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Abstract. Moment-based procedures are commonly used in computer
vision, image analysis, or pattern recognition. Basic shape features such
as size, position, orientation, or elongation are estimated by moments
of order ≤ 2. Shape invariants are defined by higher order moments.
In contrast to a theory of moments in continuous mathematics, shape
moments in imaging have to be estimated from digitized data. Infinitely
many different shapes in Euclidean space are represented by an identical
digital shape. There is an inherent loss of information, impacting moment
estimation.

This paper discusses accuracy limitations in moment reconstruction
in dependency of order of reconstructed moments and applied resolution
of digital pictures. We consider moments of arbitrary order, which is not
assumed to be bounded by a constant.
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1 Introduction

Moments are widely used in computer vision, image analysis, or pattern recog-
nition (since Hu [1]). A variety of types of moments and moment-based methods
has been developed and studied, for example, for object recognition [2], recon-
struction of geometric properties of regions [3], or determination of invariants [4].
The (p, q)-moment mp,q(S) of a planar set S is defined by the following:

mp,q(S) =
∫

S

∫
xpyq dx dy

It has the order p+ q.
Basic shape features (e.g., size, position, orientation, elongation) are computed

from moments of order less or equal to two. Higher order moments are needed
for computing, for example, the orientation of 3D rotationally symmetric shapes
(see [5]) or moment invariants (see [1]). In imaging applications we have to
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deal with digitized shapes (objects); consequently, exact moment computation
is impossible. The accuracy of moment estimation is limited by many factors,
dominated by shape complexity, applied resolution of digital pictures, and the
order of reconstructed moments.

Obviously, higher picture resolution enables a higher precision in moment
reconstruction. Also, if picture resolution is fixed, then accuracy would decrease
if the moment’s order increases. Thus, if high-order moments are needed for a
particular application, reconstruction accuracy can be improved by an increase
in applied picture resolution. This is formally studied as multigrid convergence
in digital geometry (see [6]).

Situations, where the order of moments is bounded while picture resolution
is allowed to increase (to infinity), have been discussed in [7]. The case of un-
boundedly increases of orders of moments remained an open problem in that
publication.

This paper also covers the case where the order of moments is allowed to tend
to infinity. Furthermore, for this situation we consider the special case where the
order of computed moments is at most logarithmic in applied picture resolution.
We prove an upper bound for the resulting error in estimation which improves the
best known upper bound to date (that follows from general tools provided in [8]).

We give definitions and notations as used in this paper. Center points of grid
squares are assumed to have integer coordinates (i.e., to be grid points in Z

2).
In the diversity of different models for digitizing shapes in Euclidean spaces, we
decide for the set of grid points contained in the given shape (analogous to Gauss
digitization in [6]). That means, for a set S ⊂ R

2, its digitization G(S) is defined
to be the set of all grid points which are contained in S.

Let h > 0 be the picture resolution (i.e., the number of grid points per unit).
Instead of considering a digitization of S in a picture of resolution h, we pre-
fer here (as standard in number theory) to use a digitization of the dilated set
h·S = {(h·x, h·y) | (x, y) ∈ S} in the grid of resolution h = 1. We considerG(h·S)
to be (under number-theoretical aspects) the shape S digitized in a binary pic-
ture of resolution h. Gauss digitization is defined analogously in 3D. If S ⊂ R

3,
the Gauss digitization G(S) is the set of all 3D grid points contained in S.

The exact value of mp,q(S) remains unknown in digital imaging (because the
exact Euclidean shape of S remains unknown). The following estimation is used:

mp,q(S) =
1

hp+q+2
·
∫

h·S

∫
xpyq dx dy ≈ 1

hp+q+2
·

∑
(i,j)∈G(h·S)

ip · jq (1)

For a given digital planar shape A (i.e., a finite subset of Z
2) and non-negative

integers p and q, define the discrete moment μp,q(A) as follows:

μp,q(A) =
∑

(i,j)∈A∩Z2

ip · jq

3D discrete moments are defined analogously. For a finite set B ⊂ Z
3 and non-

negative integers p, q and t, we have
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μp,q,t(B) =
∑

(i,j,k)∈B∩Z3

ip · jq · kt

Let C(S) denote the content of set S, which is the area A(S) for 2D, or the
volume V(S) for 3D. We have μ0,0(A) = A(S) and μ0,0,0(B) = V(S), and both
values are simply defined by cardinalities #A and #B, respectively. The orders
of μp,q(A) or μp,q,t(B) are p + q and p + q + t, respectively. Throughout the
paper we assume that all pixels (i.e., grid points) have nonnegative coordinates
(i.e., the origin of the assumed coordinate system is at the lower left corner of a
considered picture).

Under these assumptions, for a real shape S, μp,q(G(S)) equals the number
of integer points inside of the 3D-body Bp,q(G) defined as

Bp,q(S) = {(x, y, z) : (x, y) ∈ S ∧ 0 < z ≤ xp · yq} (2)

In other words,
μp,q(G(S)) = #

(
Bp,q(S) ∩ Z

3
)

(3)

This paper is about an analysis of the maximum error in the approximation
mp,q(S) ≈ h−(p+q+2) ·μp,q(G(h ·S)), when real moments are estimated by cor-
responding discrete moments. Obviously, this problem is equivalent [see Equa-
tion (2)] to the study of the order of magnitude of

|mp,q(h · S) − μp,q(G(h · S))| (4)

This paper deals with planar convex shapes, but due to the given moment
definition the result can easily be extended to sets which are unions, intersections
or set differences of a finite number of convex sets. Also, since the estimate of (4)
becomes trivial if there are any straight sections on the frontier of S, we focus
on shapes that have a strictly positive curvature at all points of their frontier.
Precise (formal) conditions are given below.

2 Related Results

The number of grid points, contained in convex bodies, is intensively studied in
number theory. Regarding (4), a direct application of Davenport’s result in [8]
(to our case) says that |mp,q(h · S) − μp,q(h · S)| is upper bounded by the total
sum of projections of Bp,q(h · S) onto xy-, xz-, and yz-plane, onton x-, y-, and
z-axis, and finally increased by 1. In other words, we have

|mp,q(h · S) − μp,q(h · S)| =
∣∣mp,q(h · S) − #

(
Bp,q(h · S) ∩ Z

3
)∣∣

≤
(
xp+1

max · yq
max

p+ 1
+
xp

max · yq+1
max

q + 1

)
· hp+q+1 + h2 · xmax · ymax

+xp
max · yq

max · hp+q + (xmax + ymax) · h+ 1 (5)

A better estimate than (5) is derived in [7] for bounded orders p+ q. This paper
shows that exploiting Huxley’s result in [9] allows to obtain an estimate for (4)
which improves estimate (5) even for orders of unbounded values of p and q.
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We assume that frontiers γ of convex shapes S are composed of finitely many
smooth arcs γi, either given by an equation y = φ(x), or by x = θ(y), functions
φ(x) and θ(y) have at least continuous derivatives up to the third order, also
satisfying the following (for ψ = φ or ψ = θ):

(i) The radius ρ of curvature and its derivative
dρ

dψ
exist on each arc γi, and

both are continuous functions of ψ on γi.
(ii) On each arc γi, the radius of curvature ρ has a maximum value and a

non-zero minimum value.
(iii) On each arc γi, the radius of curvature has a bounded number of local

maxima and minima.

The following theorem is of major importance for this paper.

Theorem 1. (Huxley 2003). Suppose that γ consists of finitely many smooth
arcs, each of which satisfies conditions (i), (ii), and (iii). Then there is a constant
c, calculated from the arcs γi of γ (where c is independent of the chosen length
unit), such that, if the minimum radius of curvature of each γj is at last c, then
the number of grid points in S is upper bounded by

A(S) + O
(
R

131
208 · (logR)

18627
8320

)

where R is the maximum radius of curvature of γ. The constant implied in the
order of magnitude notation is also calculated from the arcs of γ, and it is inde-
pendent of the chosen length unit.

A planar convex set S, satisfying the preconditions of Theorem 1, is said to
have a sufficiently smooth frontier. A direct consequence of Theorem 1 is the
following:

Corollary 1. Let S be a planar convex set with a sufficiently smooth frontier.
Then it follows that

#G(h · S) = h2 · A(S) + O
(
h

131
208 +ε

)
(6)

for any ε > 0.

This is a very strong result. It even improves the previously best known upper
bound for the circle problem (i.e., if S is assumed to be a circle).

The following studies are divided into two different cases. The case where
either p or q is zero, is studied in the next section. The case where both p and
q are strictly positive, is studied in Section 4.

3 Error Estimate if Either p = 0 or q = 0

Obviously (due to symmetry), estimates for μp,0(h · S) and μ0,q(h · S) can be
derived in identical ways. We consider μp,0(h · S).

For a compact set S, let xmin = min{x : (x, y) ∈ S}, xmax = max{x : (x, y) ∈
S}, ymin = min{y : (x, y) ∈ S}, and ymax = max{y : (x, y) ∈ S}.
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Without loss of generality we can assume that the studied convex set S is a
subset of [0, 1]× [0, 1]. Consequently, we have {xmin, xmax, ymin, ymax} ⊂ [0, 1]
in what follows.

Definition 1. For a planar set S, integer k, and real h > 0, let

(h · S)(k) = {(x, y) : (x, y) ∈ (h · S) ∧ x ≥ k}

Consequently, G((h · S)(k)) is the set of grid points in the digitization of h · S
lying in the closed half plane determined by x ≥ k.

Definition 2. For a planar set S, integer k, and real h > 0, let

L(h · S, k) = {(k, j) : (k, j) ∈ G(h · S)}.

In other words, L(h ·S, k) is the set of those grid points in the Gauss digitization
of h · S that belong to the line x = k. We have the following lemma [7].

Lemma 1. Let S be a planar convex set and k an integer. We have

#G((h · S)(k)) = A((h · S)(k)) +
1
2
· #L(h · S, k) + O(h

131
208 +ε)

We use the following definitions of 3D-sets Wi and W ′
i :

(k+1)

k p

k+1

h xmax

minh x

B’

Wk

B’’

W’k

x

y

z

k
L(hS,k)

hS(k)

p

|−h xmin |−p

Fig. 1. Used notations in this section
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Definition 3. For planar convex set S and integer i ∈ {	h ·xmin
, 	h ·xmin
+
1, . . . , �h · xmax� − 1}, we define 3D sets (see Figure 1)

Wi = {(x, y, z) : (x, y) ∈ h · S ∧ x ≥ i ∧ ip < z ≤ (i+ 1)p}
and

W ′
i = {(x, y, z) : (x, y) ∈ h · S ∧ x ≥ i ∧ xp < z ≤ (i+ 1)p}

Now we calculate μp,0(h ·S). As a reminder, V(B) is the volume of a 3D set B,
and A(S) is the area of a 2D set S.

Lemma 2. Let S be a convex set. Then
�h·xmax�−1∑
i=�h·xmin	

V(W ′
i )

=
�h·xmax�−1∑
i=�h·xmin	

#L(h · S, i) ·
(
(i+ 1)p − ip − p

2
· ip−1

)
+ O

(
hp

p+ 1
·
(
p+ 1
	p+1

2 

))

Proof. The frontier of h · S can be divided into two arcs of the form y = y1(x)
and y = y2(x), such that y1(x) ≤ y2(x). Then we have that

�h·xmax�−1∑
i=�h·xmin	

V(W ′
i ) =

�h·xmax�−1∑
i=�h·xmin	

∫ i+1

i

dx

∫ (i+1)p

xp

dz

∫ y2(x)

y1(x)

dy

=
�h·xmax�−1∑
i=�h·xmin	

∫ i+1

i

dx

∫ (i+1)p

xp

dz

(∫ y1(i)

y1(x)

dy +
∫ �y1(i)	

y1(i)

dy +
∫ �y2(i)�

�y1(i)	
dy

+
∫ y2(i)

�y2(i)�
dy +

∫ y2(x)

y2(i)

dy

)

=
�h·xmax�−1∑
i=�h·xmin	

∫ i+1

i

dx

∫ (i+1)p

xp

(∫ �y2(i)�

�y1(i)	
dy + O(1)

)
dz + O(hp)

=
�h·xmax�−1∑
i=�h·xmin	

∫ i+1

i

(�y2(i)� − 	y1(i)
) · ((i+ 1)p − xp)dx + O(hp)

=
�h·xmax�−1∑
i=�h·xmin	

(�y2(i)� − 	y1(i)
) ·
(
(i+ 1)p − ip − p

2
· ip−1

)
+

+
�h·xmax�−1∑
i=�h·xmin	

(�y2(i)� − 	y1(i)
)
(
ip +

p

2
· ip−1 − (i+ 1)p+1 − ip+1

p+ 1

)
+ O(hp)

=
�h·xmax�−1∑
i=�h·xmin	

#L(h · S, i) ·
(
(i+ 1)p − ip − p

2
· ip−1

)
+ O

(
hp

p+ 1
·
(
p+ 1
	p+1

2 

))
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The following estimate was used:

(i+ 1)p+1 − ip+1

p+ 1
− ip − p

2
· ip−1

=
1

p+ 1
·
((

p+ 1
3

)
· ip−2 +

(
p+ 1

4

)
· ip−3 + . . .+

(
p+ 1
p+ 1

)
· i0
)

≤ p− 1
p+ 1

·
(
p+ 1
	p+1

2 

)
· ip−2 �

Finally, Lemma 3 evaluates the discrete moments μp,0(h · S) and μ0,q(h · S).

Lemma 3. The following asymptotic expressions are satisfied:

μp,0(h · S) =
∑

(i,j)∈G(h·S)

ip =
∫

h·S

∫
xpdxdy + O

(
hp ·

((
p

	p
2

)

+ h
131
208 +ε

))

μ0,q(h · S) =
∑

(i,j)∈G(h·S)

jq =
∫

h·S

∫
yqdxdy + O

(
hq ·

((
q

	 q
2

)

+ h
131
208 +ε

))

Proof. According to (3), μp,0(G(h·S)) equals the number of grid points belonging
to the 3D set B given by

B = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z ≤ xp} = B′ ∪ B′′

where B′ and B′′ are defined as follows:

B′ = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z ≤ 	h · xmin
p}
B′′ = {(x, y, z) : (x, y) ∈ h · S ∧ 	h · xmin
p < z ≤ xp}

First, consider the number of grid points which belong to B′. It follows that

#G(B′) = 	h · xmin
p ·
(
A(h · S) + O

(
h

131
208 +ε

))
= V(B′) + O

(
hp+ 131

208 +ε
)

Now we calculate the number of grid points which belong to B′′. By Definition 3
and also using the (obvious) estimate

V ({ (x, y, z) : (x, y) ∈ h · S ∧ x ≥ �h · xmax� ∧ z ≤ xp }) = O(hp)

we derive

V(B′′) =
�h·xmax�−1∑
i=�h·xmin	

(V(Wi) − V(W ′
i )) + O(hp)

=
�h·xmax�−1∑
i=�h·xmin	

V(Wi) −
�h·xmax�−1∑
i=�h·xmin	

V(W ′
i ) + O(hp)
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=
�h·xmax�−1∑
i=�h·xmin	

((i+ 1)p − ip) · A((h · S)(i)) −
�h·xmax�−1∑
i=�h·xmin	

V(W ′
i ) + O(hp)

(by using Lemata 1 and 2, it follows)

=
�h·xmax�−1∑
i=�h·xmin	

((i+ 1)p − ip) ·
(

#G((h · S)(i)) − 1
2
· #L(h · S, i) + O(h

131
208 +ε)

)

−
�h·xmax�−1∑
i=�h·xmin	

#L(h · S, i)
(
(i+ 1)p − ip − p

2
· ip−1

)
+ O

(
hp

p+ 1
·
(
p+ 1
	p+1

2 

))

=
�h·xmax�−1∑
i=�h·xmin	

((i+ 1)p − ip) ·
(
#G((h · S)(i)) − #L(h · S, i) + O

(
h

131
208+ε

))

−
�h·xmax�−1∑
i=�h·xmin	

#L(h · S, i)
2

· ((i+ 1)p − ip − p · ip−1
)

+ O
(

hp

p+ 1
·
(
p+ 1
	p+1

2 

))

=
�h·xmax�−1∑
i=�h·xmin	

((i+ 1)p − ip) · (#G((h · S)(i)) − #L(h · S, i))

+O
(
h

131
208 +ε · ((�h · xmax�)p − (	h · xmin
)p)

)

−
�h·xmax�−1∑
i=�h·xmin	

1
2
· #L(h · S, i) ·

((
p

2

)
· ip−2 +

(
p

3

)
· ip−3 + . . .+

(
p

p

)
· i0
)

+O
(

1
p+ 1

·
(
p+ 1
	p+1

2 

)
· hp

)
= #G(B′′) + O

(
hp ·

((
p

	p
2

)

+ h
131
208 +ε

))

The following inequalities are used:

a)
�h·xmax�−1∑
i=�h·xmin	

((
p

2

)
· ip−2 +

(
p

3

)
· ip−3 + . . .+

(
p

p

)
· i0
)

≤

≤
�h·xmax�−1∑
i=�h·xmin	

(p− 1) ·
(
p

	p
2

)
· ip−2 = O

((
p

	p
2

)
· hp−1

)

b) for a large p :
(
p

	p
2

)
· hp−1 ≤ 1

p+ 1
·
(
p+ 1
	p+1

2 

)
· hp−1

Note that, if an integer i with h · xmin ≤ i ≤ h · xmax is fixed, then

((i+ 1)p − ip) · (#G((h · S)(i)) − #L(h · S, i))
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equals the number of grid points contained in Wi, and, consequently,

�h·xmax�−1∑
i=�h·xmin	

((i+ 1)p − ip) · (#G((h · S)(i)) − #L(h · S, i)))

equals the number of grid points contained in B′′.
Finally, the sum of #G(B′) and #G(B′′) is the number of grid points in B.

Together with the already derived expression for #G(B′) , we have

μp,0(G(h · S)) = #G(B) = #G(B′) + #G(B′′) = V(B′) + O
(
hp · h 131

208+ε
)

+V(B′′) + O
(
hp ·

((
p

	p
2

)

+ h
131
208+ε

))
= V(B) +

O
(
hp ·

((
p

	p
2

)

+ h
131
208+ε

))
= mp,0(h · S) + O

(
hp ·

((
p

	p
2

)

+ h
131
208+ε

))
�

4 Error Estimate if p > 0 and q > 0

It remains to estimate μp,q(h · S), if p > 0 and q > 0. (The next definition and
lemma are analogous to Definition 1 and Lemma 1.)

Definition 4. For a convex set S, integers k, p, q, and a real r > 0, let

(h · S)(k, p, q) = {(x, y) : (x, y) ∈ (h · S) ∧ xp · yq ≥ k}

G((h · S)(k, p, q)) is the set of grid points in the digitization of h · S lying in the
closed part of the plane determined by xp ·yq ≥ k. Since both S and (h·S)(k, p, q)
satisfy the preconditions of Theorem 1, we have the following lemma:

Lemma 4. For a convex set S with a sufficiently smooth frontier, and integers
r, p, q, we have

#G((h · S)(p, q, k)) = A((h · S)(k)) + O
(
h

131
208+ε

)
(7)

Lemma 5. Let S be a convex set with a sufficiently smooth frontier, and p,
q > 0. Then we have the following:

μp,q(h · S) =
∫

h·S

∫
xp · yqdxdy + O

(
hp+q · h 131

208 +ε
)

(8)

Proof. Note that μp,q(h · S) is equal to the number of grid points belonging to
the 3D set E given by

E = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z ≤ xp · yq} = E′ ∪ E′′
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x

y x  y   = k

S.h

hS

p q

Fig. 2. The shaded area is (h · S)(k, p, q)

where E′ and E′′ are defined as follows:

E′ = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z < hp+q · zmin}
E′′ = {(x, y, z) : (x, y) ∈ h · S ∧ hp+q · zmin ≤ z ≤ xp · yq}

where zmin = min{z : z = xp · yq ∧ (x, y) ∈ S} and zmax = max{z : z =
xp · yq ∧ (x, y) ∈ S}.

Furthermore, from (9) we have

#G(E′) = (	hp+q · zmin
 − 1) ·
(
A(h · S) + O

(
h

131
208+ε

))
= V(E′)

− hp+q · zmin · A(h · S) + (	hp+q · zmin
 − 1) ·
(
A(h · S) + O

(
h

131
208 +ε

))

= V(E′) + A(h · S) · (	hp+q · zmin
 − hp+q · zmin

)
+ O

(
hp+q · h 131

208+ε
)

(Note that A(h ·S) = O(h2) and p+ q ≥ 2 have been used in this derivation.)
Now, let us calculate the number of grid points belonging to the set E′′. What

follows is a definition of 3D-sets ωi and ω′
i , for i ∈ {	hp+q · xmin
, 	hp+q ·

xmin
 + 1, . . . , �hp+q · xmax�}:

ωi = {(x, y, z)|(x, y) ∈ h · S ∧ xp · yq ≥ i ∧ i < z < min{xp · yq, i+ 1}}
ω′

i = {(x, y, z)|(x, y) ∈ h · S ∧ i < xp · yq ≤ i+ 1 ∧ xp · yq < z < i+ 1}

Now, we can estimate the volume of E′′. By using O(h2) as a trivial upper
bound for the volume of

{(x, y, z) : (x, y) ∈ h ·S ∧ xp ·yq ≤ 	hp+q · zmin
 ∧ xp ·yq ≤ z ≤ 	hp+q · zmin
}

it follows that
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V(E′′)

=
�hp+q·zmax�∑

i=�hp+q·zmin	
V(ωi) +

(	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O(h2)

=
�hp+q·zmax�∑

i=�hp+q·zmin	
(A((h · S)(i, p, q)) − V(ω′

i))

+
(	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O(h2)

=
�hp+q·zmax�∑

i=�hp+q·zmin	
A((h · S)(i, p, q)) −

�hp+q·zmax�∑
i=�hp+q·zmin	

V(ω′
i)

+
(	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O(h2)⎛
⎝note that

�hp+q·zmax�∑
i=�hp+q·zmin	

V(ω′
i) ≤ h2 · A(S) because the projections of

ω′
i onto the xy-plane belong to h · S)

=
�hp+q·zmax�∑

i=�hp+q·zmin	

(
#G((h · S)(i, p, q)) + O

(
h

131
208 +ε

))

+
(	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O(h2)

= #G(E′′) +
(	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O
(
hp+q+ 131

208 +ε
)
.

Thus,

#G(E′′) = V(E′′) − (	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O
(
hp+q+ 131

208 +ε
)
.

The proof of the lemma is finished by summing up #G(E′) and #G(E′′) :

μp,q(h · S) = #G(E′) + #G(E′′)

= V(E′) + A(h · S) · (	hp+q · zmin
 − hp+q · zmin

)
+ O

(
hp+q+ 131

208 +ε
)

+V(E′′) − (	hp+q · zmin
 − hp+q · zmin

) · A(h · S) + O
(
hp+q+ 131

208+ε
)

= V(E) + O
(
hp+q+ 131

208+ε
)

= mp,q(h · S) + O
(
hp+q+ 131

208 +ε
)
. �

Our theorem summarizes the accuracy in estimating real moments of an arbitrary
order based on digitized sets.
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Theorem 2. Let S be a convex set that satisfies the preconditions of Theorem
1. Then we have the following:

∣∣∣∣mp,q(S) − μp,q(h · S)
hp+q+2

∣∣∣∣ =

⎧⎨
⎩

O
(
h−

285
208 +ε + 1

h2 · ( p

	 p
2 

))

for p = 0 or q = 0

O
(
h−

285
208 +ε

)
for p > 0 and q > 0.

Stirling’s formula gives
( p

	 p
2 

)

= O (2n) and implies the following:

Corollary 2. Let S be a convex set with sufficiently smooth frontier, and let
p+ q = o(log h). Then we have the following:

∣∣∣∣mp,q(S) − μp,q(h · S)
hp+q+2

∣∣∣∣ = O
(
h−

285
208+ε

)
for any ε > 0.

Corollary 2 shows that the error in approximating mp,q(S) ≈ μp,q(h·S)
hp+q+2 can be

reduced to any fraction of the pixel size (what is 1/h) if a moment’s order p+ q
is not to large compared to the applied picture resolution. The assumed relation
p+ q = o(log h) is reasonable for practical applications. In such a case, Corollary
2 gives a better estimate than the estimate 1

co(log h)·o(h·log h)
(c > 0 is computable

from xmax and ymax) that follows from (5) (i.e., from Davenport’s result).
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