Construction of Switching Components

Steffen Zopf
Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2. H-6720 Szeged, Hungary steffen@inf.u-szeged.hu, ZS0307@aol.com

Abstract

Switching components play an important role investigating uniqueness of problems in discrete tomography. General projections and additive projections as well as switching components w.r.t. these projections are defined. Switching components are derived by combining other switching components.

The composition of switching components into minimal ones in case of additive projections is proved. We also prove, that the product of minimal switching components is also minimal.

1 Introduction

In many scenarios of discrete tomography the so-called switching components play an important role. In the current paper we consider switching components from a more general point of view. The paper is intended to serve as a starting point for further description or even construction of the set of all switching components w.r.t. a given projection. This may be done via composing switching components into bigger ones. For projections derived from lower dimensional projections - let them be additive, as in the unabsorbed or absorbed case, or even more general - we can decide whether a switching component is minimal. This will possibly give the opportunity to describe or construct the set of all the switching components of this kind of projections.

2 Switching Components

2.1 Generalized Projections

Consider a finite or countably infinite set \mathcal{L} (for example an integer lattice) and a set \mathcal{R} containing the so-called rays of \mathcal{L}. This set may, but need not be a set of certain subsets of \mathcal{L}. A ray of \mathcal{L} will be denoted by R, the set of the rays is $\mathcal{R}(\mathcal{L})$.

Given a (finite or countably infinite) set \mathcal{L} and a set of rays $\mathcal{R}=\mathcal{R}(\mathcal{L})$ on \mathcal{L}. Furthermore, let \mathbb{F} be a (commutative) ring, for example the ring of the integer, real or complex numbers.

Definition 1. A function \mathcal{P} is called a generalized (\mathbb{F}-valued) projection of the pair $(\mathcal{L}, \mathcal{R}(\mathcal{L}))$, if for every (finite) subset $G \subset \mathcal{L}$ and for every ray $R \in \mathcal{R}(\mathcal{L}) \mathcal{P}$

[^0]returns a value $\mathcal{P}(G, R) \in \mathbb{F}$. In order to emphasize the projection as a function on the subsets of the set \mathcal{L} we will also write
$$
\mathcal{P}^{(R)}(G):=\mathcal{P}(G, R)
$$

Definition 2. A generalized projection \mathcal{P} is called an additive projection, if

$$
\begin{equation*}
\mathcal{P}^{(R)}\left(G_{1} \cup G_{2}\right)=\mathcal{P}^{(R)}\left(G_{1}\right)+\mathcal{P}^{(R)}\left(G_{2}\right) \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { for all rays } & R \in \mathcal{R}(\mathcal{L}) \\
\text { for all (finite) sets } & G_{1}, G_{2} \subset \mathcal{L} \quad \text { with } G_{1} \cap G_{2}=\emptyset .
\end{array}
$$

Let \mathcal{P} an additive projection. Considering the projection on an arbitrary ray R as above, we then get for a (finite) subset G of \mathcal{L}

$$
\begin{equation*}
\mathcal{P}^{(R)}(G)=\sum_{g \in G} \mathcal{P}^{(R)}(\{g\})=\sum_{g \in \mathcal{L}} \chi_{G}(g) \cdot \omega_{g}^{(R)} . \tag{2}
\end{equation*}
$$

with the weights $\omega_{g}^{(R)}:=\mathcal{P}^{(R)}(\{g\}) \in \mathbb{F}$.

2.2 Product of Projections

Let $\left(\mathcal{L}_{1}, \mathcal{R}_{1}\left(\mathcal{L}_{1}\right), \mathcal{P}_{1}\right)$ and $\left(\mathcal{L}_{2}, \mathcal{R}_{2}\left(\mathcal{L}_{2}\right), \mathcal{P}_{2}\right)$ be two projections. $\mathcal{L}:=\mathcal{L}_{1} \times \mathcal{L}_{2}$.
Let a ray on the base set \mathcal{L} be defined either as a pair $\left(g_{1}, r_{2}\right)$ with $g_{1} \in \mathcal{L}_{1}$ and $r_{2} \in \mathcal{R}_{2}\left(\mathcal{L}_{2}\right)$ or as a pair $\left(r_{1}, g_{2}\right)$ with $r_{1} \in \mathcal{R}_{1}\left(\mathcal{L}_{1}\right)$ and $g_{2} \in \mathcal{L}_{2}$. Hence, the rays on \mathcal{L} form the set

$$
\mathcal{R}(\mathcal{L})=\left(\mathcal{L}_{1} \times \mathcal{R}_{2}\left(\mathcal{L}_{2}\right)\right) \dot{\cup}\left(\mathcal{R}_{1}\left(\mathcal{L}_{1}\right) \times \mathcal{L}_{2}\right)
$$

Fig. 1. Rays on the Cartesian Product

Let the transections of a subset $G \subset \mathcal{L}$ be defined by

$$
T_{2}\left(G \mid g_{1}\right):=\left\{g \in \mathcal{L}_{2} \mid\left(g_{1}, g\right) \in G\right\}
$$

and

$$
T_{1}\left(G \mid g_{2}\right):=\left\{g \in \mathcal{L}_{1} \mid\left(g, g_{2}\right) \in G\right\} .
$$

Definition 3. Let

$$
\begin{array}{ll}
\forall\left(g_{1}, r_{2}\right) \in \mathcal{L}_{1} \times \mathcal{R}_{2}\left(\mathcal{L}_{2}\right) & \mathcal{P}^{\left(g_{1}, r_{2}\right)}(G):=\mathcal{P}_{2}^{\left(r_{2}\right)}\left(T_{2}\left(G \mid g_{1}\right)\right) \\
\forall\left(r_{1}, g_{2}\right) \in \mathcal{R}_{1}\left(\mathcal{L}_{1}\right) \times \mathcal{L}_{2} & \mathcal{P}^{\left(r_{1}, g_{2}\right)}(G):=\mathcal{P}_{1}^{\left(r_{1}\right)}\left(T_{1}\left(G \mid g_{2}\right)\right) . \tag{3}
\end{array}
$$

We call the triple $(\mathcal{L}, \mathcal{R}(\mathcal{L}), \mathcal{P})$ the product of the projections $\left(\mathcal{L}_{1}, \mathcal{R}_{1}\left(\mathcal{L}_{1}\right), \mathcal{P}_{1}\right)$ and $\left(\mathcal{L}_{2}, \mathcal{R}_{2}\left(\mathcal{L}_{2}\right), \mathcal{P}_{2}\right)$ and denote it by $\mathcal{P}_{1} \times \mathcal{P}_{2}$.

2.3 Generalized Switching Components

Let \mathcal{L} be a given set, $\mathcal{R}(\mathcal{L})$ a set of rays in \mathcal{L} and \mathcal{P} a given projection. Let G be a (finite) subset of \mathcal{L} and c and c^{S} two functions on G with values in $\{0 ; 1\}$.

Definition 4. We say a function ε on \mathcal{L} switchable w.r.t. the pair (G, c) if

$$
\forall g \in G: \varepsilon(g)=c(g)
$$

Definition 5. If ε is switchable w.r.t. (G, c), then we say the function $\varepsilon^{S}=$ $\varepsilon_{\left(G, c, c^{S}\right)}^{S}$ that we get by replacing the values of ε by those of c^{S} on the set G, the switching result of ε with respect to the triplet $\left(G, c, c^{S}\right)$.

$$
\varepsilon^{S}(g)=\varepsilon_{\left(G, c, c^{S}\right)}^{S}(g):=\left\{\begin{array}{l}
c^{S}(g) \text { if } g \in G \tag{4}\\
\varepsilon(g) \text { otherwise }
\end{array} .\right.
$$

Definition 6. The triplet $\left(G, c, c^{S}\right)$ is said a switching component with respect to the projection function \mathcal{P}, if whenever ε is switchable w.r.t. (G, c) the projection values $\mathcal{P} \varepsilon$ and $\mathcal{P} \varepsilon_{\left(G, c, c^{S}\right)}^{S}$ are identical.

$$
\begin{equation*}
\forall R \in \mathcal{R}(\mathcal{L}): \mathcal{P}^{(R)}\left(\varepsilon_{\left(G, c, c^{S}\right)}^{S}\right)=\mathcal{P}^{(R)}(\varepsilon) \tag{5}
\end{equation*}
$$

For a switching component $S=\left(G, c, c^{S}\right)$ we call the set G the domain of S and denote it by $G=\operatorname{dom}(S)$.

Lemma 1

(i) For every set $G \subseteq \mathcal{L}$ and every function $c: G \rightarrow\{0 ; 1\}$ the triplet (G, c, c) is a switching component of each projection \mathcal{P}.
(ii) If $\left(G, c, c^{S}\right)$ is a switching component with respect to the projection function \mathcal{P}, then $\left(G, c^{S}, c\right)$ is also a switching component.
(iii) If $\left(G, c, c^{(1)}\right)$ and ($\left.G, c^{(1)}, c^{(2)}\right)$ are switching components with respect to the projection function \mathcal{P} then $\left(G, c, c^{(2)}\right)$ is also a switching component.

Proof
The proof is evident and can be omitted.
For a switching component $S=\left(G, c, c^{S}\right)$ we say the switching component $\left(G, c^{S}, c\right)$ the switched switching component and denote it by $S^{s w}=\left(G, c^{S}, c\right)$.

The empty switching component is denoted by $E=(\emptyset, \emptyset, \emptyset)$.

Definition 7. Let \mathcal{P} be a projection on \mathcal{L} and $\left(G, c, c^{S}\right)$ a switching component w.r.t. this projection. The switching component is called a minimal switching component if whenever $\left(G^{\prime}, c^{\prime}, c^{\prime S}\right)$ is also a switching component w.r.t. \mathcal{P} and G^{\prime} is a subset of G and $\left.c\right|_{G^{\prime}}=c^{\prime}$ and $\left.c^{S}\right|_{G^{\prime}}=c^{S}$ then $G^{\prime}=G$ or $G^{\prime}=\emptyset$.

Lemma 2. If \mathcal{P} is an additive projection on \mathcal{L} and $S=\left(G, c, c^{S}\right)$ is a minimal switching component w.r.t. \mathcal{P}, then

$$
\forall g \in G: c(g) \neq c^{S}(g)
$$

Proof

Let $G_{e}=\left\{g \in G \mid c(g)=c^{S}(g)\right\}$. Consider the set $G-G_{e}$ and the restrictions of c and c^{S} to this set. Let R be an arbitrary ray of $\mathcal{R}(\mathcal{L})$ and $\varepsilon: \mathcal{L} \rightarrow\{0 ; 1\}$ a function on \mathcal{L} with values in $\{0 ; 1\}$. Suppose that ε is switchable w.r.t. $\left(G-G_{e}, c\right)$.

Since \mathcal{P} is additive we can calculate the projections value $\mathcal{P}^{(R)}$ of ε on a ray $R \in \mathcal{R}$ as follows

$$
\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{G^{c}}(\varepsilon)+\mathcal{P}_{G-G_{e}}(\varepsilon)+\mathcal{P}_{G_{e}}(\varepsilon),
$$

where $\mathcal{P}_{G}(f):=\mathcal{P}^{(R)}\left(f \cdot \chi_{G}\right)$ for a set G and a function f, and $G^{c}:=\mathcal{L}-G$.
ε equals c on $G-G_{e}$, i.e.

$$
\begin{aligned}
\mathcal{P}^{(R)}(\varepsilon) & =\mathcal{P}_{G^{c}}(\varepsilon)+\mathcal{P}_{G-G_{e}}(c)+\mathcal{P}_{G_{e}}(c)-\mathcal{P}_{G_{e}}(c)+\mathcal{P}_{G_{e}}(\varepsilon) \\
& =\mathcal{P}_{G^{c}}(\varepsilon)+\mathcal{P}_{G}(c)-\mathcal{P}_{G_{e}}(c)+\mathcal{P}_{G_{e}}(\varepsilon)
\end{aligned}
$$

Since $\left(G, c, c^{S}\right)$ is a switching component we have $\mathcal{P}_{G}(c)=\mathcal{P}_{G}\left(c^{S}\right)$. Additionally, c and c^{S} are identical on G_{e}, thus $\mathcal{P}_{G_{e}}(c)=\mathcal{P}_{G_{e}}\left(c^{S}\right)$ also holds. Replacing these expressions we get

$$
\begin{aligned}
\mathcal{P}^{(R)}(\varepsilon) & =\mathcal{P}_{G^{c}}(\varepsilon)+\mathcal{P}_{G}\left(c^{S}\right)-\mathcal{P}_{G_{e}}\left(c^{S}\right)+\mathcal{P}_{G_{e}}(\varepsilon) \\
& =\mathcal{P}_{G^{c}}(\varepsilon)+\mathcal{P}_{G-G_{e}}\left(c^{S}\right)+\mathcal{P}_{G_{e}}(\varepsilon)
\end{aligned}
$$

which means that replacing the values of c on $G-G_{e}$ by those of c^{S} already results in the same projection value, i.e. $\left(G-G_{e},\left.c\right|_{G-G_{e}},\left.c^{S}\right|_{G-G_{e}}\right)$ is also a switching component w.r.t. \mathcal{P}. Since $\left(G, c, c^{S}\right)$ is minimal, $G_{e}=\emptyset$. This is what we wanted to show.

3 Deriving Switching Components

In the following we are going to derive switching components from other, known switching components.

3.1 Composition of Switching Components

Let \mathcal{P} be a given projection, $S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right)$ and $S_{2}=\left(G_{2}, c_{2}, c_{2}^{S}\right)$ two switching components with respect to \mathcal{P}.

Definition 8. If the functions c_{1}^{S} and c_{2} are identical on the set $G_{1} \cap G_{2}$, i.e.

$$
\forall g \in G_{1} \cap G_{2}: c_{1}^{S}(g)=c_{2}(g),
$$

then the two switching components are called composible.
Note, that the composible relation betwen switching components is not symmetric.

Lemma 3. Suppose that S_{1} and S_{2} are two composible switching components. Defining c and c^{S} as

$$
c(g)= \begin{cases}c_{1}(g) & \text { if } g \in G_{1} \\ c_{2}(g) & \text { if } g \in G_{2}-G_{1}\end{cases}
$$

and

$$
c^{S}(g)= \begin{cases}c_{1}^{S}(g) & \text { if } g \in G_{1}-G_{2} \\ c_{2}^{S}(g) & \text { if } g \in G_{2}\end{cases}
$$

the triplet $\left(G_{1} \cup G_{2}, c, c^{S}\right)$ is a switching component with respect to the projection \mathcal{P}.

Fig. 2. The composition of two switching components

Proof

Let $R \in \mathcal{R}(\mathcal{L})$, and ε a function $\mathcal{L} \rightarrow\{0 ; 1\}$ switchable w.r.t to $\left(G_{1} \cup G_{2}, c\right)$.
Because of the definition of c, ε is identical to c_{1} on G_{1}. Thus, the switching component $\left(G_{1}, c_{1}, c_{1}^{S}\right)$ can be applied, and as the result we get the following

$$
\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}^{(R)}\left(\varepsilon_{1}\right)
$$

where

$$
\varepsilon_{1}(g)=\left\{\begin{array}{c}
c_{1}^{S}(g) \text { if } g \in G_{1} \\
\varepsilon(g) \text { otherwise }
\end{array}\right.
$$

Now, $\left(G_{2}, c_{2}, c_{2}^{S}\right)$ can be applied, since c_{1}^{S} and c_{2} are identical on the set $G_{1} \cap G_{2}$ and ε and also ε_{1} are equal to c_{2} on $G_{2}-G_{1}$ and we have

$$
\mathcal{P}^{(R)}\left(\varepsilon_{1}\right)=\mathcal{P}^{(R)}\left(\varepsilon_{2}\right),
$$

where

$$
\varepsilon_{2}(g)=\left\{\begin{array}{l}
c_{2}^{S}(g) \text { if } g \in G_{2} \\
\varepsilon_{1}(g) \text { otherwise }
\end{array}=\left\{\begin{array}{l}
c_{2}^{S}(g) \text { if } g \in G_{2} \\
c_{1}^{S}(g) \text { if } g \in G_{1}-G_{2} \\
\varepsilon(g) \text { otherwise }
\end{array} .\right.\right.
$$

This is the function after applying $\left(G_{1} \cup G_{2}, c, c^{S}\right)$ and, hence, the projection value is the same.

Definition 9. Given two composible switching components S_{1} and S_{2}. The switching component constructed in Lemma 3 is called the composition of the switching components, and we write

$$
\left(G_{1} \cup G_{2}, c, c^{S}\right)=\left(G_{1}, c_{1}, c_{1}^{S}\right) \circ\left(G_{2}, c_{2}, c_{2}^{S}\right)
$$

Lemma 4. Let \mathcal{L} be a set, $\mathcal{R}(\mathcal{L})$ a set of rays of \mathcal{L} and \mathcal{P} a projection on $(\mathcal{L}, \mathcal{R}(\mathcal{L}))$. Let $S=\left(G, c, c^{S}\right), S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right), S_{2}=\left(G_{2}, c_{2}, c_{2}^{S}\right)$ and $S_{3}=$ $\left(G_{3}, c_{3}, c_{3}^{S}\right)$ be switching components w.r.t. $(\mathcal{L}, \mathcal{R}(\mathcal{L}), \mathcal{P})$. For the composition of switching components w.r.t. $(\mathcal{L}, \mathcal{R}(\mathcal{L}), \mathcal{P})$ the following properties hold.
(i) S and the empty switching component E are composible and

$$
S \circ E=E \circ S=S
$$

(ii) The switching components S and $S^{s w}$ as well as $S^{s w}$ and S are composible and

$$
S \circ S^{s w}=(G, c, c) \quad \text { and } \quad S^{s w} \circ S=\left(G, c^{S}, c^{S}\right)
$$

(iii) If S_{1} and S_{2} are composible, then $S_{2}^{s w}$ and $S_{1}^{s w}$ are also composible and

$$
S_{2}^{s w} \circ S_{1}^{s w}=\left(S_{1} \circ S_{2}\right)^{s w}
$$

(iv) If S_{1} and S_{2} are composible and $S_{1} \circ S_{2}$ and S_{3} are also composible, then S_{2} and S_{3} are composible as well as S_{1} and $S_{2} \circ S_{3}$ and

$$
\left(S_{1} \circ S_{2}\right) \circ S_{3}=S_{1} \circ\left(S_{2} \circ S_{3}\right)
$$

Proof
The proof of these properties follow immediately from the definition.

3.2 Symmetric Composition of Switching Components

In the following, let \mathcal{P} be an additive projection. $S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right)$ and $S_{2}=$ $\left(G_{2}, c_{2}, c_{2}^{S}\right)$ two switching components w.r.t. \mathcal{P}.

Definition 10. The switching components S_{1} and S_{2} are called symmetric composible, if

$$
\forall g \in G_{1} \cap G_{2}: c_{1}^{S}(g)=c_{2}(g) \quad \text { and } \quad c_{2}^{S}(g)=c_{1}(g)
$$

Note, that the symmetric composible relation betwen switching components is a symmetric one.

Lemma 5. Assume, that S_{1} and S_{2} are symmetric composible. Define c and c^{S} on $G_{1} \triangle G_{2}$, the symmetric difference of G_{1} and G_{2}, as

$$
c(g):= \begin{cases}c_{1}(g) & \text { if } g \in G_{1}-G_{2} \\ c_{2}(g) & \text { if } g \in G_{2}-G_{1}\end{cases}
$$

and

$$
c^{S}(g):= \begin{cases}c_{1}^{S}(g) & \text { if } g \in G_{1}-G_{2} \\ c_{2}^{S}(g) & \text { if } g \in G_{2}-G_{1}\end{cases}
$$

Then the triplet $\left(G_{1} \triangle G_{2}, c, c^{S}\right)$ is a switching component with respect to the projection \mathcal{P}.

Fig. 3. The symmetric composition of two switching components

Proof

Let $R \in \mathcal{R}(\mathcal{L})$ be a ray, and $\varepsilon: \mathcal{L} \rightarrow\{0 ; 1\}$ a function switchable w.r.t. $\left(G_{1} \triangle\right.$ $\left.G_{2}, c\right)$.

For a set G and a function f, we denote

$$
\mathcal{P}_{G}(f):=P^{(R)}\left(f \cdot \chi_{G}\right)
$$

G^{c} denotes the complement of the set G w.r.t. to the set \mathcal{L}, i.e. $G^{c}=\mathcal{L}-G$.
Since the projection \mathcal{P} is additive and ε equals c_{1} and c_{2} on $G_{1}-G_{2}$ and $G_{2}-G_{1}$ respectively, for the projection of ε we then have

$$
\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{\left(G_{1} \cup G_{2}\right)^{c}}(\varepsilon)+\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}\right)+\mathcal{P}_{G_{1} \cap G_{2}}(\varepsilon)+\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}\right) .
$$

From the additivity of \mathcal{P} we have

$$
\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}\right)=\mathcal{P}_{G_{1}}\left(c_{1}\right)-\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}\right)
$$

and, hence,
$\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{\left(G_{1} \cup G_{2}\right)^{c}}(\varepsilon)+\mathcal{P}_{G_{1}}\left(c_{1}\right)-\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}\right)+\mathcal{P}_{G_{1} \cap G_{2}}(\varepsilon)+\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}\right)$.
$\left(G_{1}, c_{1}, c_{1}^{S}\right)$ is a switching component w.r.t. \mathcal{R}, that's why we can replace c_{1} by c_{1}^{S}
$\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{\left(G_{1} \cup G_{2}\right)^{c}}(\varepsilon)+\mathcal{P}_{G_{1}}\left(c_{1}^{S}\right)-\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}\right)+\mathcal{P}_{G_{1} \cap G_{2}}(\varepsilon)+\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}\right)$.

Since \mathcal{P} is additive and $c_{1}^{S}=c_{2}$ on the set $G_{1} \cap G_{2}$

$$
\mathcal{P}_{G_{1}}\left(c_{1}^{S}\right)=\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}^{S}\right)+\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}^{S}\right)=\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}^{S}\right)+\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{2}\right)
$$

and

$$
\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}\right)+\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{2}\right)=\mathcal{P}_{G_{2}}\left(c_{2}\right)
$$

and, thus,

$$
\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{\left(G_{1} \cup G_{2}\right)^{c}}(\varepsilon)+\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}^{S}\right)-\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}\right)+\mathcal{P}_{G_{1} \cap G_{2}}(\varepsilon)+\mathcal{P}_{G_{2}}\left(c_{2}\right) .
$$

From $\left(G_{2}, c_{2}, c_{2}^{S}\right)$ also being a switching component w.r.t. \mathcal{P} we get
$\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{\left(G_{1} \cup G_{2}\right)^{c}}(\varepsilon)+\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}^{S}\right)-\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}\right)+\mathcal{P}_{G_{1} \cap G_{2}}(\varepsilon)+\mathcal{P}_{G_{2}}\left(c_{2}^{S}\right)$.
From the additivity of \mathcal{P} again and from $c_{2}^{S}=c_{1}$ on the set $G_{1} \cap G_{2}$ it follows

$$
\mathcal{P}_{G_{2}}\left(c_{2}^{S}\right)=\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}^{S}\right)+\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{2}^{S}\right)=\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}^{S}\right)+\mathcal{P}_{G_{1} \cap G_{2}}\left(c_{1}\right)
$$

and replacing this expression we get

$$
\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}_{\left(G_{1} \cup G_{2}\right)^{c}}(\varepsilon)+\mathcal{P}_{G_{1}-G_{2}}\left(c_{1}^{S}\right)+\mathcal{P}_{G_{1} \cap G_{2}}(\varepsilon)+\mathcal{P}_{G_{2}-G_{1}}\left(c_{2}^{S}\right)
$$

The expression on the right hand side is an expression for $\mathcal{P}^{(R)}\left(\varepsilon^{S}\right)$ and, hence, as the final result we have

$$
\mathcal{P}^{(R)}(\varepsilon)=\mathcal{P}^{(R)}\left(\varepsilon^{S}\right)
$$

This is what we wanted to prove.
Definition 11. For two symmetric composible switching components S_{1} and S_{2}, the switching component constructed in Lemma 5 is called the symmetric composition of the two switching components, and we write

$$
\left(G_{1} \triangle G_{2}, c, c^{S}\right)=\left(G_{1}, c_{1}, c_{1}^{S}\right) \odot\left(G_{2}, c_{2}, c_{2}^{S}\right)
$$

The following properties of the symmetric composition hold.
Lemma 6. Let \mathcal{L} be a set, $\mathcal{R}(\mathcal{L})$ be a set of rays on \mathcal{L} and \mathcal{P} be an additive projection on these rays. Furthermore, let $S=\left(G, c, c^{S}\right), S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right), S_{2}=$ $\left(G_{2}, c_{2}, c_{2}^{S}\right)$, and $S_{3}=\left(G_{3}, c_{3}, c_{3}^{S}\right)$ switching components w.r.t. $(\mathcal{L}, \mathcal{R}(\mathcal{L}), \mathcal{P})$.
(i) S and E are always symmetric composible and

$$
S \odot E=E \odot S=S
$$

(ii) S and $S^{s w}$ are symmetric composible and

$$
S \odot S^{s w}=S^{s w} \odot S=E
$$

(iii) If $S_{1} \odot S_{2}$ and S_{3} are symmetric composible then S_{1} and $S_{2} \odot S_{3}$ are also symmetric composible and

$$
\left(S_{1} \odot S_{2}\right) \odot S_{3}=S_{1} \odot\left(S_{2} \odot S_{3}\right)
$$

(iv) If S_{1} and S_{2} are symmetric composible, then

$$
S_{2} \odot S_{1}=S_{1} \odot S_{2}
$$

Proof
The proof of these properties follows immediately from the definition.
Proposition 1. Let S be an arbitrary switching component w.r.t. an additive projection \mathcal{P}. There exists a constant switching component S_{0} and a sequence of minimal switching components $\left\{S_{i}\right\}_{i=1}^{N}$ with pairwise disjunct domains with the symmetric composition being S

$$
S=S_{0} \odot S_{1} \odot \cdots \odot S_{N}
$$

with

$$
\left.\left.c\right|_{S_{0}} \equiv c^{S}\right|_{S_{0}} \quad \text { and } \quad \operatorname{dom}\left(S_{i}\right) \cap \operatorname{dom}\left(S_{j}\right)=\emptyset \quad \text { for } i \neq j .
$$

Proof
This easily follows from the definitions.

3.3 Product of Switching Components

Let \mathcal{P}_{1} be a generalized projection w.r.t. $\left(\mathcal{L}_{1}, \mathcal{R}_{1}\left(\mathcal{L}_{1}\right)\right)$ and \mathcal{P}_{2} a generalized projection w.r.t. $\left(\mathcal{L}_{2}, \mathcal{R}_{2}\left(\mathcal{L}_{2}\right)\right)$ and $\mathcal{P}=\mathcal{P}_{1} \times \mathcal{P}_{2}$ their product as defined in Section 2.2.

Furthermore, let $S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right)$ and $S_{2}=\left(G_{2}, c_{2}, c_{2}^{S}\right)$ be a switching component w.r.t. \mathcal{P}_{1} and \mathcal{P}_{2}, resp.

The following figure gives an idea how to create the switching component on the set $G_{1} \times G_{2}$ or on a subset of $G_{1} \times G_{2}$ based on the two given switching components.

Let

$$
G_{1} \times_{\left(c_{1}, c_{2}\right)} G_{2}:=G_{1} \times G_{2}-\left\{\left(g_{1}, g_{2}\right) \mid c_{1}\left(g_{1}\right)=c_{1}^{S}\left(g_{1}\right) \wedge c_{2}\left(g_{2}\right)=c_{2}^{S}\left(g_{2}\right)\right\}
$$

For $c_{1}\left(g_{1}\right) \neq c_{1}^{S}\left(g_{1}\right) \wedge c_{2}\left(g_{2}\right) \neq c_{2}^{S}\left(g_{2}\right)$ we define

$$
c\left(g_{1}, g_{2}\right)=\left\{\begin{array}{lll}
0 & \text { if } c_{1}\left(g_{1}\right)=c_{2}\left(g_{2}\right) \wedge c_{1}^{S}\left(g_{1}\right)=c_{2}^{S}\left(g_{2}\right) \\
1 & \text { if } c_{1}\left(g_{1}\right)=c_{2}^{S}\left(g_{2}\right) \wedge c_{1}^{S}\left(g_{1}\right)=c_{2}\left(g_{2}\right)
\end{array}\right.
$$

and

$$
c^{S}\left(g_{1}, g_{2}\right)=\left\{\begin{array}{l}
1 \text { if } c_{1}\left(g_{1}\right)=c_{2}\left(g_{2}\right) \wedge c_{1}^{S}\left(g_{1}\right)=c_{2}^{S}\left(g_{2}\right) \\
0 \text { if } c_{1}\left(g_{1}\right)=c_{2}^{S}\left(g_{2}\right) \wedge c_{1}^{S}\left(g_{1}\right)=c_{2}\left(g_{2}\right)
\end{array} .\right.
$$

For the other cases we define

$$
c\left(g_{1}, g_{2}\right)=\left\{\begin{array}{llll}
0 & \text { if } & c_{1}\left(g_{1}\right)=c_{1}^{S}\left(g_{1}\right)=0 & \vee \\
1 & c_{2}\left(g_{2}\right)=c_{2}^{S}\left(g_{2}\right)=0 \\
1 & \text { if } & c_{1}\left(g_{1}\right)=c_{1}^{S}\left(g_{1}\right)=1 & \vee c_{2}\left(g_{2}\right)=c_{2}^{S}\left(g_{2}\right)=1
\end{array}\right.
$$

and

$$
c^{S}\left(g_{1}, g_{2}\right)=\left\{\begin{array}{lll}
0 & \text { if } & c_{1}\left(g_{1}\right)=c_{1}^{S}\left(g_{1}\right)=0 \vee \\
1 & \text { if } & c_{1}\left(g_{1}\right)=c_{2}\left(g_{2}\right)=c_{2}^{S}\left(g_{1}\right)=1 \vee \\
g_{2}\left(g_{2}\right)=0 \\
2
\end{array}\right)=c_{2}^{S}\left(g_{2}\right)=1 .
$$

Lemma 7. The triple $\left(G_{1} \times\left(c_{1}, c_{2}\right) G_{2}, c, c^{S}\right)$ with the two functions c and c^{S} as defined above is a switching component w.r.t. the product projection $\mathcal{P}=\mathcal{P}_{1} \times \mathcal{P}_{2}$.

Proof
Let $\varepsilon: A \rightarrow\{0 ; 1\}$ an arbitry function for which

$$
\forall\left(g_{1}, g_{2}\right) \in G_{1} \times_{\left(c_{1}, c_{2}\right)} G_{2}: \varepsilon\left(g_{1}, g_{2}\right)=c\left(g_{1}, g_{2}\right)
$$

and we investigate the function ε^{S} with

$$
\varepsilon^{S}\left(g_{1}, g_{2}\right):= \begin{cases}c^{S}\left(g_{1}, g_{2}\right) & \text { if }\left(g_{1}, g_{2}\right) \in G_{1} \times{ }_{\left(c_{1}, c_{2}\right)} G_{2} \\ \varepsilon\left(g_{1}, g_{2}\right) & \text { otherwise }\end{cases}
$$

We define

$$
\forall g \in G_{1}: \varepsilon_{1}^{\left(g_{2}\right)}(g):=\varepsilon\left(g, g_{2}\right)
$$

and

$$
\forall g \in G_{2}: \varepsilon_{2}^{\left(g_{1}\right)}(g):=\varepsilon\left(g_{1}, g\right)
$$

The appropriate projections \mathcal{P}_{1} and \mathcal{P}_{2} can be applied to the functions $\varepsilon_{1}^{\left(g_{2}\right)}$ and $\varepsilon_{2}^{\left(g_{1}\right)}$.

First, let $\left(g_{1}, r_{2}\right) \in \mathcal{L}_{1} \times \mathcal{R}_{2}\left(\mathcal{L}_{2}\right)$. For $g_{1} \notin G_{1}$ the following equality is trivial.

$$
\mathcal{P}^{\left(g_{1}, r_{2}\right)}\left(\varepsilon^{S}\right)=\mathcal{P}_{2}^{\left(r_{2}\right)}\left(\left[\varepsilon_{2}^{S}\right]^{\left(g_{1}\right)}\right)=\mathcal{P}_{2}^{\left(r_{2}\right)}\left(\varepsilon_{2}^{\left(g_{1}\right)}\right)=\mathcal{P}^{\left(g_{1}, r_{2}\right)}(\varepsilon)
$$

Fig. 4. Product of Switching Components

Let now $g_{1} \in G_{1}$ and $c_{1}\left(g_{1}\right) \neq c_{1}^{S}\left(g_{1}\right)$. As we can see from the definition of c, in this case it holds that

$$
c\left(g_{1}, g\right) \equiv c_{2}(g) \quad \text { and } \quad c^{S}\left(g_{1}, g\right) \equiv c_{2}^{S}(g) \quad \text { for } g \in G_{2}
$$

or

$$
c\left(g_{1}, g\right) \equiv c_{2}^{S}(g) \quad \text { and } \quad c^{S}\left(g_{1}, g\right) \equiv c_{2}(g) \quad \text { for } g \in G_{2}
$$

Since $\left(G_{2}, c_{2}, c_{2}^{S}\right)$ is a switching component for the projection \mathcal{P}_{2}, again we have

$$
\mathcal{P}^{\left(g_{1}, r_{2}\right)}\left(\varepsilon^{S}\right)=\mathcal{P}^{\left(g_{1}, r_{2}\right)}(\varepsilon)
$$

If $g_{1} \in G_{1}$ and $c_{1}\left(g_{1}\right)=c_{1}^{S}\left(g_{1}\right)$ we can see from the definition of c that $c^{S}\left(g_{1}, g\right) \equiv$ $c\left(g_{1}, g\right)$ for $g \in G_{2}$, if $c_{2}\left(g_{2}\right) \neq c_{2}^{S}\left(g_{2}\right)$. Hence, $\varepsilon\left(g_{1}, g\right) \equiv \varepsilon^{S}\left(g_{1}, g\right)$ for these $g \in G_{2}$ and, again,

$$
\mathcal{P}^{\left(g_{1}, r_{2}\right)}\left(\varepsilon^{S}\right)=\mathcal{P}^{\left(g_{1}, r_{2}\right)}(\varepsilon) .
$$

The second case, namely if $\left(r_{1}, g_{2}\right) \in \mathcal{R}_{1}\left(\mathcal{L}_{1}\right) \times \mathcal{L}_{2}$, can be shown similarly.
Definition 12. We call the switching component $S=\left(G_{1} \times{ }_{\left(c_{1}, c_{2}\right)} G_{2}, c, c^{S}\right)$ the product of the switching components $S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right)$ and $S_{2}=\left(G_{2}, c_{2}, c_{2}^{S}\right)$ and denote it by $S=S_{1} \times S_{2}=\left(G_{1}, c_{1}, c_{1}^{S}\right) \times\left(G_{2}, c_{2}, c_{2}^{S}\right)$.

Proposition 2. If $S_{1}=\left(G_{1}, c_{1}, c_{1}^{S}\right)$ and $S_{2}=\left(G_{2}, c_{2}, c_{2}^{S}\right)$ are two minimal (non-empty) switching components w.r.t. the generalized projections \mathcal{P}_{1} and \mathcal{P}_{2} then their product $S=S_{1} \times S_{2}$ is also a minimal switching component w.r.t. to the product projection $\mathcal{P}=\mathcal{P}_{1} \times \mathcal{P}_{2}$.

Proof
Suppose that $S=S_{1} \times S_{2}$ is not a minimal switching component, i.e. there exists a $\left(G^{\prime}, c^{\prime}, c^{\prime S}\right)$ switching component w.r.t. $\mathcal{P}=\mathcal{P}_{1} \times \mathcal{P}_{2}$ for which $\emptyset \subsetneq G^{\prime} \subsetneq G=$ $G_{1} \times{ }_{\left(c_{1}, c_{2}\right)} G_{2}$ and $\left.c(S)\right|_{G^{\prime}}=c^{\prime}$ and $\left.c(S)^{S}\right|_{G^{\prime}}=c^{\prime S}$.

Fig. 5. Product of minimal switching Components

Let $\left(g_{1}, g_{2}\right) \in G_{1} \times{ }_{\left(c_{1}, c_{2}\right)} G_{2}-G^{\prime}$ and consider the sets $T_{2}\left(G^{\prime} \mid g_{1}\right)$ and $T_{1}\left(G^{\prime} \mid g_{2}\right)$.

Since $\left(g_{1}, g_{2}\right) \in G_{1} \times{ }_{\left(c_{1}, c_{2}\right)} G_{2}$ we have $c_{1}\left(g_{1}\right) \neq c_{1}^{S}\left(g_{1}\right)$ or $c_{2}\left(g_{2}\right) \neq c_{2}^{S}\left(g_{2}\right)$.
If $c_{1}\left(g_{1}\right) \neq c_{1}^{S}\left(g_{1}\right)$ then

$$
c \mid T_{2}\left(G \mid g_{1}\right) \equiv c_{2} \quad \text { or } \quad c \mid T_{2}\left(G \mid g_{1}\right) \equiv c_{2}^{S}
$$

and, hence, $T_{2}\left(G^{\prime} \mid g_{1}\right)=T_{2}\left(G \mid g_{1}\right)$ or $T_{2}\left(G^{\prime} \mid g_{1}\right)=\emptyset$ because c_{2} is minimal.
Similarly, if $c_{2}\left(g_{2}\right) \neq c_{2}^{S}\left(g_{2}\right)$ then

$$
c \mid T_{1}\left(G \mid g_{2}\right) \equiv c_{1} \quad \text { or } \quad c \mid T_{1}\left(G \mid g_{2}\right) \equiv c_{1}^{S}
$$

and, hence, $T_{1}\left(G^{\prime} \mid g_{2}\right)=T_{1}\left(G \mid g_{2}\right)$ or $T_{1}\left(G^{\prime} \mid g_{2}\right)=\emptyset$ because c_{1} is minimal.
Equality cannot hold because we supposed $\left(g_{1}, g_{2}\right) \in G_{1} \times{ }_{\left(c_{1}, c_{2}\right)} G_{2}-G^{\prime}$. Hence, the appropriate transection sets are all empty.

As one of the possibilties, let's suppose now, that $c_{1}\left(g_{1}\right) \neq c_{1}^{S}\left(g_{1}\right)$. In this case $T_{2}\left(G^{\prime} \mid g_{1}\right)=\emptyset$. This implies that $\forall j \in G_{2}:\left(g_{1}, j\right) \notin G^{\prime}$ and so, whenever $j \in G_{2} \wedge c_{2}(j) \neq c_{2}^{S}(j)$ we have $T_{1}\left(G^{\prime} \mid j\right)=\emptyset$ also.

From this, on the other hand, it follows that whenever $i \in G_{1} \wedge c_{1}(i) \neq c_{1}^{S}(i)$ we have $T_{2}\left(G^{\prime} \mid i\right)=\emptyset$, and as the final consequence $G^{\prime}=\emptyset$. This completes the proof.

References

1. Balogh, E., Kuba, A., Del Lungo, A., and Nivat, M. : Reconstruction of binary matrices from absorbed projections. In: Braquelaire, A., Lachaud, J.-O., Vialard, A., eds.: Discrete Geometry for Computer Imagery, LNCS 2301. Springer-Verlag, Berlin Heidelberg New York (2002) 392-403
2. Kuba, A., Nivat, M. : Reconstruction of Discrete Sets with Absorption. Linear Algebra and Its Applications 339 (2000) 171-194
3. Kuba, A., Nivat, M. : A sufficient condition for non-uniqueness in binary tomography with absorption. Technical Report Vol. 1953. University of Szeged (2001)
4. Ryser, H. : Combinatorical properties of matrices of zeros and ones. Canad. J. Math. 9 (1957) 371-377

[^0]: A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 157-168 2006.
 (C) Springer-Verlag Berlin Heidelberg 2006

