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Abstract. In this article the homology of simploidal sets is studied.
Simploidal sets generalize both simplicial complexes and cubical com-
plexes, more precisely cells of simplicial sets are cartesian products of
simplices. We define one homology for simploidal sets and we prove that
this homology is equivalent to the homology usually defined on simplicial
complexes.

1 Introduction

The aim of this paper is to define and to study the homology of simploidal sets.
Simploidal sets (see Fig. 1(a)) can be considered as a special case of cellular
complexes, where cells are simploids [1,2], i.e. products of simplices. Simploidal
sets include simplicial complexes and cubical complexes as particular cases, so
they can be used for representing the topology of digital images. They can also
be used for representing hybrid grids coming from finite elements methods. The
notion of simploid was introduced by Dahmen and Micchelli [1] to study
multivariate splines.

Topological invariants provide information about the structure of an object.
Homology is a powerful one1 which can be computed for any dimension. Homol-
ogy groups describe dimensional “holes” of a combinatorial object (connected
components for dimension 0, holes for dimension 1, cavities for dimension 2,...).
Homology information can be represented on combinatorial structures by com-
puting homology groups generators. For example, Fig. 1(c) represents the two
1−dimensional holes of the torus (b).

For digital image analysis, topological invariants are useful for classification,
indexation, or shape description [3]. Homology groups are classically computed
for simplicial combinatorial structures such as abstract simplicial complexes [4]
or semi-simplicial sets [5]. In this paper, we show that it is always possible to
convert a simploidal set into a simplicial structure (a semi-simplicial set). So,
homology groups of a simploidal set can be computed from the corresponding
semi-simplicial set. Since many simplices correspond to a single simploid, this
conversion of data structures can be space and time consuming. Similar argu-
ments as those developed for cubical complexes [6] can be taken into account.

1 Homology groups contain other classical topological invariant as Euler characteristic,
Betti numbers, and orientability of a closed surface.
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We propose a direct definition of homology groups for simploidal sets, i.e.
we define boundary homomorphisms from which we can construct a free chain
complex2. It is well-known from algebraic topology that homology defined on a
triangulable cell complex (in our case : a simploidal set), is equivalent to homol-
ogy defined on the associated triangulated space (in our case : the associated
semi-simplicial set). We study this equivalence in a combinatorial and construc-
tive way in order to compute simplicial generators from simploidal generators
and conversely.

(a) (b) (c)

Fig. 1. (a) : a simploidal object. (b)−(c) : a geometric representation of the two 1−holes
of the torus.

In section 2 we recall the definition of semi-simplicial sets and basic con-
cepts of chain, cycle, boundary, free chain complex and homology groups. In
section 3, the simploidal set definition is recalled. Boundary homomorphisms
for this structure is defined, and thus homology groups of these sets can be de-
fined by constructing a free chain complex. In section 4, we study the conversion
of a simploidal set into a corresponding semi-simplicial set. Then, We define a
morphism between simplicial and simploidal chain groups, which associates to
each simploidal chain an equivalent simplicial chain in the corresponding semi-
simplicial set. After, we describe algorithms for constructing a simplicial homol-
ogy generator from a simploidal one, and conversely. This construction provides
a combinatorial and constructive proof of the equivalence between simploidal
and simplicial homologies.

2 Homology of Semi-simplicial Sets

In this section all notions needed to define the homology groups over a combi-
natorial structure are introduced. Semi-simplicial sets [5,7] are used to illustrate
these notions. Since our goal is the computation of homology groups of objects
explicitly represented within a computer, all sets are finite.

2 A free chain complex is an algebraic structure from which homology groups are
defined (cf. section 2).
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Fig. 2. (a)−(b) : Examples of semi-simplicial sets. (c) : positive orientation of simplices
of (b).

2.1 Semi-simplicial Sets

Definition 1. [5] Let n ∈ N. A n−dimensional semi-simplicial set S =
(K, (dp

i )) is a family of sets K = (Kp)p∈[0..n] together with maps dp
i : Kp → Kp−1

for i = 0, . . . , p, which satisfy the following property3 :

∀p, 2 ≤ p ≤ n, ∀i, j, 0 ≤ j < i ≤ n, ∀σ ∈ Kp, σdp
i d

p−1
j = σdp

jd
p−1
i−1

The elements of Kp are p−simplices, the dp
i are boundary operators (the super-

scripts p will be usually dropped). The relations between the boundary oper-
ators ensure that simplices are coherently assembled. Without these relations,
a p−simplex could have more than p + 1 distinct vertices in its boundary, i.e.
σd2d1, σd2d0, σd1d1, σd1d0, σd0d1,σd0d0: relations between boundary operators
ensure that σd2d1 = σd1d1, σd2d0 = σd0d1, σd1d0 = σd0d0. The notion of semi-
simplicial set generalizes the classical notion of abstract simplicial complexes [4]
in the following way: a semi-simplicial set can be associated to any abstract sim-
plicial complex, but the converse is not true. For example, it is not possible to
associate an abstract simplicial complex with the semi-simplicial set of Fig 2(a),
since it contains a self-loop.

2.2 Chain, Boundary Homomorphism and Free Chain Complex

Let np be the number of p−simplices of Kp, and Kp = {σp
1 , · · · , σp

np
}. A

p−chain c is a combination of p−simplices together with integer coefficients :
c =

∑np

i=1 αp
i σ

p
i . For example on Fig. 2(c): A1, −A2 and 3A2 −A4 are 1−chains.

The addition of p−chains consists in the addition of the corresponding simplex
coefficients. The neutral element is the empty chain denoted 0 for each dimension.
3 It could be noted that the notation xf is used instead of the classical notation f(x)

as it is more convenient when handling boundary operators.
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For any p, the p−chain group Cp is a free abelian group with Kp as a basis [4].
The chain concept is a purely formal one, since multiplying a p−simplex σp

i by
an integer has no geometric meaning except for 1 and −1. In these cases 1.σp

i

means that we consider σp
i with its orientation and −1.σp

i means that we consider
σp

i with its opposite orientation. The orientation of each simplex is induced by
its boundary operators (c.f. Fig. 2(c) and the following definition). More formal
discussions about orientation can be found in [4].

Homology groups are defined from the sequence of chain groups and appli-

cations ∂i defined between these groups, Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0.

These applications satisfy the relation cp∂p∂p−1 = 0 for each p−chain cp, p ≥ 1.
Such a sequence is a free chain complex. The image of cp by application ∂p is
the boundary of cp.

Definition 2. For any p, 1 ≤ p ≤ n, the boundary of p−simplex σp is the
(p − 1)−chain σp∂p =

∑p
i=0(−1)iσdi. The boundary of a 0−simplex is the null

chain.

The definition of a p−chain boundary is directly deduced by linearity from the
definition of a p−simplex boundary and the boundary applications ∂p are ho-
momorphisms. Usually the subscript and superscript p will be dropped. For ex-
ample on Fig. 2(c): F∂ = A1 −A2 +A3 and (4A2 − 3A4)∂ = 4(A2)∂ − 3(A4)∂ =
7S3 − 4S2 − 3S1 are chain boundaries. Note that F∂∂ = (A1 − A2 + A3)∂ = 0.

In order to verify that applications ∂p are actually boundary applications,
we only have to check that c∂∂ = 0 for each chain c composed by one sim-
plex. This can directly be done using definition 2 and the property that for any
p−simplex σ, σ∂∂ = 0.

2.3 Cycles, Boundaries, Homology Groups

In order to define homology groups, we first define particular chains. A p−chain
which boundary is null is a p−cycle. The set of p−cycles equipped with the
addition is a p−chain subgroup, denoted Zp. For example on Fig. 2(c): 1−chains
A1 − A2 + A3 and A1 + A4 are 1−cycles: (A1 − A2 + A3)∂ = (S3 − S1) − (S3 −
S2) + (S1 − S2) = 0 and (A1 + A4)∂ = (S3 − S1) + (S1 − S3) = 0.

A p−chain which is the boundary of a (p+1)−chain is a p−boundary. The set
of p−boundaries equipped with the addition is also a p−chain subgroup, denoted
Bp. Moreover, each p−boundary is a p−cycle (since ∀c ∈ Cp+1, c∂∂ = 0) hence
Bp is a subgroup of Zp. For example on Fig. 2(c): 1−chain A1 − A2 + A3 is the
boundary of 2−chain F .

A p−dimensional hole is a p−cycle which is not a p−boundary. For example,
on Fig. 2(c), 1−cycle A1 + A4 is not a boundary.

Now an equivalence relation is defined as follow: two p−cycles μ1 and μ2

are equivalent if their difference is a boundary, i.e. μ1 = μ2 + c∂p+1 : μ1 and
μ2 are homologous4. Homology group Hp is the quotient of cycle group Zp by
the equivalence relation (i.e. Hp = Zp/Bp). Hence two cycles belong to the same

4 As a special case, if μ = c∂p+1 then μ is homologous to 0.
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equivalence class if they surround the same hole. For example on Fig. 2(c): cycles
z2 = A2 − A3 + A4 and A1 + A4 are homologous, since z1 = z2 + F∂.

For any p, Hp is finitely generated, i.e. there is a finite number of elements
from which all others can be deduced. Hence, following the finitely generated
group theorem, any group Hp is isomorphic to a direct sum [4]:

Z ⊕ ... ⊕ Z
︸ ︷︷ ︸

βp

⊕Z/t1Z ⊕ ... ⊕ Z/tnZ.

Each Z corresponds to an equivalence class of infinite order cycles5. The number
βp is the pth Betti number. Each Z/tiZ corresponds to an equivalence class of
cycles of finite order ti

6. Integers ti are the torsion coefficients. A cycle of finite
order is a weak boundary.

3 Homology of Simploidal Sets

In this section, simploidal sets are introduced. We extend classical notions of
chains, cycles and boundaries and we define boundary homomorphisms for this
structure. Thus, we provide a direct homology definition for simploidal sets.

3.1 Simploidal Sets

A simploid can be defined as the product of polytopes, which are ”geometric”
simplices [2]. We recall here the combinatorial structure of simploidal sets, which
is based upon the notion of semi-simplicial set (see section 4). In a simploidal set,
a simploid is defined by a k−tuple (a1, . . . , ak) of strictly positive integers, which
is its type, k is the length of the simploid,

∑k
l=1 al is its dimension (intuitively,

a simploid is the product of simplices of respective dimensions a1, · · ·ak). Some
examples of simploids are shown on Fig. 3. It should be noted that a p−simplex
is a simploid of type (p) and that a p−cube is a simploid of type (1, . . . , 1) with
length p.

(1) (2) (1, 1) (2, 1) (1, 1, 1)

Fig. 3. Examples of simploids

5 For any p, h ∈ Hp is an infinite order cycle if and only if, for any α, αh /∈ Bp.
6 For any p, h ∈ Hp is a cycle of order ti if and only if, for any α ∈ [1..ti − 1], αh /∈ B

and tih ∈ B.
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Definition 3. [8] A simploidal set S = (K, (εi
j)) of dimension n is the union

⋃n
p=0 Kp of sets of p−dimensional simploids, 0 ≤ p ≤ n equipped with border

operators εi
j such that:

(. . . , ai, . . .)εi
j : −→

⎧
⎪⎪⎨

⎪⎪⎩

(. . . , ai − 1, . . .) if ai > 1

(. . . , âi, . . .)
otherwise ( âi means
ai is removed)

(1)

(. . . , ai, . . .)εi
kεi

l = (. . . , ai, . . .)εi
lε

i
k−1 with k > l and ai > 1 (2)

(. . . , ai, . . . , aj , . . .)ε
j
kεi

l

with i < j
=

⎧
⎨

⎩

(. . . , ai, . . . , aj , . . .)εi
lε

j
k if ai > 1

(. . . , ai, . . . , aj , . . .)εi
lε

j−1
k otherwise.

(3)

Figure 4(a) shows an example of simploidal set. In the previous definition, first
equation (1) denotes the action of a border operator on the simploid type. The
cartesian product of a simploid s by a simploid of type (0) (i.e. a vertex) is the
identity. Hence, if zero appears in the type of a simploid by the application of a
boundary operator, it is removed from the type. With equation (2), the commu-
tation relation for semi-simplicial set boundary operators is retrieved. Finally,
equation (3) is the commutation relation when two boundary operators are suc-
cessively applied to two different simplices. The second part of this equation
allows us to take into account the shifts that are produced by suppressed zeros.

For example, if we apply the sequence of boundary operators ε30ε
2
1 to a simploid

of type (2, 1, 1), we obtain first a simploid (2, 1), due to the application of ε30 and
after a simploid (2) by the application of ε21. In an other way, if we start by the
application of ε21, a simploid (2, 1) is obtain since the zero that appears in the
middle of the type is removed. Hence, we cannot apply operator ε30. The applied
operator is ε20, so we get (2, 1, 1)ε30ε

2
1 = (2, 1, 1)ε21ε

2
0.

3.2 Simploidal Chain, Boundary Homomorphism and Free Chain
Complex

In order to define simploidal homology, we have to associate a free chain com-
plex to a simploidal set. Let S = (K, (εi

j)) be a simploidal set: a simploidal
p−chain is a combination of simploids of Kp with integer coefficients. Now, to
define boundary homomorphisms ∂� for simploidal sets, we extend the general
boundary formula of a cell-product: (a × b)∂ = a∂ × b + (−1)dim(a)a × b∂.

Definition 4. Let s be a simploid of type (a1, · · · , ak).

s∂� =

{
0 if s = ()
∑k

i=1

∑ai

j=0(−1)j+
�i−1

l=1 alsεi
j otherwise
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Fig. 4. (a) an example of simploidal set of dimension 2. (b) a commutative diagram
which illustrates the property cτ∂ = c∂�τ .

For example on Fig. 4(a): F1∂
� = (F1ε

1
0 − F1ε

1
1) − (F1ε

2
0 − F1ε

2
1) ; F2∂

� =
F2ε

1
0 − F2ε

1
1 + F2ε

1
2. Definition 4 is extended by linearity for simploidal chains.

To prove that c∂�∂� = 0 for any simploidal chain c (i.e. ∂� are boundary
homomorphisms), we prove this property for a simploidal chain containing a
single simploid s (linearity ensure extension for a general chain). Then, we prove
that definition 4 satisfies the general boundary formula of a cell-product7 and
conclusion follows. So, we can associate a free chain complex to a simploidal
set. Now we are able to compute the homology groups for such a set, using for
example the Smith normal form transformation for incidence matrices [4].

4 Conversion Between Simploidal and Semi-simplicial
Sets

As we will see in this section, it is always possible to associate a semi-simplicial
set with a simploidal set. And, it is well known in algebraic topology that the
homology of a triangulable space does not depend on its triangulation [4]. So
we can directly conclude that simploidal homology as defined in section 3 is
equivalent to simplicial homology.

In this section, we study conversions between semi-simplicial and simploidal
sets. We define operator T which associates to each simploid a set of simplices in
the associated semi-simplicial set. We also define operator τ , which associates to
each p−simploidal chain a p−simplicial chain in the associated semi-simplicial
set. Operator τ preserves the boundary i.e. for any simploidal chain c, cτ∂ =
c∂�τ (see Fig. 4(b)).

Finally, we provide algorithms for converting a simploidal chain into a sim-
plicial chain and conversely. So we can associate a simplicial generator with
each simploidal homology generator and conversely. Incidentally, we get a di-
rect and constructive proof of the equivalence between simploidal and simplicial
homology.
7 This can be directly be proved using a recursion over the length of a simploid.
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4.1 Semi-simplicial Set Associated with a Simploidal Set

Any simploidal set can be constructed in two steps: (1) Creation of principal8

simploids and their boundaries. (2) Identifications9 of simploids which are in the
boundary of principal simploids.

In order to construct the semi-simplicial set associated to a simploidal set, we
proceed as follow : (a) For each simploid, the set of corresponding simplices is
created in the associated semi-simplicial set. (b) Boundary operators are defined
between simplices that correspond to a same simploid s and between simplices
that corresponds to s and s∂�.

Cartesian Product of Semi-simplicial Sets; Triangulation of a
Simploid. We recall some notions related to the cartesian product. The de-
finition is not provided, since it is rather long and it will not be used here. Actu-
ally, the cartesian product operation is defined on simplicial sets, which extend
semi-simplicial sets by adding a second class of operators (degeneracy operators),
which induces a second type of simplices (degenerate simplices, see [5]). The gen-
eral definition of simplicial sets makes possible to define cartesian product in a
very simple way. From which an equivalent definition of cartesian product which
acts directly upon semi-simplicial sets [9] is deduced. The basic principle is the
following : the cartesian product of two simplices is made of simplices (maybe
having different dimensions), which can be identified by integer sequences (these
integer sequences correspond to sequences of degeneracy operators). Boundary
operators can also be deduced from these integer sequences and relations with
boundary operators of the initial simplices.

In practice, the product of l−simplex σ and m−simplex μ, such that l ≥ m,
is a set of simplices of dimensions l to l + m, where the set of r−dimensional
simplices (l ≤ r ≤ l + m) corresponds to the set of simplices denoted (σI, μJ),
for all disjoint sequences I and J such that :

– I = (i1 · · · ir−l), J = (j1 · · · jr−m)
– 0 ≤ i1 < . . . < ir−l ≤ r − 1, 0 ≤ j1 < . . . < jr−m ≤ r − 1

For instance Fig. 5(c) illustrates the cartesian product of the two
semi-simplicial sets (a).

Then it is possible to define the set of simplices associated with a simploid of
length 2. We can extend this definition for any simploid s = σ1 × · · ·σn. The set
of associated simplices is denoted sT. From sT the set of simplices of dimension
d = a1 + · · ·+an, is sT = {((· · · ((σ1I1, σ2I1)I2, σ3I2) · · · )In−1, σnIn−1)}, where:

Ii ∈ Eai+1,a1+···+ai+1 , 1 ≤ i ≤ n − 1,
Ep,n is the set of strictly increasing integer sequences of p integers range 0
to n − 1,
If I is an element of Ep,n, we denote I the sequence of En−p,n such that
I ∩ I = ∅.

8 A simploid is a main simploid if it is not in the boundary of another simploid.
9 Intuitively, identifying two simploids consists in merging them.
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For instance, let σ1 (reps. σ2, σ3) be a 1−simplex (resp. 3−simplex,
2−simplex). The set of 6−simplices of triangulation of σ1 × σ2 × σ3 is {((σ1I1,
σ2I1)I2, σ3I2)} where :

– I1 ∈ {012, 013, 023, 123}, I1 ∈ {3, 2, 1, 0},
– I2 ∈ {01, 02, 03, 04, 05, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45},
– I2 ∈ {2345, 1345, 1245, 1235, 1234, 0345, 0245, 0235, 0234, 0145, 0135, 0134,

0125, 0124, 0123},

4.2 Morphism τ Between Simploidal Chain Groups and Simplicial
Chain Groups

In this section, we define a morphism τ between simploid chains and simplicial
chains of the associated semi-simplicial set. We prove that τ commutes with
boundary homomorphisms.

Definition of Morphism τ . The simplicial chain associated to a simploid s
by τ is composed of simplices from sT taking into account their orientation such
that for any simploidal chain c� : c�τ∂ = c�∂�τ (cf. Fig. 4(b)). The set of
p−simplices associated to a p−simploid s is sT . To define τ , we assign a sign for
each simplex of sτ such that its boundary; (1) does not contain “internal” sim-
plices. (2) has an orientation which corresponds to the orientation of simploids
of the boundary of s.

For example on Fig. 5, semi-simplicial set (c) is equivalent to simploidal set (b).
The boundary of s = σ×μ is a1 + a4− a2− a3. In the associated semi-simplicial
set, we know that the chain corresponding to s is composed of 2−simplices
(σ0, μ1) and (σ1, μ0). The unique chain composed of these two simplices that
does not contain the internal edge a5 in its boundary and such that its boundary
corresponds to the boundary of s is (σ1, μ0) − (σ0, μ1).

More generally, for a p−simploid s corresponding to the product of two sim-
plices σ1 and σ2, we know that internal (p − 1)−simplices of sT are in the

d0

d0

d1

d1

σ

μ
×

(a)

ε10
ε10 ε10

ε10

ε10

ε20ε21

ε11 ε11ε11

ε11

ε11

σ × μ

a1

a2

a3

a4

(b)

d0

d0

d0

d0 d0

d0

d1

d1

d1d1

d1

d1

d2

d2

(σ0, μ1)

a1

a2

a3

a4

a5

(σ1, μ0)

(σ, μ)

(c)

Fig. 5. (a) two simploidal sets. (b) simploidal cartesian product of (a). (c) simplicial
cartesian product of (a).
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boundary of two simplices (σ1I, σ2I) and (σ1I
′, σ2I ′) such that there exists

i ∈ I, i + 1 ∈ I. (I ′, I ′) is obtained from (I, I) by switching i and i + 1 (cf. [9]).
Thus, we have: (σ1I, σ2I)di+1 = (σ1I

′, σ2I ′)di+1. For example, on Fig. 5, the
two 2−simplexes of (b), (σ0, μ1) and (σ1, μ0) have the common internal face :
(σ0, μ1)d1 = (σ1, μ0)d1 = (σ, μ) = a5.

As each internal simplex must vanish in the boundary of a chain sτ , two
simplices that have a common internal face must have opposite signs. Each sign
can be deduced from the parity of integer sequences that defined simplices [10],
and the sign of all simploids can be deduced from simplex,

((· · · ((σ1Ja1 , σ2Ja1)Ja1+a2 , σ3Ja1+a2) · · · )Ja1+···+ak−1 , σkJa1+···+ak−1)

where Jm = 0 · · ·m − 1. So we get the following definition :

Definition 5. Let s = σ1 × · · · × σk a simploid of length k and dimension
a1 + · · · + ak.

sτ =
∑

I1···Ik−1

(−1)A(I1,··· ,Ik−1)((· · · ((σ1I1, σ2I1)I2, σ3I2) · · · )Ik−1, σkIk−1)

where:

– A(I1, · · · , Ik−1) = p(Ja1) + p(I1)) + · · · + p(Ja1+···+ak−1) + p(Ik−1)
– for any integer sequence I, p(I) is the parity of the sum of elements of I.

So we get the commutation property such that for a simploid s, sτ∂ = s∂�τ .
The proof is not provided here since it is direct and long (see [10]).

Conversion Between Simploidal and Simplicial Generators. We intro-
duce the following notations: Let S� be a simploidal set and let S be its as-
sociated semi-simplicial set. C�, Z�, B� et H� (resp. C, Z, B, H) denote chain
group, cycle group, boundary group and homology group of S� (resp. S). The
previous commutation property ensures that τ preserves cycles and boundaries,
i.e. we use this property to prove that for any simploidal chain c�, if c� is a
cycle, then c�τ is a cycle and if c� is a boundary, then c�τ is a boundary too.

Reciprocally, it can be proved that any simplicial cycle z (resp. boundary) is
homologous to a simplicial cycle z′ (resp. boundary) such that z�τ = z′, where
z� is a simploidal cycle (resp. boundary). For example on Fig. 5, the simplicial
chain a1 −a5 +a4 is homologous to a1−a2 −a3 +a4 (they are both boundaries)
which is the image by τ of a simploidal chain (a1 − a2 − a3 + a4).

Note that any simplicial p−chain c can be partitioned according to their
corresponding simploids, i.e. c =

∑
i

∑
j αijσij where for a given i, every simplex

σij is associated with the same simploid si.
Let z =

∑
i

∑
j αijσij be a simplicial p−cycle (resp. boundary). We consider

the following two cases :
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• Case (1): For all i, si is a p−simploid. In this case, we can directly prove
that there exists a simploidal cycle (resp. boundary) z� =

∑
i γisi such that

z�τ = z; else z contains simplices which are internal to a simploid, and z is not
a cycle (resp. boundary).
• Case (2): There exists k such that sk is a n−simploid, n > p. Let ck be
the subchain of z corresponding to simploid sk. The boundary of ck must be
in the boundary of sk (since we consider only cycles). In this case, we propose
an algorithm that constructs a simplicial p−chain c′k homologous to ck having
the same boundary, such that each simplex of c′k comes from a m− simploid,
m < n. As c′k is homologous and have the same boundary as ck, by replacing
ck by c′k in the expression of z we don’t change the homology class of z. This
operation is repeated until all simplices belong to p−simploids (corresponding
to case (1)).

We do not provide here completely this algorithm as it is rather technical.
The principle is to use an ordering of simplices 10 for replacing each p−simplex
(in skT) of the current chain ck by its complementary in the boundary of a
(p + 1)−simplex of skT.

For example Fig. 6(a) represents a subchain ck which is a part of a 2−cycle.
The two triangles of ck come from the triangulation of the cube, which is a
3−simploid. (b) illustrates a chain c′k, homologous to ck and with same boundary.
Each triangle of c′k comes from the triangulations of simploids on the boundary
of the cube.
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(b)

Fig. 6. (a) a 2−chain which comes from the cube (of dimension 3). (b) an homologous
2−chain which has same boundary as. Each resulting simplex of comes from simploids
of the boundary of the cube.

As a conclusion, we can associate to each simploidal cycle (resp. boundary)
a simplicial cycle (resp. boundary) using τ . Reciprocally, any simplicial cycle z
(resp. boundary) can be transformed into an homologous cycle (resp. boundary)
z′ such that z′ is the image of a simploidal cycle (resp. boundary). So we are able
to convert any generator of a simploidal set into a generator on the associated
semi-simplicial set and conversely. Incidentally, this provide a purely combinato-
rial and constructive proof of the equivalence between simploidal and simplicial
homology.

10 This ordering is based on the properties of integer sequences that define simplices
on a semi-simplicial set associated to a simploidal set.
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5 Conclusion

In this paper, notions of chains, cycles and boundaries have been extended to sim-
ploids. We defined boundary homomorphisms ∂� for simploidal sets (these ho-
momorphisms are directly defined using boundary operators εi

j): we also proved
that c∂�∂� = 0 for any simploidal chain c. So we show how to associate a free
chain complex to a simploidal set and thus we defined an homology for simploidal
sets.

We provided algorithms for converting a simploidal set into an equivalent
semi-simplicial set. Then we provided algorithms for converting simploidal ho-
mology generators into simplicial ones and reciprocally. We thus provide a purely
combinatorial and constructive proof of the equivalence between simplicial and
simploidal homology.

Now we want to study the adaptation to simploidal sets of existing algorithms
initially defined for computing homology of simplicial structures [7]. We hope
that this will lead to interesting results in terms of memory occupation and
efficiency. To do so, we need to develop comparisons with, as far as the authors
know, the lone studies for non simplicial complexes [6].

From a practical point of view, we are also interested to experiment these
algorithms for images of dimension greater than or equal to 3 (voxel images,
sequences of 3D images).
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