of another one.
(We check this in the algorithm.) Therefore, for any solution w of SCS, there is
a permutation σ on k elements such that w contains each wi as a factor starting
at position pi and

pσ(1) < pσ(2) < · · · < pσ(k).

Example 5. For the strings in Example 1, the optimal solution is given by the
permutation (1, 3, 2).

116 L. Ilie et al.

Therefore, our brute-force algorithm to compute an optimal solution of SCS
will try all such permutations σ; the set of all permutations on k elements is
the symmetric group Sk. For each permutation, we need the maximum overlap
between wσ(i) and wσ(i+1). No other overlaps are needed. Assuming that wσ(i)
and wσ(i+1) overlap each other on a length less than their maximal overlap. Then
we can simply overlap them more to obtain a shorter superstring.

We shall need one more definition. For two strings u and v which are not
factors of each other, we denote by merge(u, v) the string obtained by overlap-
ping them as much as possible, that is, merge(u, v) = u suff|v|−overlap(u,v)(v) =
pref|u|−overlap(u,v)(u)v.

Example 6. For the strings u = abaababa, v = abababb we have merge(u, v) =
abaabababb.

Here is the algorithm.

scs-optimal(w1, w2, . . . , wk)
1. for i from 1 to k do
2. for j from 1 to k do
3. if i �= j then
4. overlap(wi, wj) ← overlaps-and-factors(wi, wj)
5. if overlap(wi, wj) = −1 then eliminate wi

6. scs ←
∑k

i=0 |wi| [we use the same k but it may be smaller]
7. for all σ ∈ Sk do
8. w ← wσ(1)

9. for i from 2 to k do
10. w ← merge(w, wσ(i))
11. if scs > |w| then
12. scs ← |w|
13. return scs

Proposition 1. The algorithm scs-optimal(w1, w2, . . . , wk) computes an op-
timal solution for SCS and runs in time O(k!�), where � =

∑k
i=1 |wi|.

Proof. The correctness follows from the fact that we try all permutations. As
explained above, after eliminating strings which appear as factors of others, it
it enough to consider only longest overlaps.

The time complexity for the preprocessing steps 1-5 is O(k2�), because of
Lemma 1. In the main processing part, steps 7-12, we repeat k! times something
linear in �. This is the dominant order. �

7 Approximate Solutions of SCS

As the SCS problem is NP-hard, in practice approximation algorithms are often
used to find a superstring which may not be shortest but hopefully close to op-
timal. The most common such algorithm for SCS is the greedy algorithm, which
we describe below. It uses the natural idea of considering the longer overlaps

Viral Genome Compression 117

first. It may not produce an optimal solution but it cannot be too far away. Here
is an example when the greedy algorithm does not give an optimal solution.

Example 7. Consider again the strings in Example 1, w1 = baac, w2 = aacc, and
w3 = acaa. The overlaps are shown below:

overlap(wi, wj) w1 w2 w3

w1 3 2
w2 0 0
w3 0 2

The greedy algorithm chooses first the longest overlap, that is, overlap(w1, w2),
and obtains the string baaccacaa of length 9, since merge(w1, w2) and w3 have no
overlap. But there is a shorter one, given by the permutation (1, 3, 2), of length
8, that is baacaacc.

It is conjectured that the greedy solution is always at most twice longer than
optimal; see [16] and the references therein for approximation algorithms for the
SCS problem. In practice, the greedy algorithm works pretty well, as we shall
see also in our experiments.

scs-greedy(w1, w2, . . . , wk)
1. compute overlaps and eliminate factors as before
2. greedy scs ←

∑k
i=0 |wi|

3. for all (i, j) with overlap(wi, wj) = max
(s,t)

overlap(ws, wt) do

4. eliminate wi and wj from the list
5. add w = merge(wi, wj) to the list
6. denote the new list w′

1, . . . , w
′
k−1

7. the overlaps of w are given by wi for prefix and by wj for suffix
8. � ← scs-greedy(w′

1, w
′
2, . . . , w

′
k−1)

9. if greedy scs > � then
10. greedy scs ← �
11. return greedy scs

The greedy algorithm gives an upper bound for the shortest length of a com-
mon superstring.

8 Lower Bounds

We give in this section a lower bound for the length of the shortest superstring.
It is computed using also a greedy approach but without checking if it is possible
to actually find a superstring which uses the considered overlaps. (When this is
possible, we have an optimal solution of SCS.)

Any superstring w is defined by a permutation σ on k elements which gives
k−1 overlaps. Also, the length of the superstring is the total length of all strings
minus the total length of overlaps, that is,

|w| =
k∑

i=1

|wi| −
k−1∑

i=1

overlap(wσ(i), wσ(i+1)).

118 L. Ilie et al.

For our estimate, we consider the matrix of overlaps, (overlap(wi, wj))1≤i�=j≤k . A
permutation σ as above gives k−1 overlaps such that no two are in the same row
or column. We relax this condition by considering only rows or only columns.
Choosing k − 1 longest overlaps such that no two are on the same row gives a
lower bound. Similarly for columns.

The algorithm below computes the first one. The second is computed analo-
gously. We assume the matrix of overlaps has already been computed.

lower-bound-row(w1, w2, . . . , wk)
1. sort all elements of the matrix (overlap(wi, wj))1≤i�=j≤k decreasingly
2. to obtain overlap(wi1 , wj1), . . . , overlap(wi

n2−n
, wj

n2−n
)

3. lower bound row ← 0
4. rows used ← 0
5. t ← 1
6. while rows used < k − 1 do
7. if row it not used then
8. lower bound row ← lower bound row + |wit | − overlap(wit , wjt)
9. mark row it as used

10. rows used ← rows used + 1
11. t ← t + 1
12. lower bound row ← lower bound row + |wjt−1 |
13. return lower bound row

Proposition 2. The above algorithm computes a lower bound for the length of
the shortest superstring in time O(k2 log k).

Proof. The time required by the algorithm is O(k2 log k) because of sorting. The
while cycle takes only O(k2) time as it traverses the list of k2 − k elements at
most once and spends constant time for each element.

For correctness, it is enough to prove that the sum of the overlaps chosen by
the algorithm is larger than the sum of overlaps corresponding to an optimal
solution. In both cases, we have k−1 overlaps involved, no two in the same row.
Assume that an optimal solution chooses all rows except for the ith whereas our
algorithm for the lower bound misses only the jth row. In all rows chosen by
both, the overlap included for the lower bound is at least as large. If i = j, this
proves that we obtain indeed a lower bound. If i �= j, then the overlap chosen
for the lower bound from row i is larger than the one for the optimal solution in
row j as the former appear first in the sorted list from step 2. �

As already mentioned, another lower bound is obtained similarly, by choosing
k − 1 elements from different columns in the overlap matrix; denote this lower
bound by lower bound col. We have then the following lower bound:

lower bound scs = max(lower bound row, lower bound col).

The next result, which summarizes the above discussed bounds, is clear.

Viral Genome Compression 119

Proposition 3. We always have

lower bound scs ≤ scs ≤ greedy scs.

Example 8. For the strings in Example 1, we have:

lower bound row = 7, because of overlap(w1, w2) and overlap(w3, w2),
lower bound col = 7, because of overlap(w1, w2) and overlap(w1, w3),
lower bound scs = 7,
scs = 8,
greedy scs = 9.

The lower bound cannot be achieved however, as it involves the beginning of w2
(or the end of w1) twice. Also, it happened that the lower bounds corresponding
to rows and columns are the same; this is not true in general.

9 Retrograde Overlaps

The possibility of retrograde overlaps (see Fig. 2) further complicates the search
for solutions, optimal or approximate. Each string may appear in a superstring
as it is or as its complemented reversal.

Therefore, we need first to compute more overlaps. The following equalities
help computing only half of all possible ones:

(i) merge(x, y) = merge(y, x),
(ii) merge(x, y) = merge(y, x).

For the exact algorithm, we need to consider, for each string wi, whether wi

or wi appears at position pσ(i), which makes the algorithm even slower in the
number of strings.

The greedy algorithm works rather similarly. Only the overlaps for the merged
strings need to be set a bit differently. For instance, if the overlap between wi

and wj is chosen, then the string merge(wi, wj) is added and its overlaps are
taken from those given by prefixes of wi and wj .

The lower bound is computed similarly. When choosing a certain overlap,
the proper rows or columns need to be discarded for further consideration. For
instance, in case of lower bound row, if the overlap between wi and wj is chosen,
then all overlaps involving the suffix of of wi must be discarded, that is, all pairs
(wi, ws), (wi, ws), (ws, wi) and (ws, wi).

10 Viral Compression Versus Computer Compression

We show in this section our computations for a number of viral genomes which
were obtained from “The National Center for Biotechnology Information,” (web
site www.ncbi.nlm.nih.gov). We start with a set of strings which are the genes
and try to find a short superstring. Then we compare our result with the one

120 L. Ilie et al.

Table 1. Viral genome compression - optimal solutions

Family Name Total length Viral SCS
Paramyxoviridae Human respiratory syncytial virus 13641 13609 13602
Rhabdoviridae Bovine ephemeral fever virus 15029 14662 14650
Rhabdoviridae Northern cereal mosaic virus 11922 11922 11917
Togaviridae Sleeping disease virus 11745 11745 11738
Coronaviridae SARS coronavirus 29974 29046 29040
Retroviridae HIV-1 isolate 01IN565.11 from India 14125 8647 8646
Retroviridae HIV-2 isolate ALI from Guinea-Bissau 14466 8809 8809

Table 2. Viral genome compression - approximate solutions

Family Name Total length Viral Greedy Lower bound
Baculoviridae Choristoneura fumiferana MNPV 119168 118319 117414 117228
Poxviridae Vaccinia Virus strain Ankara 152029 150885 150588 150329
Herpesviridae Bovine Herpesvirus 1 124819 119378 119276 119137
Adenoviridae Human adenovirus type 5 36576 34342 34328 34322
Adenoviridae Hemorrhagic enteritis virus 25158 23433 23414 23402
Iridoviridae Frog virus 3 85593 84443 84248 84174

Fig. 3. Human respiratory syncytial virus

Fig. 4. Bovine ephemeral fever virus

Fig. 5. Northern cereal mosaic virus

Viral Genome Compression 121

Fig. 6. Sleeping disease virus

Fig. 7. SARS coronavirus

Fig. 8. HIV-1 isolate 01IN565.11 from India

Fig. 9. HIV-2 isolate ALI from Guinea-Bissau

Fig. 10. Human adenovirus type 5

122 L. Ilie et al.

Fig. 11. Choristoneura fumiferana MNPV (left) and Vaccinia Virus strain Ankara
(right)

achieved by the viruses. Notice that the time complexity of our exact algorithm
grows very fast with the number of genes, but is linear in the total length.

We managed to obtain exact solutions in Table 1 for a number of single
stranded RNA viral genomes with relatively few genes. The columns give, in
order, the family, the name of the virus, the total length of all genes, the com-
pression achieved by the virus (total length of coding regions), and the shortest
common superstring. All lengths are given in number of nucleotides.

Viral Genome Compression 123

Fig. 12. Bovine Herpesvirus 1

Fig. 13. Hemorrhagic enteritis virus

For genomes with more genes, we had to use the approximation algorithms.
The results for a number of double stranded DNA viral genomes are shown in
Table 2. The columns have similar meaning, except that the one for the shortest
common superstring is replaced by two: greedy and lower bound. All lengths are
given in number of base pairs.

124 L. Ilie et al.

Fig. 14. Frog virus 3

The compression achieved by the viruses is, on average, 7.98%, that is, the
(average) ratio between the reduction in size (total length of all genes minus
viral coding) and the initial size (total length of genes). For the viruses in the
first table, the ratio is higher, 11.95%, whereas for the second table it is 3.36%.
The average compression ratio is remarkably high if we keep in mind that DNA
molecules (seen as strings) are very difficult to compress in general. Commer-
cial file-compression programs achieve usually no compression at all and the
best especially designed algorithms, see [6], can achieve something like 13.73%

Viral Genome Compression 125

(that is the average for DNACompress from [6], the best such algorithm to
date).

Also, the compression achieved by viruses is very close to what we can do
(using overlapping only) by computers. The above averages, for all viruses con-
sidered, single stranded RNA, and double stranded DNA viruses are 8.11% (only
0.13% better than viruses), 11.99%, and 3.59%, resp. For the second table we
used the greedy compression; it should also be noticed that our lower bound
behaves pretty well.

To give a better idea of the overlaps, Figs. 3–14 at the end show all genomes
considered above as they appear in nature with the non-coding regions removed
(top) and then as computed by our programs (bottom). The overlaps and dif-
ferent strands are shown in different color. (The figures are most useful in the
electronic version of the paper.)

References

1. C. Armen and C. Stein, Improved length bounds for the shortest superstring prob-
lem, Proc. 5th Internat. Workshop on Algorithms and Data Structures, Lecture
Notes in Comput. Sci. 955, Springer-Verlag, Berlin, 1995, 494 – 505.

2. C. Armen and C. Stein, A 2 2
3 approximation algorithm for the shortest superstring

problem, Proc. Combinatorial Pattern Matching, Lecture Notes in Comput. Sci.
1075, Springer-Verlag, Berlin, 1996, 87 – 101.

3. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of
shortest superstrings, J. Assoc. Comput. Mach. 41(4) (1994) 630 – 647.

4. D. Breslauer, T. Jiang, and Z. Jiang, Rotations of periodic strings and short su-
perstrings, J. Algorithms 24 (1997) 340 – 353.

5. A.J. Cann, Principles of Molecular Virology, 3rd ed. Elsevier Academic Press,
London, San Diego, 2001.

6. X. Chen, M. Li, B. Ma, and J. Tromp, DNACompress: fast and effective DNA
sequence compression, Bioinformatics 18 2002 1696 – 1698.

7. M. Crochemore and W. Rytter, Jewels of Stringology, World Sci. Pub., 2003.
8. A. Czumaj, L. Gasieniec, M. Piotrow, and W. Rytter, Parallel and sequential

approximations of shortest superstrings, Proc. First Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Comput. Sci. 824, Springer-Verlag, Berlin,
1994, 95 – 106.

9. M. Daley and I. McQuillan, Viral gene compression: complexity and verification,
Proc. of CIAA’04, Lecture Notes in Comput. Sci. 3317, Springer, Berlin, 2005,
102–112.

10. J. Gallant, D. Maier, and J. Storer, On finding minimal length superstrings, Journal
of Comput. and Syst. Sci. 20(1) (1980) 50 – 58.

11. R. Kosaraju, J. Park, and C. Stein, Long tours and short superstrings, Proc. 35th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, 1994, 166 – 177.

12. D.C. Krakauer, Evolutionary principles of genomic compression, Comments on
Theor. Biol. 7 (2002) 215 – 236.

13. A. Lesk, Introduction to Bioinformatics, Oxford University Press, Oxford, 2002.

126 L. Ilie et al.

14. M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002.
15. J. Storer, Data Compression: Methods and Theory, Computer Science Press, 1988.
16. Z. Sweedyk, A 2 1

2 -approximation algorithms for shortest superstring, SIAM J.
Comput. 29(3) (1999) 954 – 986.

17. S. Teng and F. Yao, Approximating shortest superstrings, Proc. 34th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Piscataway, NJ, 1993, 158 – 165.

	Introduction
	Basic Definitions
	The Shortest Common Superstring Problem
	Viral Genome Compression
	Computing Overlaps
	Optimal Solutions of SCS
	Approximate Solutions of SCS
	Lower Bounds
	Retrograde Overlaps
	Viral Compression Versus Computer Compression

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

