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Abstract. This paper describes a detailed analysis and implementation of a 
robust gender detector for audio stream applications. The implementation, 
based on melcepstral features and a Gaussian mixture model classifier, is 
designed to maximize gender classification performance in continuous speech. 
The described detector outperforms other reported systems based on statistically 
significant numbers of gender verifications (2136 unique speakers) obtained 
from the FISHER speech corpus. The system yields high accuracies for long 
and short utterances while a confidence figure of merit score for the decision 
ensures reliability in continuous audio streams.  
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1   Introduction 

The importance of accurate speech-based gender detection is rapidly increasing with 
the emergence of technologies which exploit gender information to enhance 
performance. Currently, gender identification is used in security-related applications 
such as gender mining large volumes of audio recordings, automatic speech 
monitoring, automatic data labeling and multimedia indexing. Other applications use 
gender information to train more effective models for speech recognition or speaker 
identification and verification. Some commercially oriented applications use gender 
detection for closed captioning and gender-oriented advertisement in audio driven 
applications. The emergence of these new applications imposes demanding 
requirements on gender detection system, which may include one or all of the 
following: Real-time audio stream processing; high confidence for the decision and 
analysis of a limited amount of useful speech. 

Previous investigations in gender identification have proposed a variety of features 
and classification techniques. Feature extraction is often performed using gender 
related characteristics of speech such as pitch [1],[3], formant and harmonic structure 
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[3],[4]. Other approaches rely on spectral features such as Mel-Frequency Cepstral or 
Spectral Coefficients (MFCC or MFSC) [2],[5], Linear Prediction Coefficients [6], 
Reflection Coefficients [6] and Log area Ratio Coefficients [5]. Classification 
techniques use Hidden Markov Models (HMM) [1],[4], Gaussian Mixture Models 
(GMM)[5],[7],[8] or Neural Networks [2]. Multi-expert approaches have also been 
developed combining classification techniques [2],[5] . 

Despite the abundance of research literature on gender detection, little is focused 
on its implementation for audio streaming applications and few papers provide 
practical considerations for performance optimization in real world scenarios. 

Harb & Chen [2] have described a general audio classifier for content-based 
multimedia indexing in continuous speech. They used the mean and variance of 20 
MFSCs taken from one second windows to train a collection of eight neural network 
classifiers based on speech coded with different techniques. They obtained a good 
dimensionality reduction of features assuming a linear relationship between MFSCs 
across frames in each one-second segment with results. They performed continuous 
gender identification with no preprocessing of the incoming signal, so, gender 
decisions can be made in segments composed solely of silence segments. The gender 
decisions are also made based upon average MFSCs across one second segments 
allowing the estimation to possibly include speech from both genders. 

This paper describes a detailed analysis of a robust gender detector that addresses 
some of the limitations observed in previous reports, keeping the classification 
technique simple to facilitate the implementation. The detector herein is based on a 
pattern recognition approach where the speech is processed to obtain a representation 
of the most relevant information for gender identification. The system uses a GMM 
classifier approach with preprocessed speech, normalized features and provides a 
decision with a confidence figure of merit (CFM) for each analyzed segment. The 
performance of two features extraction techniques (MFCC and MFSC [2]) is studied. 
Different aspects of the GMM are also optimized and practical issues are considered 
for the real-time implementation of the resulting identification system. 

2   Gender Detector 

Signal Preprocessing: Audio streaming applications require that a decision be made 
within a constrained schedule, regulated by specific performance goals.  This is 
typically achieved by analyzing short segments.  However, the composition of each 
processed segment can vary drastically, as well as the amount of noise that is present. 
Therefore in order to obtain data-independent performance, silent frames are removed 
using speech activity detection.  

The algorithm used herein is based on a combination of zero-crossing (ZC), 
autocorrelation and energy analysis (EN) of the speech. The ZC analysis discards 
those frames that the number of crossings is outside a typical range observed in male 
and female speech (corresponding to a pitch range from 60-400Hz). The computed 
ZC is normalized by the number of samples corresponding to the pre-selected analysis 
window (32ms and 8ms increment) according to the sampling frequency of the 
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utterance. The segments that meet the ZC criteria are submitted to autocorrelation 
analysis where further periodicity of the processed speech is analyzed. A threshold of 
0.15 is applied to the normalized correlation values. The segments meeting both 
previous analyses are then processed with the EN, while the others are used to 
estimate an adaptive energy threshold. The EN is then performed using two 
thresholds: an adaptive and absolute threshold. The adaptive threshold is used to 
discard those frames with energy below the threshold estimated based on the 
estimated noise segments which should provide an estimation of the utterance noise. 
The absolute threshold is a fix maximum and minimum hard thresholds were obtained 
from average telephone speech levels. These thresholds were applied to avoid 
incorrect estimation of the adaptive threshold due to overly noisy data or other 
extraneous data conditions. The incoming data stream is continuously preprocessed 
until a buffer of predefined size is filled with clean data.  

Feature Extraction: The feature extraction was tailored to specifically maximize 
performance for gender detection and not for speech recognition or speaker 
identification1. Consequently, channel compensation and speech normalization 
techniques were specifically chosen to avoid distortion of gender information. In the 
speech domain, the mean was subtracted and variance normalization was 
implemented. The MFCCs were extracted using Hamming windows of 32ms and 8ms 
increments. In the feature domain, Cepstral mean subtraction2 and low-pass filtering 
were implemented. The filtering was used to remove low-amplitude high-frequency 
content of the spectrum which is highly susceptible to noise and typically consists of 
unvoiced fricatives containing little information about gender.  Variance 
normalization was not used because it was found to warp the spectral magnitude 
which decreases observable differences between genders in the extracted features. 
RASTA [7] technique was found to also decrease the gender discrimination power of 
the extracted features. 

Two variants of Mel frequency coefficients, MFSC and MFCC, were studied. 
MFSC places emphasis on spectral differences in the mid and high frequencies while 
MFCC emphasizes differences in the lower spectral content [9]. In each case, 26 Mel 
filters were used with 19 coefficients and deltas. This effectively results in a low-pass 
filtering of the framed data in the feature domain at 3 KHz. 

Classifier: Classification was performed by selecting the maximum of the log 
likelihood produced by two gender-dependent GMMs (λMale and λFemale).  The 
expectation maximization algorithm was used to fit the Gaussians to gender-
dependent data obtained from the Fisher database [10]. Data from 312 unique 
speakers of each gender were used to train gender specific models. The amount of 
training speech per speaker was varied in order to study its effect on classification 
performance. The optimal number of Gaussian components was also studied in terms 
of performance and identification speed.  

                                                           
1 The tailoring of the feature extraction was achieved by empirical optimization of classification 

performance using the Fisher speech corpus. 
2 Consist on subtracting the mean of each MFCC coefficient for the collection of frames. 
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Confidence Figure of Merit (CFM) and Decision: A CFM was added to provide 
feedback about lower quality segments and segments that contain varying levels of 
speech from both genders. The CFM was estimated by mapping the boundaries of the 
difference between the mean-log likelihood for each gender model (Δλ = λMale - 
λFemale) into the interval [0,1] when varying the composition of testing segments 
between male and female. In this case, the threshold between genders is mapped into 
the center of the interval. The effect was observed for 10,000 verifications using 100 
unique speakers from each gender.  All combinations of the test segments were used 
to obtain the performance of the system when presented with segments containing 
both genders (expressed in percentage of speech that is female in Fig 1). 
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Fig. 1. Likelihood ratio when the composition of the testing segment varies from 0-100% 
female speech. Dashed lines indicate absolute value. 

A positive differential of the log likelihood ratios is shown when the composition 
consists of more male than female speech indicating that the male model is 
predominant.  However when the speech becomes predominantly female, the 
differential log likelihood ratio turns negative.  A definite trend away from zero exists 
as a more biased gender composition (greater than 50% male or female) is introduced. 
This reveals that the system’s response is linearly proportional to the constitution of 
the testing segment and the contribution provided by each gender feature is equally 
balanced. Mixed gender utterances result in a lower CFM for the decision because 
their log likelihood ratios tend to be closer to 0. The application controller can 
therefore monitor for segments with low CFM, and perform further analysis.  The 
gender models used in this section were trained with 30s of speech from 312 unique 
speakers of each gender and tested with 15s segments extracted from varying 
combinations of 100 pairs of male-female speakers. 
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3   Experiments 

Three main experiments were conducted throughout this investigation. The first 
compares the use of MFCC and MFSC features for capturing gender information.  
Their impact on the performance of models created with variable amounts of speech 
per speaker (SPS) and variable length of the testing segments (VLTS) was also 
considered. Pairs of gender models were trained with 60s, 30s, 15s, 10s, 5s and 3s of 
speech obtained from unique speakers. The models were validated using testing 
utterances of seven different lengths in order to observe the effect of varying training 
and testing data length on overall performance.  

The second experiment considered the effect of a varying number of GMM 
components on the performance of gender models created with 30s of SPS and VLTS.  
Models were trained with 64, 128, 256, 512 and 1024 Gaussians and tested using test 
utterances of several different lengths. 

The last experiment tests the performance of the best performing models from 
previous sections (MFCC features, 30s SPS, 512 Gaussians) with a continuous stream 
of speech. The audio stream was composed of alternating male/female speech 
segments of random-size (between 20 and 30s) from 200 unique speakers taken from 
the National Institute of Standard Technology (NIST) evaluation data, 2005.  Time 
labels of gender transitions were maintained and used to determine the performance 
of the system.  Trials were completed using 1, 3 and 5 second segments. 

In all tests, the models were trained with speech from 312 unique gender-specific 
speakers obtained from the Fisher database [10]. All utterances were manually 
verified prior to use to avoid mislabeled and cross-gender cross-talk content.  The 
testing speech for experiments 1 and 2 was taken from 2136 unique speakers of NIST 
evaluation data, 2005. 

4   Results 

MFCC-MFSC Performance: The performance of the gender detection system, when 
extracting MFCC and MFSC features, is shown in Tables 1 and 2. The accuracy 
obtained when using each feature set is shown for varying lengths of training and 
testing data for each gender and overall. 

A comparison between both tables show that MFCCs outperform MFSCs, with the 
difference approached 3%. These results contradict those reported in [2], however, the 
classification approach used herein also differs from that used by Harb & Chen. It can 
be observed from Table 1 that the overall performance decreases with diminishing 
amounts of training data.  However, the performance for individual gender does not 
show the same trend for both genders. This could be originated because providing less 
training speech the model captures more non-stationary characteristics of the 
waveform disguising the boundaries between genders. It is appreciated that female 
models perform more consistently across changes in training set length than males. 
This can be caused due to female gender information is more readily captured by the 
MFCC features and requires less data amounts to perform compared to male gender. 
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The spectral differences between each gender, including pitch, formants and high 
frequency energy distribution also accentuate this difference, impacting differently 
the MFCC estimation. 

The testing utterance also has a direct impact on the performance of the system, 
with larger testing segments providing best performances. This is because larger 
testing segments contain more information. However, it is noticeable that the effect of 
the length of training data is more profound. This is beneficial for streaming 
applications because while training can be performed offline with large amounts of 
data, high performance is desired with shorter test utterances. 

Upon further analysis of Table 1, it is appreciated that the performance gap 
between both genders increases while the length of the testing segments decrease. 
This is created by a combination between the differences in the descriptive power of 
the MFCC features for the female gender and the decrement of information provided. 
This creates a fussier delimitation between both genders, causing overlap among 
them. Table 1 shows that no substantial gain when more than 15s of speaker data is 
used for training the models. Therefore, this is a good tradeoff between performance 
and speech length requirements to build the gender models. Table 2 shows deeper 
differences in data trends for each gender since MFSC capture different information. 
However, the overall trend keeps decreasing when the length of the training and 
testing sets decrease.  

Table 1. System Performance with MFCC Coefficients 

Speech Per Speaker Used to Train Gender (Seconds) 

 Gender 60 30 15 10 5 3 

M 96.01 96.01 95.58 95.69 95.36 95.03 

F 98.51 98.59 98.68 98.51 98.18 97.93 60 

Both 97.43 97.47 97.33 97.28 96.95 96.67 

M 95.79 96.12 95.90 95.90 95.79 95.47 

F 98.68 98.43 98.43 98.10 97.44 97.44 30 

Both 97.43 97.42 97.33 97.14 96.72 96.58 

M 95.36 95.68 94.50 95.47 94.50 94.28 

F 98.35 98.18 98.59 97.51 97.68 97.60 15 

Both 97.05 97.09 96.82 96.63 96.30 96.16 

M 93.96 93.42 93.42 91.91 92.56 91.15 

F 96.94 97.44 96.86 97.44 95.62 96.44 5 

Both 95.65 95.69 95.37 95.04 94.29 94.15 
M 93.96 90.83 90.94 90.72 89.32 89.21 

F 94.79 97.02 96.69 96.61 96.53 95.12 3 

Both 94.43 94.33 94.19 94.05 93.40 92.56 

M 87.91 90.06 88.66 86.93 88.76 86.61 

F 95.21 92.98 94.30 94.63 91.32 92.40 

L
ength of the T

esting S
egm

ents (S
econds) 

1 

Both 92.04 91.71 91.85 91.29 90.22 89.89 
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Effect of Number of Gaussians on Performance: The performance of models with 
different number of Gaussians is shown in Table 3. It can be seen that accuracy of 
decisions increases as the number of Gaussians increases, but the computational load 
increases likewise.  For this reason, the optimal selection of performance (a tradeoff 
of speed and accuracy) may be system specific. Applications requiring extremely fast 
processing may forfeit minimal accuracy to achieve speed gains. Offline applications 
desiring peak accuracies may choose a larger number of Gaussians.  Herein, 256 
Gaussians were chosen as the most efficient compromise between speed and 
accuracy. Lower number of Gaussians than 64 followed the same trend as the values 
shown in the table with the respective decrement in performance.  

Audio Stream Evaluation: Fig. 2 shows the performance of the system applied to a 
pseudo-random streaming audio input. The continuous curve represents the gender 
composition of each tested segment (where 1 signifies 100% male and -1 signifies 
100% female). The stem plot denotes the difference of likelihood ratios (clipped to ±1 
for visibility) obtained for the previous segment. It can be seen that the decision made 
in the segments containing speech from both genders (shown as a change in sign of 
the continuous curve) produce lower likelihood values. These lower scores will 
correspond to a decision with low CFM.  It may therefore be desirable for an 
application to further scrutinize, or reject, low CFM for the decisions which tend to 
indicate cross-gender segments. Given this possibility, it is interesting to note the 
performance of the system under specific CFM restrictions.   

Table 2. System Performance with MFSC Coefficients 

Speech Per Speaker Used to Train Gender (Seconds) 

 Gender 60 30 15 10 5 3 
M 95.79 96.12 96.87 97.09 98.17 98.38 

F 96.20 95.53 93.88 92.72 88.01 86.52 60 

Both 95.99 95.83 95.38 94.90 93.09 92.45 

M 94.82 95.79 96.44 97.20 98.06 98.38 

F 96.20 95.53 93.80 92.14 87.01 84.78 30 

Both 95.51 95.66 95.12 94.67 92.54 91.58 

M 94.82 95.47 96.53 96.98 98.17 98.27 

F 96.77 95.12 93.22 91.89 86.10 84.53 15 

Both 95.80 95.30 94.88 94.44 92.14 91.40 

M 92.56 93.20 93.96 95.04 96.44 96.66 

F 94.87 94.46 92.14 90.07 84.45 82.55 5 

Both 93.72 93.83 93.05 92.56 90.45 89.60 

M 90.40 90.51 91.91 92.23 94.28 94.82 

F 94.79 93.80 91.81 90.41 83.95 81.64 3 

Both 92.59 92.15 91.86 91.32 89.19 88.23 

M 86.50 87.58 89.01 90.36 93.20 93.30 

F 91.65 91.16 89.04 87.60 82.56 79.92 

L
ength of the T

esting S
egm

ents (S
econds) 

1 

Both 89.07 89.36 89.02 88.98 87.88 86.61 
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Fig. 2. System performance when applied to an audio stream. Continuous line: composition of 
the testing segment. Stems: Δλ of segment. 

 

Table 3. System Performance with Variable Number of Gaussians 

Number of Gaussians*  

 Gender 
1024 512 256 128 64 

M 97.19 97.74 95.79 94.82 94.61 
F 97.35 96.03 95.20 94.79 94.38 60 

Both 97.27 96.88 95.50 94.81 94.49 
M 96.65 97.09 94.82 94.39 94.18 
F 97.02 96.28 94.96 94.46 94.54 30 

Both 96.83 96.68 94.89 94.43 94.36 
M 96.11 96.66 94.93 94.39 94.07 
F 96.94 96.11 94.87 94.79 94.13 15 

Both 96.53 96.38 94.90 94.59 94.10 
M 94.60 95.47 92.13 91.91 91.48 
F 96.36 94.79 93.38 93.55 92.39 5 

Both 95.48 95.13 92.75 92.73 91.93 
M 93.74 93.74 89.97 89.64 88.89 
F 96.20 94.29 93.30 92.97 92.06 3 

Both 94.97 94.02 91.63 91.31 90.47 
M 90.28 91.36 86.61 86.27 86.01 
F 91.40 90.58 90.89 90.33 89.73 

L
ength of the T

esting S
egm

ents (in S
econds) 

1 

Both 90.84 90.97 88.75 88.30 87.87 
* Gender models were trained with 30s of speech from 312 speakers per gender. 
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Specifically, Fig. 3 (top) shows the overall performance of the system when a 
minimum CFM threshold is applied.  Fig. 3 (bottom) shows the percentage of total 
frames that fall into the accepted CFM. Operation of the system without CFM 
restrictions yields accuracies of 91%, 92.3% and 92.1% on all segments for 1, 3 and 5 
second testing segments, respectively. By applying a CFM threshold of 70% -only 
those segments with CFM over 70% are considered- the system would yield an 
accuracy of 96.18%, 97.02% and 96.73% (for 1, 3 and 5 second segments), using 
approximately 80% of the segments.   

Computational Complexity: The computational complexity required for the 
implementation of the gender detector is proportional to the number of Gaussians 
components used as well as the processing time. The implementation of the 
algorithms reported was accomplished code generated with Visual Studio 2005 on a 
3.2GHz Xeon processor based workstation. The system required 147ms to provide a 
decision with the most computational demanding setting using 60s of testing speech 
and 1024 Gaussians. For the setting using 64 Gaussians and 1s of testing speech 
provided the system required 11ms to provide a decision. In all cases the system 
performed several times real-time. 
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Fig. 3. System performance for testing segments with CFM above threshold (top). Segments 
meeting minimum CFM threshold (bottom). 
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5   Conclusion 

The experiments performed herein address issues dealing with the implementation of 
a gender identification system tailored to operate efficiently for audio stream 
applications. It was observed that the MFCC features that emphasize gender 
differences observed in the lower part of the spectrum provide more discriminative 
ability than MFSC features which accentuate the upper spectral band. It was shown 
that a simple GMM classification approach can be used effectively to provide high 
classification performance with short-length testing segments performing better or 
similar to other more complex techniques reported.  

The results obtained with the classifier revealed that the amount of speech per 
speaker used to train the gender models highly influences the performance of the 
system. Fifteen seconds of speech per speaker was found to be sufficient for 
training gender models, since longer sequences did not significantly improve 
performance.  

The performance of the system was observed to improve with a greater number 
of Gaussians, with diminishing returns beyond 512 Gaussians. For streaming audio 
applications, the optimal number of Gaussians should be chosen to balance 
accuracy and real-time viability.  This research indicated that the system described 
herein, can reliably perform gender classification at several times real-time in audio 
streams. 

The CFM described enables a measure of quality in the gender decision and improve 
significantly the performance of the system when a threshold greater than 50% is 
selected, as showed in experiment 4.3. This metric is very desirable to aid in the detection 
of cross-gender segments, and to permit higher precision of audio stream applications.  
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