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Abstract. Gait analysis can be defined as the numerical and graphical represen-
tation of the mechanical measurements of human walking patterns and is used 
for two main purposes: human identification, where it is usually applied to se-
curity issues, and clinical applications, where it is used for the non-automated 
and automated diagnosis of various abnormalities and diseases. Automated or 
semi-automated systems are important in assisting physicians for diagnosis of 
various diseases. In this study, a semi-automated gait classification system is 
designed and implemented by using joint angle and time-distance data as fea-
tures. Multilayer Perceptrons (MLPs) Combination classifiers are used to cate-
gorize gait data into two categories; healthy and patient with knee osteoarthritis. 
Two popular approaches of combining neural networks are experimented and 
the results are compared according to different output combining rules. In the 
first one, same set is used to train all networks and afterwards the features are 
decomposed into five different sets. These two experiments show that using en-
tire data set produces more accurate results than using decomposed data sets, 
but complexity becomes an important drawback. However, when a proper com-
bining rule is applied to decomposed sets, results are more accurate than entire 
set. In this experiment sum rule produces better results than majority vote and 
max rules as an output combining rule.  

1   Introduction 

Gait analysis is the process of collecting and analyzing quantitative information about 
walking patterns of people and it is important for developing treatment plans or track-
ing the improvement of persons having gait problems (i.e. Parkinson, cerebral palsy, 
arthritis). This process is facilitated by the use of computer-interfaced video cameras 
to measure patient motion, by the use of electrodes placed on the surface of the skin to 
appreciate muscle activity, and by the use of force platforms imbedded in a walkway 
to monitor the forces and torques produced between the patient and the ground. After 
collecting data the essential part of the process is the interpretation of these by experts 
and related software. Gait analysis, when considered as an automated system, is used 
for two main purposes: human identification and clinical applications.  
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Human identification is an important security issue. In most cases it is not so easy 
to determine the identity of the person but many applications work well for some 
special cases, such as gender classification [1], age classification [2] etc. In most of 
these studies data sources are image sequences, but it is inappropriate to measure joint 
and segment gait kinematics directly from the videotape or monitor. They do not give 
an indication of the cause of the gait abnormality and so have limited value in clinical 
decision-making. 

The application of automatic gait analysis in medicine is also a well-studied sub-
ject. There are studies that have shown that the number of surgical procedures is re-
duced after a three-dimensional (3-D) gait analysis [3]. In medical applications meas-
urements are obtained more sensitively. Kinetic and kinematical temporal changes are 
obtained from the subject. In addition to temporal changes of joint angles and force 
data, time-distance parameters of the gait such as velocity, cadence, stride length, step 
length are recorded.   

The outcome of musculoskeletal diseases can be followed in two ways, as shown 
in Figure 1. The first one is the traditional method, and the second one is the gait 
analysis method. Traditional diagnosis starts with the examination of patients accord-
ing to their complaints. Two mostly used and expensive traditional methods are based 
on determining cartilage damages. The first one is MR technique which determines 
the degree of damage. The second one is the determination of cartilage damage by 
blood and urine analysis. Since these traditional methods are expensive and harmful 
to subjects to some degree, they are not suitable for frequent long term follow-up of 
the patients.    

 

Fig. 1. The role of gait analysis in clinical context 

Gait analysis helps the physician in both the diagnosis and follow-up non-
automatically or automatically. If the physician him/herself interprets the obtained 
gait data, then this is a non-automated diagnosis. But if this data is interpreted by 
software, then it is called automated diagnosis. Since non automated diagnosis re-
quires high level of expertise, only specifically trained orthopedists or physiatrist can 
use gait data. Automated system is expected to decrease this requirement which may 
help to increase the number of physicians and patients, making use of the laboratory. 
In addition, automated systems save experts’ time and decrease the possibility of 
human made errors.  
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Here the word automated does not mean that gait systems are tools to replace phy-
sicians. Rather, it is an assisting tool to search the diseases that physicians suspected, 
to determine the level of the already diagnosed diseases, or to examine invisible 
changes of patients.  

For the design of automated diagnoses systems some well known pattern recogni-
tion algorithms are used. These are neural networks (NNs) [2, 4, 5, 6, 11], support 
vector machines (SVMs) [2, 8], and radial basis functions (RBFs) [7]. The use of NNs 
for experimental gait classification is not new. There are studies in which NNs are 
trained by force platform data to distinguish ‘healthy’ from ‘pathological’ gait  
[4, 5, 7, 9].  In addition to these, there are studies to recognize walking people among 
a few subjects (less than 10) by using joint angles as features [6, 10, 12]. These stud-
ies produce reasonable results (about %51-%83 on testing set and about %76-%98 on 
training set) for NNs use in gait classification. Since these studies differ from each 
other in description of gait variables (such as subject type, measurement tools, type of 
variables, anatomical levels), and in construction of classifiers, comparing the per-
formances of them with the current one may not be reasonable.  

As the dimension of the features and the size of the data increase same accuracies 
may not be guaranteed. In similar pattern recognition studies this problem is tried to 
be solved by combining classifiers. Combination of NNs are widely used today espe-
cially in speech recognition [14] and character recognition [13] studies and they have 
showed an increase in the performance of the classifiers. In [16] Sharkey made a 
comprehensive experiment to compare two different NNs combining methods; modu-
lar and ensemble ones. She concluded that using an entire set for training produces 
more accurate results than decomposing it. In this study comparison of these two 
approaches are done in the context of gait classification. There are also different ap-
proaches on combining outputs of classifiers. Kittler et. al. [17] has comparative stud-
ies on efficiency of output combination rules such as majority voting, sum, product, 
max., and min. rules. In [17], they concluded that sum rule is superior to others in 
most of the cases.  

The objective of this study is to design a software system for physicians for supply-
ing accurate and practical ways to diagnose and further classify a musculoskeletal 
disease using only gait data. The accuracy of the proposed system will be safeguarded 
by using all features used for diagnoses. To be able to combine all features in one 
classification system, combination methods are expected to be most suitable. As our 
previous studies [11] and similar studies proved MLP usage for gait classification 
produces reasonable results. A group of MLPs are used to classify the subjects as 
healthy or sick, using temporal changes of knee joint angle and time-distance parame-
ters as features. Current study is one of the first studies in which classifier combina-
tion techniques have been applied to gait data. Two different NNs combination meth-
ods are tried. In the first experiment data set is decomposed into five different sets and 
five MLPs are trained and tested by these sets. Then test set results are combined by 
sum, majority vote and max rules to produce final class label. In the second experi-
ment, entire data set is used to train three different architectural MLPs and again out-
puts are combined by three different rules and accuracy rates on test set are compared.  

The remainder of the report is organized as follows. Section 2 introduces data col-
lection process and the characteristics of data. This is followed by details of our ex-
periments and results. Finally, in last section conclusions are presented. 
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2   Characteristics of Data 

There are many data collection methods in gait analysis literature. However, some 
have disadvantages over others because of harmful effects to the subjects. The stereo 
metric method is the most popular one currently used. It employs visible markers 
attached to the skin on rigid segments of the body structure and tracks their motion 
using imaging equipment. This technique is implemented using charge coupled device 
(CCD) cameras and frame-grabber electronics to allow digital images to be captured 
as the subject moves within the field of view.  Digital image analysis allows the 
physical location of each marker to be computed, using triangulation of the views 
from an array of camera systems. This technique has minimal impact on the natural 
motion of the subject and allows data capture without the need to tether the subject to 
the data acquisition hardware. But, it is not feasible to measure gait patterns or vari-
ability with only one traversal of the instrument walkway. Thus, multiple walking 
trials need to be collected, which may fatigue the subject. 

While data collection techniques for gait analysis have continually evolved over 
the past 40 years, the method of data presentation has not changed much. The data is 
still reported in 2-D charts with the abscissa usually defined as the percentage of the 
gate cycle and the ordinate displaying the gait parameter. Figure 2 shows the graphi-
cal representation of the gait data used in this study for both a healthy and with knee 
osteoarthritis person.  

 

 

Fig. 2. Graphs of the gait data (healthy (a) and knee osteoarthritis (b)) 

In this study, data are collected in Ankara University Faculty of Medicine Depart-
ment of Physical Medicine and Rehabilitation Gait Laboratory by the gait analysis 
experts. In this laboratory, there are standard gait laboratory equipments which are 
supported by “VICON” a commercial system for gait analysis. Subject is walked on 
the platform and in one cycle of gait, temporal changes of joint angles, joint moments, 
joint powers, force ratios and time-distance parameters are gathered and recorded to 
database. Decision of which features to use is done according to inspected illness. In 
this study, Osteoarthritis, a disease that affects knee joints is selected as an example; 
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therefore, by the advice of the medical expert, knee flexion, knee flexion moment, 
knee valgus moment and total knee power are selected as the features of the knee joint 
angle. In addition, walking velocity, single support and step length are selected as the 
time-distance parameters of the gait.  

Each of joint angle related features are represented by a graph that contains 51 
samples taken in equally spaced intervals in the time for gait cycle, which is the time 
spent for one step. These points composed feature vectors which are used as inputs of 
the related MLP. On the other hand, time-distance parameters are static numerical 
values which are also used to train a MLP.  

Before passing to classification phase data is cleaned by eliminating rows having 
missing values. Finally, 91 healthy and 110 sick subjects’ data is prepared for classifi-
cation purpose and shared for training and testing purposes as shown in Table 1  
(H: healthy, S: Sick, SMP: Samples).  

Table 1. Dataset characteristics  

#TRAIN #TEST FEATURE 
VECTOR  

(FV) 
DATASET #SMP. 

H S H S 
FV1 KFlex: Knee flexion/extension 51 

FV2 
KMFlex: Knee flexion/  
extension moment 

51 

FV3 KMVal: Knee Valgus Moment 51 
FV4 KPTot: Total Knee Power 51 

FV5 
Time-dist: Velocity, single sup-
port, step length 

3 

FV6 Entire set (all of above) 207 

61 77 30 33 

3   Experiments and Results 

The basic classifier structure, used in this study is MLPs combination. Weaknesses of 
each classifier are diminished by combining classifiers, and more accurate results are 
expected.  

In [15], two methods are described for combining multiple networks. The first one 
is the modular approach, in which the task is first decomposed into several subtasks 
and a specialist network is then trained using the inputs pertaining to the correspond-
ing subtask. The second approach is the ensemble one, in which each network is 
trained using the same inputs and provides a different solution to the same task. Out-
puts from these networks are combined to reach an integrated result. Complexity is an 
important issue to be considered in this case. Differentiation among classifiers may be 
done by using initial random weights, different topologies, and varying the input data.  

As stated previously the final data that is used here has five feature vectors; four 
for temporal changes of knee joint angle (KFlex, KMFlex, KMVal, KPTot) and one 
for time-distance parameters. Before training all data sets are scaled to interval [-1, 1]. 
Totally eight MLPs are trained using Matlab neural network toolbox. These MLPs are 
combined in different schemas for experiment 1 and experiment 2 as shown in  
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Fig. 3. MLP combination schemas for experiment 1 (a), and experiment 2 (b) H/S: Healthy or 
sick, FV: Feature vector 

Figure3. Table 2 and Table 3 show the topology of each network and their individual 
success rates on test data. For the first five networks number of hidden nodes and 
hidden layers are determined experimentally.  

Experiment 1: Input data is decomposed in five sets composed of different feature 
vectors. Five MLPs are trained by these input sets and then outputs of test set are 
combined by three different combining rules to reach a final result. So, accuracy of 
different combining rules is compared. 

Table 2. Properties of MLPs used in experiment 1 

#NODE NETWORK 
input hidden1 hidden2 

#MIS-
CLASSIFIED 

SUCCESS 
RATE (%) 

MLP1 51 35 10 10 84 
MLP2 51 35 10 8 87 
MLP3 51 35 10 15 76 
MLP4 51 35 10 18 71 
MLP5 3 2 - 13 79 

Experiment 2: Three different MLPs are trained by using the same composite input 
set without any decomposition. Here, differentiation of each network is done by dif-
ferent number of hidden layers and hidden nodes.  

In both experiments different combination approaches are used, but in both cases 
combining outputs of classifiers became and important issue. In this study three of 
these rules, sum, majority vote and max rules, are experimented and results are com-
pared by success rates on test data set.  

After training each network with corresponding input set, test data are presented 
and the outputs are normalized to use them as posterior probabilities. Since tansig 
function is used as the activation function in all layers of networks, outputs are in 
interval [-1, 1]. To normalize an output, its absolute value is taken as posterior  
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Table 3. Properties of MLPs used in experiment 2 

#NODE 
NETWORK 

input hidden1 hidden2 

#MIS-
CLASSIFIED 

SUCCESS 
RATE (%) 

MLP6 207 50 - 6 90 
MLP7 207 150 40 6 90 
MLP8 207 207 50 7 89 

probability, and its sign is taken as class label (i.e minus sign is for normal and plus 
sign is for sick subject). Then, its 1-complement is recorded as posterior probability of 
the other class. Thus, sum and max rules for combining outputs can be applied. 

For sum rule, created posterior probabilities are added up for two classes and 
higher value determined the class label. In max rule, the network, producing the 
maximum of posterior probabilities determined the class label and the others are ig-
nored. To find the majority vote, each networks’ output is converted to class labels by 
applying a threshold and three agreeing classifiers determine the class label of the test 
datum. Table 4 shows the obtained success rates on test set by applying these combin-
ing rules. 

Table 4. Success rates (number and percentage) for combining rules 

Combined networks 
MLP1-MLP5 MLP6-MLP8 Combining rule 

#misclassified success rate (%) #misclassified success rate (%) 
Sum 4 94 6 90 
majority vote 5 92 6 90 
Max 5 92 6 90 

4   Conclusion 

According to these results, it can be concluded that the best individual performance is 
produced by MLP6 and MLP7 in which entire data set is used for training and testing 
purpose. However, as the dimension of the data and relatively network size increase, 
complexity becomes an important drawback. Since it is difficult to process a large set 
of data training time increases. However, smaller MLPs which use only one feature 
vector produce less accurate results and combining their outputs increase the accuracy 
reasonably. 

In addition, combining outputs do not increase the accuracy in experiment 2 as 
much as in the first one. Increasing the number of networks does not cause any im-
provement after an optimum number, which is “three” in our experiment.  

The combining rules show equal performance in experiment 2, but in experiment 1 
sum rule is superior to others. Then, as complexities are considered combining many 
small networks may be preferred when dealing with large dimensional data.  

In further stages of the study, to improve classification accuracy, some feature re-
duction and/or selection techniques can be tried to reduce the dimension of data and 
so more features can be included in classification process. 
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