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Abstract. In this paper, we provide an unified view of two definitions
of digital lines in 3D via the use of lattice theory and specific projections
of the lattice Z

3. We use this unified vision to explain the extension of
the definition of Voss [1] to an arbitrary dimension and we show how
to extend the definition of Figueiredo and Reveillès [2] to an arbitrary
dimension.

1 Introduction

Digital lines are among the simplest primitives in Digital Geometry. Many defi-
nitions have been proposed by many authors [3], which are almost all equivalent
in 2D. Several drawing algorithms are known as well as several recognition al-
gorithms. All of this explains why digital lines are extremely central for a lot of
digital algorithms. Thus, it is natural to look for an extension of the definition
of 2D digital lines to 3D digital lines. Moreover, as the applications nowadays
manipulate 3D, 4D and sometimes higher dimensional data, extensions of digital
lines to n-D becomes also very important and critical.

Several extensions have been proposed to define 3D digital lines. First, Voss
[1] recalled some previous works by Kim [4] and proposed a definition of n-D
digital lines based on the integer part function �.�. Second, the work of Debled-
Rennesson et al. [5,6] proposed to define 3D digital lines through their projections
(two or three in the general case) on the planes defined by the axes of the
standard basis of Z

3, and used the arithmetical approach of Reveillès [7]. It must
be noticed that [4] also used projections onto the coordinates planes. The work of
Debled et al [6] also leads to a recognition algorithm. A third approach was also
done by Figueiredo and Reveillès in [8, 2] using lattice theory and projections
onto the orthogonal plane of a direction v in Z

3. As it can be seen, only the
definition given by Voss [1] extends to an arbitrary dimension. Beside this, we
can note that there exist drawing algorithms of digital lines in n-D [9] based on
displacement vectors. Moreover, the definition of n-D digital lines is related to
the notion of digitization. Some models are presented by Klette [10] (with the
important correction given in [11]).

The goal of this paper is to present a unified and generic view of the defini-
tion of Voss [1] and the definition of Figueiredo and Reveillès [2]. Moreover, due
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to this unified viewpoint, we also extend the last definition to an arbitrary di-
mension. The main mathematical tools used in this paper are lattice theory and
projections of lattices. We prove in the paper that both definition are obtained
via projection of the lattice Z

3 onto specific planes which are the xOy plane for
the definition of Voss and the orthogonal plane - as it was already the case - in
the definition of Figueiredo and Reveillès.

The structure of the paper is as follows. We first recall how to manage sym-
metries in 3D via the octaedral group in section 2. This is followed in section 3
by the construction of the definition of Voss in dimension 3, as well as a recall of
the construction of Figueiredo and Reveillès. We end this section by the presen-
tation of a drawing algorithm. Then in section 4, those approaches are extended
to an arbitrary dimension. We also present some results concerning the basis of
the lattice we manipulate. The paper ends in section 5 with some conclusions
and perspectives.

2 Preliminaries

In 2D, it is usual to restrict the study of digital lines to the first octant where
for each point (x, y), we have 0 ≤ y ≤ x. In higher dimension, we can do the
same following the approach of Reveillès [12]. Hence, we will use the group of
the symmetries of the unit cube in 3D. We denote this octaedral group by Oh.
This group can be identified to the product of the group ( Z

2Z
)3 of order 8, and

the group S3 of the permutations of the three letters a, b, c, whose order is 6.
The order of Oh is thus 48. Its geometrical interpretation is easy using rotations
and symmetries and is given on Fig. 1.

Fig. 1. The octaedral group Oh associated to the decomposition of a cube into 48
tetraedra, each being a transformation of the fundamental domain 0 ≤ a ≤ b ≤ c by
an element of the group Oh

Using the octaedral group, we could study only the fundamental domain which
is the subset F of Z

3 composed of the integer points (a, b, c) such that 0 ≤ a ≤
b ≤ c. To generate all possible cases, we simply study the action of Oh on a triple
of signed symbols (±a,±b,±c). Each of the eight elements of the subgroup ( Z

2Z
)3

of Oh modify the signs of the symbols and the other six, coming from S3, permute
them. Consequently, Oh can be identified to the group of 3 × 3 matrices where
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each row and column contains only one value being either +1 or −1. We can
effectively find 48 of such matrices.

Let n = (n1, n2, n3) ∈ Z
3 be a vector and let us denote by Domn the domain

of n. The element gn of Oh which maps Domn onto F can be constructed as
follows. We sort the matrix whose columns are the ni such that the order of
the first row is increasing. The resulting matrix is the element Mn. Let us now
denote by permn : Z

3 → Z
3 and by sgnn : Z

3 → Z
3 the applications

permn :

⎛
⎝

x
y
z

⎞
⎠ �→ Mn

⎛
⎝

x
y
z

⎞
⎠ sgnn :

⎛
⎝

x
y
z

⎞
⎠ �→

⎛
⎝

sign(n1)x
sign(n2)y
sign(n3)z

⎞
⎠

where sign(w) is the sign of w. We have gn = sgnn ◦ permn.

3 3D Digital Lines

We present in this section our construction of 3D digital lines using lattices of
R

n and arithmetics. Recall that if v1, v2, . . . , vp is a collection of p vectors of R
n,

then the lattice generated by the collection is the set of all integral combinations
∑

aivi, ∀i = 1, 2 . . . , p, ai ∈ Z

Our approach is based on the study of the repartition of integer points of Z
3

in the neighborhood of the integral direction given by the vector (a, b, c). We will
define 3D digital lines based on the notion of 1D dotted lines as it is the case for
the two dimensional lines [13]. Using the octaedral group Oh, we suppose that
(a, b, c) belongs to the fundamental domain F . Moreover, a, b and c are supposed
to be relatively prime.

Let us denote by E the set of all Euclidean lines whose direction vector is
v and which contain integer points. We will call 1D dotted lines with direction
v = (a, b, c), the intersection of the Euclidean lines - with direction v - with Z

3.
The plane (P ) given by ax + by + cz = 0 is a subgroup of R

3. The orthogonal
projection of Z

3 onto (P ) is the intersection of E and (P ) and is a lattice of (P )
denoted by EP . This lattice is clearly a rational lattice (see Fig. 4).

It is easy to verify that the intersection of the planes −cx + az = 0 and
−cy + bz = 0 is the line directed by v and passing through the origin. The
intersections of the planes −cx + az = k and −cy + bz = l where k, l ∈ Z also
give a family of lines of direction v. We denote by D this family. It is clear that
E ⊂ D, but the converse is false as the following system shows it,

{
13x − 3z = 2 (1)
13y − 5z = 3 (2)

corresponds to the line whose direction is (3, 5, 13) but this line does not intersect
Z

3. Indeed, the solution of (1) are given by (2 + 3μ, 0, 8 + 13μ), μ ∈ Z, whereas
the solutions of (2) are (0, 6 + 5ν, 15 + 13ν), ν ∈ Z. To have an integer solution
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of the system, one must have: ∃μ, ν ∈ Z, 8 + 13μ = 15 + 13ν ; this is clearly
impossible.

Let us denote by DP the lattice given by the intersection of D and the plane
(P ). It is clear that EP ⊂ DP . The lattice EP belonging to (P ) is the projection
of all 1D dotted lines, but its use is not very easy. However, we can see it as a
sublattice of DP . Since DP is a Cartesian lattice, it is much easier to work with.
These lattices were introduced in [2] to propose a new definition of 3D digital
lines. Beside this definition, we can refer to definition 4.2.3 of Voss [1] of nD
digital lines. In the sequel, we explain how to obtain Voss definition using two
specific lattices whose construction is similar to the one of EP and DP of [2].

0
1/13

1

2

   1/13 1 2

Fig. 2. The lattices Dxy, Exy, the line l with direction (a, b, c) = (3, 5, 13)

3.1 The Lattices Exy and Dxy

Let us denote by Exy and Dxy the lattices which are respectively the intersections
of the collection of lines D and E with the xOy plane (see Fig. 2).

Proposition 1. The lattice Dxy is the set of integer points of the xOy plane,
given by (k

c , l
c ) where k and l are arbitrary integers.

Let L be the line with direction v containing the origin and let l be its projection
onto the plane z = 0. We then have the following.

Proposition 2. The lattice Exy is the set of rationnal points (x− az
c , y − bz

c ) of
the plane z = 0 where x, y, z are arbitrary integers.

To efficiently manipulate 3D digital lines, we must clearly understand the lattice
Exy. To do this, we now give a modular generation of this last lattice.

When z varies in Z, the points (x + za
c , y + zb

c ) are located into unit squares
given by [k, k+1[×[l, l+1[⊂ R

2 where k and l are well chosen. We can consider the
reduction of this series modulo (1, 1), that is (ka mod c

c , kb mod c
c ). We simplify

the notation by denoting by
{

u
v

}
the value of u mod v, such that the previous

couple is 1
c ({ka/c}, {kb/c}).
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The c points 1
c ({ka/c}, {kb/c}), k = 0, 1, 2, . . . , c − 1 of the lattice Exy all

belong to the unit square [0, 1[×[0, 1[. We denote by Πabc this set. The whole
lattice Exy is obtained by periodic translations of Πabc. The only consideration
of the lattices Dxy and Exy will lead to the notion of 3D digital lines.

First, the points 1
c (za, zb) of Exy, belonging to l , are the projections of the

intersections of L with the planes z = cste. But l also intersects the unit squares
of R

2 given by [x, x + 1[×[y, y + 1[. These squares are the projection over the
plane z = 0 of the voxels [x, x + 1[×[y, y + 1[×[z, z + 1[ of R

3. Consequently,
the study of the intersections of L with the unit cube of R

3 is equivalent to the
study of the intersections of l with the squares [x, x+1[×[y, y+1[ and the study
of the lattices Dxy and Exy.

If we consider the parallel lines to L containing a point of Πabc, thus the 1D
dotted lines with direction v, we can verify that they intersect the same voxels or
neighboor voxels than L. Hence, the set of intersected voxels is a 26-connected
structure we can call a 3D digital lines.

Among the points of Exy belonging to l, which are generally rational points,
the one given by k(a, b) = kc

c (a, b) with k ∈ Z are integer points. These are the
projections of the integer points k(a, b, c), k ∈ Z belonging to the line L.

Theorem 1. The projection of k(a, b, c), k ∈ Z of the line L is the series of
integer points of the plane z = 0 given by k(a, b), k ∈ Z. If 1

c (m, n) is a point
different from (0, 0) in Πabc, either i = −ma−1 mod c or i = −nb−1 mod c
where a−1 (resp. b−1) is the inverse of a (resp. b) in the group Z

cZ
, then (1

c (m +
ia), 1

c (n+ ib)) is an integer point and is the projection of the point (1+
[

ia
c

]
, 1+[

ib
c

]
, i) of the dotted line parallel to L and containing the point (m, n).

Proof. The first relation on L has already been given. For the second on an
arbitray dotted lines, as the three integers a, b, c are relatively prime ((a, b, c) = 1
where (a, b, c) is the gcd of the three numbers), then a or b is invertible mod c
(as (m, n) ∈ Exy, ma−1 = nb−1 mod c if both are invertible). Consequently,
m+ ia and n+ ib are multiples of c. Using the Euclidean division between m+ ia
and n + ib, we obtain the last relation of the theorem. �

We now describe the construction of the 3D digital lines Δabc directed by v and
containing the origin. This line is an union of c 1D dotted lines and L is one of
them. We then apply theorem 1 to add one by one 1D dotted lines to Δabc.

We consider the point 1
c (m, n) = 1

c ((c − 1)a, (c − 1)b) of Πabc and the line δ
directed by (a, b) and containing 1

c (m, n). The sum 1
c (m, n) + 1

c (a, b)) is equal
to (a, b), hence the point following 1

c (m, n) on δ is an integer point which is the
projection of the point (1, 1, 1) (here i = 1). We obtain thus that the 3D line
directed by v and containing the point (1, 1, 1) is parallel to L. It is also a 1D
dotted line whose integer points are (1, 1, 1)+k(a, b, c), k ∈ Z. We add it to Δabc.

By adding the vector 1
c (2a, 2b) to the point 1

c (m, n) = 1
c ((c − 2)a, (c − 2)b)

of Πabc, we also obtain an integer point (x, y) of Exy (equal to (1, 1) or (1, 2)
depending on the relative values of a, b, c). This point (x, y) is the projection of
the point (x, y, 2) of Z

3 defining the 1D dotted line made by the points (x, y, 2)+
k(a, b, c), k ∈ Z. We also add it to Δabc.
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We pursue this construction by adding all the dotted lines defined by the
points 1

c ((c− i)a, (c− i)b) of Πabc. At the end, when i = c, we obtain an integer
point of L. Hence, Δabc is periodic with period (a, b, c). Its period is composed
of the c first voxels described previously. As (c− i)a = −ia mod c, it is easy to
compute the x and y coordinates of the voxels.

Fig. 3. The first 13 voxels of the first period followed by the first voxel of the second
one. The direction vector is (a, b, c) = (3, 5, 13).

We thus obtain Voss definition of a 3D digital lines (see Fig. 3).

Definition 1. The 3D digital line with direction (a, b, c) and initial conditions
m, n at the origin, where 0 ≤ m < c and 0 ≤ n < c, is given by

⎧⎪⎨
⎪⎩

x =
[

az+m
c

]
y =

[
bz+n

c

]
z = z

with z ∈ Z.

Contrarily to the 2D case, choosing m = n = c
2 does not produce the approx-

imation with rounding of the Euclidean line. In fact, we will recall that this
Bresenham-like 3D digital line is generated via the lattices EP and DP .

From the previous study, it becomes easy to find an algorithm to draw the
3D digital lines. Indeed, if we translate the point 1

c (m, n) ∈ Πxy by the vector
(a, b), 4 cases happen

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ m < c − a and 0 ≤ n < c − b step (0, 0, 1)
c − a ≤ m and 0 ≤ n < c − b step (1, 0, 1)
0 ≤ m < c − a and c − b ≤ n step (0, 1, 1)
c − a ≤ m and c − b ≤ n step (1, 1, 1)

The 3D digital lines, previously defined, with direction vector n = (a, b, c)
such that 0 ≤ a < b < c and a, b, c relatively prime, are given by the intersection
of two particular digital planes.

Definition 2. A 3D digital lines with direction vector (a, b, c) such that 0 ≤ a <
b < c and a, b, c relatively prime is the set of solutions of the linear systems of
inequalities given by
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{
γ ≤ cx − az < γ + c

γ′ ≤ cy − bz < γ′ + c

The lower bounds can be used to translate the digital line so that it can contain
any given integer point of Z

3. Their arithmetical thickness is the integer c. This
number can be replaced by any couple ε, ε′ of integers in orderto define 3D digital
lines with prescribed thickness.

One on the fundamental properties of 3d digital lines is that they cover Z
3.

Moreover, the action of the octahedral group Oh can be used to define 3D digital
lines with any direction vector.

3.2 The Lattices DP and EP

Recall that for a direction vector n = (a, b, c), the canonical lattices attached
to the famillies D and E are the intersections of these famillies with the plane
(P ) : ax + by + cz = 0. The lattices are respectively DP and EP .

The lattice EP is very interesting since it permits to measure Euclidean dis-
tances between the 1D dotted lines so to locate the integer points which are
closest to an Euclidean lines with direction vector n. As it was the case for D,
DP is a cartesian lattice which contains EP and with which it is easier to work.

The coordinates of the points of DP and EP are more complex that for Dxy

and Exy but their dependances are algegraically similar. We refer to [2] for the
computation. The coordinates of the points of DP are given by:

⎧⎪⎨
⎪⎩

x = (b2+c2)u−abv
a2+b2+c2

y = (a2+c2)v−abu
a2+b2+c2

z = −c(au+bv)
a2+b2+c2

u, v ∈ Z

Hence, DP is generated by the vectors α = 1
a2+b2+c2 (b2 + c2,−ab,−ac) and

β = 1
a2+b2+c2 (−ab, a2 + c2,−bc).

The lattice EP is generated by the reductions modulo α and β of the vectors
k

a2+b2+c2 (ac, bc,−(a2 + b2)), k ∈ Z. Fig. 4 shows a partial view of a lattice EP

as well as several 1D dotted lines of E .
Both DP and EP are planar lattice with rank 2. Then, using a convenient

isometry we can map them onto xOy. After some tedious calculus, the isometric
lattice of DP is generated by the vectors U = 1√

(a2+b2)
(1, −ab

c
√

(a2+b2+c2)
) and

V = a2+c2

c
√

(a2+b2)
√

(a2+b2+c2)
(0, 1). The image of the lattice EP is the reduction

modulo U and V of the vectors k(aU, bV ) k ∈ Z. As it can be easily seen, this
situation is the analoguous of the link between Dxy and Exy.

Given a point in EP , the closest points in EP to the given points enables us
to define the notion of closest 3D digital lines (see Fig. 5). This corresponds to
a Bresenham-like 3D digital lines. To define it, one must sort the points in EP

around a given point in EP .
Let π : Z

3 �→ EP be the application which maps a 1D dotted line to its
intersection with the plane (P ), let ω be a point of EP and let Δω,ρ be the set
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Fig. 4. A part of the lattice EP where (a, b, c) = (3, 5, 13) as well as some 1D dotted
lines

0

1

2

3

4

1 2 3 4

Fig. 5. The isometric images of DP and EP , where (a, b, c) = (3, 5, 13), in the plane
xOy and a circle of radius 1.17 containing some closest points of one element of EP

of points in EP belonging to a disk (in plane (P )) with center ω and radius ρ,
then we have the following,

Definition 3. The 3D digital line with best integer approximation of order ρ
of the 1D dotted line containing the point ω of EP is the reciprocical image
π−1(Δω,ρ).

Obviously, these 3D digital lines does not cover Z
3, which could be a bad be-

haviour. Nevertheless, it guarantees that the digital lines is as closest as possible
of the Euclidean corresponding line.

3.3 3D Segment Drawing

If any segment AB is given let us denote by OV the vector B − A and by
n = (n1, n2, n3) the components of OV divided by their greatest common divider,
so that n1, n2, n3 are relatively prime. Construction given in section 3 about the
symmetry group Oh can be used to give an operator gn mapping the domain of
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n (or OC) to the fundamental domain F of Oh. Let n′ = gn.n = (a, b, c) and
OC′ = gn.OC = (u′

1, u
′
2, u

′
3) in F .

Operator g−1
n followed by the translation of OC to AB leads to a procedure

g(x, y, z) which maps the 3D discrete segment associated with OC′ to the one
associated to AB, (gn being orthogonal g−1

n is equal to the transposed of gn).
Drawing the 3D discrete segment associated to AB is thus reduced to the follow-
ing algorithm giving the discrete approximation of OC′ directed by n′ = (a, b, c).

Drawing of 3D segment OC’=(u’1,u’2,u’3) directed by n’=(a,b,c).
//(a,b,c) satisfy 0<=a<=b<=c and gcd(a,b,c)=1
x=y=0;
// integer division so that line OC’ is in the
// middle of generated voxels
rx=c/2;
ry=rx
for z = 0 to u’3

draw g(x,y,z);
if rx>=c-a then

rx=rx+a-c;
x=x+1;

else
rx=rx+a;

end if;
if ry>=c-b then

ry=ry+b-c;
y=y+1;

else
ry=ry+b

end if;
end for

4 nD Digital Lines

Let v = (a1, a2, . . . , an) ∈ F an integer point in the fondamental domain of
the hyperoctaedral group Bn. This group of order 2n.n! can be identified with
integer matrices of order n where each row and column contains one and only
one non-zero term equals to ±1.

Let P be the hyperplane whose equation is a1x1+a2x2+. . . anxn = 0, and EP

be the lattice obtained by projection of Z
n on P along direction v. We denote

by {ui} 1 ≤ i ≤ n the canonical basis of Z
n and Xi the projection of ui onto P

along v. Vectors Xi belong to EP and from equation of hyperplane P we have:

Xn = a1(
X1

an
) + a2(

X2

an
) + · · · + an−1(

Xn−1

an
)

We consider the lattice DP generated in P by the n− 1 vectors X1
an

, X2
an

, . . . ,
Xn−1

an
; of course EP is a sublattice of DP . Moreover, EP is n − 1 periodic, one
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period being given by EP ∩ δ, δ denoting the fondamental domain of DP . Any
point of EP is obtained by reduction modulo δ of integer multiples of Xn.

Let σ2 = a2
1 + a2

2 + · · · + a2
n and σ̂2

i = a2
1 + a2

2 + · · · + (̂a2
i ) + · · · + a2

n where,
in the sum û means omission (so that σ̂2

i = σ2 − a2
i ), then components xij of

Xi = (xij) can be computed and we have xij = −aiaj

σ2 if i �= j and xii =
�σ2

i

σ2 for
i = j.

From these expressions of vectors Xi the determinant of the Gram matrix of
DP can be evaluated giving det((Xi.Xj)) = an showing that domain δ contains
an elements of EP .

The hypothesis v ∈ F leads to a very natural observation which will be
helpful to define nD digital lines. Computation of the norm of Xi − Xj gives

‖ Xi − Xj ‖2=
�σ2

i +�σ2
j +(ai+aj)

2

σ2 from which inequalities ‖ Xi ‖≤‖ Xi − Xj ‖ and
‖ Xj ‖≤‖ Xi − Xj ‖ can be deduced showing that the set {X1, X2, . . .Xn−1} is
almost orthogonal in DP .

Let Πi be the hyperplane generated by u1, . . . , ûi, . . . , un−1, v where, again,
−̂ means omission. Intersection Πi ∩ P is the subspace of P generated by
X1, . . . , X̂i, . . . , Xn−1 so that these hyperplanes too are almost orthogonal. Def-
inition of digital hyperplanes in Z

n being obvious we can define nD digital line
through 0 and directed by v as the intersection of digital hyperplanes associated
to Π ′

is.

Definition 4. Digital line through 0 directed by v = (a1, a2, . . . , an) where 0 ≤
a1 ≤ a2 ≤ · · · ≤ an is the set of integer points solution of the n − 1 diophantine
inequations

γi ≤ a1x1 + · · · + (̂aixi) + . . . an−1xn−1 + anxn < γi + εi 1 ≤ i ≤ n − 1

−̂ meaning omission.

Vector (γi) is the lower bound and vector (εi) the arithmetical thickness.
Algorithms can be given to draw digital nD lines defined in this way. They

use a vector of errors ρ = (r1, r2 . . . rn−1 and the simplest one draws 2n − 1-
connected lines when εi = an ∀i = 1, 2, . . . n − 1; again we suppose v ∈ F , the
general case being solved with the help of operators of the Hyperoctaedral group
H\ in a similar way as what has been donne in 3D.

Suppose M = (m1, m2, . . . , mn) is a point in Z
n and v = (a1, a2, . . . , an) ∈ F

and gcd(ai) = 1, then to obtain the first nbPoints of the nD and 2n−1-connected
digital line through M and directed by v we have the following algorithm.

nD digital line drawing
-----------------------
M=(m1,m2,...,mn); // starting point
x=(x1,x2,...,xn)=M; // initialization of x variable
v=(a1,a2,...,an); // line direction in F and gcd(ai)=1
rho=(an/2,an/2,...,an/2);//n-i components of rho are equal to an/2
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for i=1 to NbPoints
draw x;
for j=1 to n-1
if rj>=an-aj {

rj=rj+aj-an;
xj=xj+1;

}
else

rj=rj+aj;
end if;

end for
end for

Initializing error vector ρ with half of thickness, that is setting an

2 for all
ρ’s component we are assured that integer points generated are well distributed
around the euclidean line going through M and directed by v.

Following array shows an application of this algorithm for the drawing of the
first 13 points of the 4D digital line going through origin and directed by vector
v = (3, 5, 7, 13). First 3 lines show evolution of ρ = (r1, r2, r3) error vector and
the last ones are coordinates of approximating points. One period of this line
is thus obtained; following ones are obtained by translating this one by integer
multiples of vector v.

r1 6 9 12 2 5 8 11 1 4 7 10 0 3 6
r2 6 11 3 8 0 5 10 2 7 12 4 9 1 6
r3 6 0 7 1 8 2 9 3 10 4 11 5 12 6

x1 0 0 0 1 1 1 1 2 2 2 2 3 3
x2 0 0 1 1 2 2 2 3 3 3 4 4 5
x3 0 1 1 2 2 3 3 4 4 5 5 6 6
x4 0 1 2 3 4 5 6 7 8 9 10 11 12

5 Conclusion

We have presented in this paper a unified view of the definitions of Voss [1]
and Figueiredo and Reveillès [2]. This permits us, for instance, to give a short
drawing algorithm in 3D. Moreover, the presentation is extended to an arbitrary
dimension via the use of lattice theory and specific projections. We also give a
13-lines long drawing algorithm for nD digital lines. It should be very interesting
to study the link between this approach and multi-dimensonal continued fraction
given by Arnold [14] and this is a future work.
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