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Abstract. The aim in this paper is to show how to discriminate gender
using a parameterized representation of fields of facial surface normals
(needle-maps) which can be extracted from 2D intensity images using
shape-from-shading (SFS). We makes use of principle geodesic analysis
(PGA) to parameterize the facial needle-maps. Using feature selection,
we determine which of the components of the resulting parameter vector
are the most significant in distinguishing gender. Using the EM algo-
rithm we distinguish gender by fitting a two component mixture model
to the vectors of selected features. Results on real-world data reveal that
the method gives gender discrimination results that are comparable to
human observers.

1 Introduction

Humans are remarkably accurate determining the gender of a subject based on
the appearance of the face alone. In fact, an accuracy as good as 96% can be
achieved with the hair concealed, facial hair removed and no makeup [I]. Exper-
iments by Bruce etc. showed that the gender of the face is conveyed by several
cues including: (i) superficial and/or local features, (ii) configural relationships
between features, and (iii) the 3-D structure of the face [2]. In [I], Burton etc.
attempt to discover a gender discriminator by explicit measurements on the
feature points of frontal facial views and profile views. However, their method
requires manually labeled 14 landmark points. As a result it is unsuitable for
automatic gender classification.

In this paper, we present a statistical framework for gender discrimination
that does not require explicit landmark measurements. The method makes use
of a representation of facial shape based on a parameterisation of fields of facial
surface normals or needle-maps. The needle-map is a 2.5-D shape representation
which is mid-way between the 2D intensity image and the 3D surface height
function [3]. The representation can be acquired from 2D intensity images using
shape-from-shading [4] and is invariant to illumination. To parameterise the
facial needle-maps we make use of principle geodesic analysis (PGA) [5], [6].
PGA is a generalization of principle components analysis (PCA) [7]. For data
residing on a Riemannian manifold, PGA is better suited to the analysis of
directional data than PCA. Our aim is to determine gender using vectors of
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PGA parameters. We aim to distinguish the genders of a sample of subjects by
fitting a two-component mixture model to the distribution of vectors of selected
features.

The standard method to learn the mixture models is the expectation - maxi-
mization (EM) algorithm [§], [9], [T0], [T1]. However, applying the EM algorithm
directly to high dimensional facial needle-maps yields two problems. The first
is the analysis of the distribution of needle-maps cannot be effected in a linear
way, because a linear combination of unit vectors (normals) is not itself a unit
vector. The second problem is that the covariance over the full dimensions of
the data is too large to be computationally tractable.

The first of these problems is overcomed if we use PGA parameters (feature
vectors) to represent the facial needle-maps since the parameter vectors reside
in a vector space. To overcome the problem of dimensionality, we select the most
significant feature components for discriminating gender that give the best class
separability. Experimental results show that the mixture model learnt by our
method has a correct gender classification rate of 87%.

The outline of the paper is as follows. Section 2 reviews the log and exponen-
tial maps used in principal geodesic analysis. Section 3 explores how the most
significant gender features can be selected. In Section 4, a detailed description of
the learning phase and the classification method is given. Experiments are pre-
sented in Section 5. Finally, Section 6 concludes the paper and offers directions
for future investigation.

2 Principle Geodesic Analysis

The surface normal n € R? may be considered as a point lying on a spherical
manifold n € S?, therefore, we turn to the intrinsic mean and PGA proposed by
Fletcher et al. [5] to analyze the variations of the surface normals.

2.1 The Log and Exponential Maps

If uw € T,,58? is a vector on the tangent plane to S? at n and u # 0, the exponential
map, denoted Exp,, of u is the point, denoted Exp, (u), on S? along the geodesic
in the direction of w at distance || w || from n. This is illustrated in Fig. 1. The
log map, denoted Log,, is the inverse of the exponential map. The exponential
and log maps reserve the geodesic distance between two points, i.e. d(nq,n2) =
d(uy,us), where uy = Log,n1,us = Logpns.

2.2 Spherical Medians

It is more natural to treat the surface normal as points on a unit sphere:
ni,...ny € S? rather than points in Euclidian space. Instead of the Euclid-
ian mean, we compute the intrinsic mean: p = argmin,cgz Zf\il d(n,n;) ,
where d(n,n;) = arccos(n - n;) is the arc length. For a spherical manifold,
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Fig. 1. The exponential map

the intrinsic mean can be found using the gradient descent method of Pen-
nec [6]. Accordingly, the current estimate p® is updated as follows: pu*+1) =

N
EXth)(J{, Doing Log,, ) (ni)).

2.3 PGA of Needle Maps

PGA is analogous to PCA except that each principal axis in PCA is a straight
line, while in PGA each principle axis is a geodesic curve. In the spherical case
this corresponds to a great circle. Consider a great circle G on the sphere S2.
To project a point n; € S? onto a point on G, we use the projection opera-
tor m¢ @ S? — G given by mg(n1) = argmin,c(n1,n)? For a geodesic G
passing through the intrinsic mean u, e may be approximated linearly in the
tangent plane T),5%: Log, (1a(n1)) ~ SR v Log,, (n1), where Vi,... Vi is an

orthonormal basis for 7),52.
Suppose there are K training needle-maps each having N pixel locations, and
the surface normal at the pixel location p for the o training needle-map is
. We calculate the intrinsic mean p, of the distribution of surface normals

nzl,7 II,( at each pixel location p. n’; is then represented by its log map position
uy = Log, (ny). u* = [uf,...,u]" is the log mapped long vector of the k™"
tralmng needle-map. The K long vectors form the data matrix U= [u!]...|uf].

The covariance matrix of the data matrix is L= ,UU”.

We use the numerically efficient snap-shot method of Sirovich [I2] to compute
the eigenvectors of L. Accordingly, we construct the matrix L = 11( UTU, and find
the eigenvalues and eigenvectors. The it" eigenvector e; of L can be computed
from the i* elgenvector éiof L using e; = Ué;. The i eigenvalue \; of L equals
the i'" eigenvalue X; of L when i < K. When i > K, \; = 0. Providing the effects
of noise are small, we only need to retain S eigenmodes to retain p percent of
the model variance. S is the smallest integer satisfying:Zf:1 Ai > 1o iK:I i
In our experiments, we use the 10 leading eigenvectors of L as the columns of
the eigenvector matrix (projection matrix) @ = (eq|es] ... |e1o).
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Given a long vector u = [u1,...,ux]T, we can get the corresponding vector
of parameters (feature vector) b = #7u. Given a feature vector b = [by, ...bs]7,
we can generate a needle-map using: n, = Exp,, ((Pb)p).

3 Feature Selection

After PGA, we select the most significant S components of the PGA parameter
vector (in our experiments, S=10). However, the S dimensional feature vectors
still inevitably contain information which is either redundant or irrelevant to
the gender classification task. As stated in [I3], the classification of patterns as
performed by humans is based on a very few of the most important attributes.
Therefore, we select the most significant features for gender discrimination.

We examine the distribution for the first 9 components of the PGA parameter
vectors for the 200 data samples in our experiments. Here the first 100 are
females, and the last 100 are males (see Fig. 2). Table 1 shows the mean values
of the first 9 feature components for females and males. By inspection, the 1st,
5th and 6th components have the most significant difference between females
and males.

Figure 3 shows the mean face and its variations along the directions of the 1st,
5th and 6th principal geodesic directions. We can see the 3 feature components
do convey some gender information. Turning our attention to the 1st component,
as \; increases, the face becomes larger and more solid, and, the cheeks thinner.
These are all masculine characteristics. In the case of the 5th component, as A5
decreases, the face becomes wider and the eyes deepen. Again these are masculine
characteristics. In the case of the 6th component, as Ag increases, there is a
more masculine appearance. Fig. 2 and Fig. 3 therefore indicate the 1st, 5th,
6th features are intuitively the most significant ones for gender discrimination.

To verify our empirical selection, we explore the different feature selection
criteria described by Devijver and Kittler [13]. We use the class separability

criterion J(&) = Isr’stf*’l = HZ:1(1 + Ax), where S, and S, are the between
and within class scatter matrices, A\y, k = 1...d are the eigenvalues of matrix
S;le. The values of J for the first 9 features are shown in Table 2, from which
we can see B(1), B(5), B(6) have the 3 largest values. The result is consistent
with our empirical selection. Therefore, the 1st, 5th, and 6th features are the
most significant features for gender discrimination. We use them as the selected

feature vectors in gender classification using EM algorithm.

Table 1. Mean values of the first 9 feature components

B(1) B(2) B@B) B@#) B(G) B@6) B(7) B@®) BO)
Female -8.6776 -3.2660 -0.4854 0.7371 3.0581 -2.4635 0.1951 0.2868 0.8078
Male 8.6776 3.2660 0.4854 -0.7371 -3.0581 2.4635 -0.1951 -0.2868 -0.8078
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Fig. 2. Plots of the first 9 feature components. From left to right, the first line is B(1),
B(2), B(3), the second line is B(4), B(5), B(6), the third line is B(7), B(8), B(9). X
axis ranging from 1 to 200 stand for the 200 faces, the first 100 are females, the second
100 are males. Y axis ranging from -25 to 25 is the value of the feature components.
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Fig. 3. The mean face and its variances along the 1st, 5th and 6th feature components.
The lines are according to the features (from top to bottom): 1st, 5th, 6th features.
The columns are according to the variances (from left to right): A=-30, A=-20, A=0
(the mean face), A=20, and A=30.
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Table 2. J values on the first 9 feature components

B(1) B(2) BB B@#) B() B@6) BT B@®) B
J 1.6231 1.0681 1.0024 1.0073 1.1644 1.1532 1.0010 1.0026 1.0243

4 Learning Gaussian Mixture Models

We use the EM algorithm to fit a two component mixture model to vectors of
selected features, and explore whether the a posteriori class probabilities can be
used to classify the gender of subjects.

4.1 EM Initialization

In our EM algorithm the a posteriori probability is estimated from the selected
feature vectors using the method outlined in [10]. For 2-component Gaussian

mixture models, we set a(o) = aé) = %, ,ul(g) = [y + €1, ,ul(,g) = pp + €2, and

2151) = Eég) = det(Eb)l/ 41,. Here a1, arg is the a priori probability of each class,
1y is the overall mean of the selected feature vectors, X, is the overall covariance
matrix of the selected feature vectors, €1 and €5 are two small random vectors.

In our experiments d = 3. We can set the class means are ﬂ( ) = = [—e1(1),
+e1(2), —e1(3)], /‘122) = [+e2(1), —£2(2), +£1(3)]. The signs before the & elements
are indicated from Fig. 3. We can see, in our experiments, when the 1st and 6th
feature components are negative, the 5th component is positive, the face is more
female. Otherwise, the face is more male. Using this information makes the EM
initialization more reliable.

4.2 E — Step

In E — Step the a posteriori class membership probability is updated by applying
the Bayes law to the class-conditional density. In our application, the class-
conditional density is Gaussian:
p(Bjlus), 24 = im0 (B — )T X (Z)) 7 x (B — ). Here,
Bj donates the selected feature vector of the jth sample data.
At iteration t+1, the a posteriori probability is updated as follows:

o p(By iy 2L

S o p(Bilnl, =)

Here, Wc(j Y means estimate, at iteration ¢, of the probability that B; was pro-
duced by class c.

Wc(j’t) =P(je c|Bj,u1(,t), 215?) =

C

(1)

4.3 M — Step

In M — Step the parameters for each class are updated to maximize the expected
log-likelihood function:

Q(Cth|cM)y = Z;}:l 23:1 Wc(j’t) % 1og(a£f+1 p(Bj|ud (t+1) E(t“)))
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At iteration t+1, the revised estimate of the a priori probability of class ¢ is
o — ! Z;‘:I Wy ’t), the revised estimate of the mean vector is

(1+1) _ X5 WOOB, e - i
Bpe =~ = 0w o and the revised estimate of the covariance matrix is
j=1 Ve
s (t+1) _ S WO By =) (B )T
be - n Gt .
i=1 We

4.4 Classification

After the mixture model of genders has been learnt, we use the a posteriori
class probability to classify faces to one of the genders. Given the needle-map
n of a test face, first get its selected feature vector b through PGA and feature
selection method mentioned in previous sections. Then compute the a posteriori
probabilities W and W, through formula (1), using the acquired mean vectors
tofs tom and the covariance matrixes Xy, Xy, If Wy > Wy, then the face is
classified as female. Otherwise, the face is classified as male.

5 Experiments

In this section, we evaluate the performance of the method for discriminating
gender on the basis of the learnt two-component mixture model for the distrib-
ution of shape-features. The data consists of 200 facial needle-maps with known
ground truth from the Max Plank dataset. There are 100 females and 100 males.

We first apply PGA and feature selection to the data to extract the shape
parameter vectors and perform feature selection. The visualization of the data is
shown in the left-hand panel of Fig. 5. Here we show the distribution of the 1st
and 5th features as a scatter plot. The data is relatively well clustered according
to gender. There is some overlap and this is due to feminine looking males and
masculine looking females.

Experiment 1. We use the 200 data for unsupervised learning. Figure 4 shows
the initial and final classifications of the data. After convergence of the EM al-
gorithm, the data are reasonably well clustered according to gender. The correct
classification rate reaches 89% for females, and 85% for males. Figure 5 visual-
izes the classification results. From the figure, around 13% of the errors are due
to the misclassification of the data in the overlap region. Tests involving human
observers give similar error rates.

Experiment 2. We select the 10 needle-maps with the largest and 10 with the
smallest female probability W; from the 100 female faces. The top 10 faces are
considered to be typical females, while the bottom 10 are considered to be female
faces falling into the overlap region. We repeat this procedure for the male faces.
We render the 40 facial needle-maps with facial textures, and present them to
9 subjects (6 males and 3 females). The average classification error rate of the
9 people is shown in Table 3. From the table, the classification performance on



Gender Classification Using PGA and Gaussian Mixture Models 65

Fig. 4. Learning steps visualized on 1st and 5th features. From left to right, are the
results of EM initialization, after 5 iterations and on convergence.
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Fig. 5. Classification result on the training data visualized on 1st and 5th features.
Left is the original training data, right is the classification result.

the faces in the overlap region is poorer than that of the typical female and male
faces. This confirms that the results obtained in experiment 1 are consistent with
the performance of human subjects. Interestingly, the classification of the female
faces is poorer than that of the males. This may be due to the fact that without
hair or makeup the facial appearance is masculine.

Table 3. Error rate of human classification

Total Overlap Unoverlap Females Males
22.5% 25.6% 19.4% 43.9% 1.1%

Experiment 3. We randomly selected 40 needle-maps from the 200 available
for use as test data. The remaining 160 are used as training data. First, we obtain
the selected feature vectors of the training and test data using the intrinsic mean
and projection matrix using the full sample of 200 data. Then we fit the mixture
model to the training data. We visualize the models in the left-hand panel of
Fig. 6. The classification rate is evaluated by fitting the mixture models to the
test data. The result is shown in the right-hand panel of Fig. 6 and compared
with the original test data shown in the middle of Fig. 6. The classification rate
for females is 80% and on males 95%. This is a good result and that our method
has good generalisation.
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Fig. 6. Training and Testing result visualized on 1st and 5th features. The left is the
learnt models on the training data. In the middle is the original testing data. The right
is the classification on the testing data.

6 Conclusion

In this paper, we apply feature selection and EM algorithm to PGA shape para-
meters of the facial needle-maps to perform gender classification. We explore the
most significant components of the parameter vectors for gender discrimination,
and use the EM algorithm to cluster the selected features. Experimental re-
sults show that using the selected feature vectors, facial needle-maps can be well
clustered according to gender. Moreover, it demonstrates that it is feasible to
construct a 2-component Gaussian mixture models from the facial needle-maps
to classify the gender.

However, there are still some problems that require further investigation.
First, feature selection is quite empirical and the simplest theoretical verification
measure has been used. Our future research will focus on the use of more prin-
cipled methods for feature selection. Second, in the EM initialization step, we
need to analyze the mean face and its variances along each feature component to
determine the signs of the initial mean vectors. Thus, although the training data
need not to be labeled, the learning phase is not totally unsupervised. Third, our
current experiments are based on the ground truth needle-maps extracted from
range images. In the future, we will apply our method to needle-maps recovered
from facial images using SFS.
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