
A Service-Oriented Framework to Promote

Interoperability Among DRM Systems

Fernando Marques Figueira Filho,
João Porto de Albuquerque, and Paulo Ĺıcio de Geus

Institute of Computing, University of Campinas, 13083-970 Campinas/SP Brazil

Abstract. Through the past years, several digital rights management
(DRM) solutions for controlled dissemination of digital information have
been developed using cryptography and other technologies. Within so
many different solutions, however, interoperability problems arise, which
increase the interest on integrated design and management of these tech-
nologies. Pursuing these goals, this paper presents a framework which
aims at promoting interoperability among DRM systems, using a service-
oriented architecture (SOA) and a high-level policy modeling approach.

1 Introduction

Digital Rights Management is a collection of technologies that enables controlled
dissemination of digital information. Today, the majority of DRM applications
are used in copyrighted content distribution, such as movies and music, but
it is expected that those technologies will also benefit, in a near future, small
content producers and individuals who intend to securely distribute their own
information.

Although there have been considerable advances in the area, DRM systems
still do not interoperate. There are differences over formats and protocols, as well
as difficulties in trying to integrate management while simultaneously operating
different DRM systems. Thus, content producers are forced to choose one among
available platforms, which affects their content distribution covering. Moreover,
the lack of operability can be used to stimulate the monopoly over proprietary
software and devices by some vendors, which can be harmful for both users and
content producers.

Following this motivation, this paper presents a framework which aims at
promoting interoperability among DRM platforms. It is based on the fact that
in every platform, the lifetime of contents follows basically the same steps: firstly,
it is packaged using cryptography, in order to protect it against unauthorized
users. Then, at some moment during content distribution, it is licensed to a
specific user or device. A license is a file containing the rights and conditions,
described in a platform-specific format, which govern contents’ usage by that
particular user. Our framework centers those rights and conditions in a single
policy-based model, which is generic for every DRM platform.

To that effect, a service-oriented architecture (SOA) is defined, which is re-
sponsible for managing those policies and using them to generate licenses in

A. Helmy et al. (Eds.): MMNS 2006, LNCS 4267, pp. 124–127, 2006.
c© IFIP International Federation for Information Processing 2006

A Service-Oriented Framework to Promote Interoperability 125

different DRM platform formats. Services are implemented using Web Services,
allowing for easier compatibility with most computer architectures and program-
ming languages.

The next section presents a brief of the conceptual models in which our ap-
proach is based. The system architecture is analyzed in Section 3 and we con-
clude this paper with some related work and expectations around future work
in Section 4.

2 Policy Model

In this paper, policies are based in an object-oriented model which can be divided
conceptually into levels of abstraction, as depicted in Fig. 1. The highest level
is based on the role-based access control (RBAC) concepts [1] and its extension,
the GRBAC [2].

Through the past 10 years, RBAC has been used to simplify permission man-
agement, especially when users are hierarchically organized or when it is possible
to identify common characteristics among them. Such scenario is found in vari-
ous DRM business models (e.g. service subscription or purchasing, membership
of a club or organization). Instead of associating rights with each user, we apply
rights to subject-roles, which in turn are associated with users. In this manner, a
small policy set is sufficient to manage a large and complex system. Thus, poli-
cies in the abstract level are relatively static and their construction is supported
by a graphical tool, similar to the one used in other policy-based management
applications [3].

Subject-role Right Object-role Environment-
role

User A User B Content X Content Y

Policy

abstract
level

concrete
level

Fig. 1. Policy structure

DRM permissions, however, commonly associate conditions and restrictions
to a right (e.g. play, print), based on stateful information. This information is
included in the license and used by a particular DRM platform to control, for
example, the number of times a user exercises a right, the time interval during
which a content can be used, among others. GRBAC extends RBAC through
the introduction of environment-roles, which are applied to our policy model to
incorporate those state-based conditions and restrictions. GRBAC also defines

126 F.M.F. Filho, J. Porto de Albuquerque, and P.L. de Geus

object-roles, which are used to group contents and build policies based on their
characteristics, such as type (audio, video etc.) and confidentiality level.

The second abstraction level carries concrete entities from a DRM system (e.g.
users, contents) and holds a much more dynamic behavior. While the upmost
level is updated by human intervention by means of a graphical editor, the second
level is updated by framework services according to the external DRM system
activity. The architecture that comprehends these services and its functioning
are covered in the next section.

3 Framework Architecture

The framework proposed in this work has a service-driven architecture composed
by five services. Some are platform-dependent and interface DRM systems with
which the framework operates, while others interact with the policy database,
as depicted in Fig. 2.

packaging
information

new content

user
subscription

User device

encrypted
content

user and
content info

license

abstract
modeling

financial
transaction

platform-dependent

platform-independent

licensing

Content

Encrypted
Content

Packaging
service

Update
service

Content publisher

Content
owner

License
service

Policy
database

Licensing
server

Graphical tool

Policy
service

Content

framework architecture

Subscription
service

Fig. 2. Framework architecture

In the beginning of the content lifetime it is supposed that abstract policies
have already been defined through the graphical tool. After finishing the abstract
modeling step, the content can be packaged using a platform-specific packaging
service, which receives a plain file and references to which object-roles that con-
tent will be associated with. The packaging service then requests the update to
the update service.

A Service-Oriented Framework to Promote Interoperability 127

On the other hand, users interact by licensing content on a payment-basis
or, when there is no financial transaction involved, by only subscribing to new
services and having their access levels changed (e.g. when a company that uses
DRM to manage classified documents hires a new employee). In these cases, the
subscribing service receives user information and references to which subject-roles
that user will be associated with.

Finally, when a license has to be generated in a specific platform format,
the licensing server contacts the license service which serves that particular
platform, passing user and content identifications, as well as some other platform-
specific information. The license service, in turn, contacts the policy service,
which searches the database for all policies related to those user and content,
returning the results. The license service then interprets the returned policies
and generates a license.

4 Related and Future Work

Some recent work analyze interoperability issues, sometimes proposing solutions,
as in Sun’s project called DReaM [4], which also employs a service-oriented
architecture. However, none of them uses a policy-based management approach
or any abstract modeling technique.

The proposed architecture aims at providing interoperability through a cen-
tered, platform-independent policy model, which interfaces to other systems
using specialized services that will be implemented using Web Services. The
conceptual division of policies in two layers allows for a system view with an
appropriate abstraction level. The high-level policy design is also supported by
a graphical editor, to be developed using Java and applying the visualization
improvements used in [3].

References

1. Ferraiolo, D., Kuhn, R.: Role-based access control. In: Proceeedings of 15th NIST-
NCSC National Security Computer Conference, Baltimore, MD (1992)

2. Covington, M.J., Moyer, M.J., Ahamad, M.: Generalized role-based access control
for securing future applications. In: 23rd National Information Systems Security
Conference Proceedings. (2000)

3. Porto de Albuquerque, J., Isenberg, H., Krumm, H., de Geus, P.L.: Improving the
configuration management of large network security systems. In: Ambient Networks:
16th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, DSOM 2005, Proceedings. Volume 3775 of Lecture Notes in Computer
Science., Berlin Heidelberg, Germany, Springer-Verlag (2005) 36–47

4. Fernando, G., Jacobs, T., Swaminathan, V.: Project DReaM - An Ar-
chitectural Overview. White Paper. Open Media Commons. Available at:
http://www.openmediacommons.org/ (2005)

	Introduction
	Policy Model
	Framework Architecture
	Related and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

