
Harvesting RDF Triples

Joe Futrelle

National Center for Supercomputing Applications
1205 W. Clark St., Urbana IL 61801, US

futrelle@uiuc.edu

Abstract. Managing scientific data requires tools that can track com-
plex provenance information about digital resources and workflows.
RDF triples are a convenient abstraction for combining independently-
generated factual statements, including statements about provenance[1].
Harvesting is a strategy for asynchronously acquiring distributed infor-
mation for the purposes of aggregation and analysis[2]. Harvesting typ-
ically requires that information be temporally scoped and attributed to
some creator or information source. An RDF triple asserts a fact with-
out attributing it to any actor or period of time, so the abstraction
must be extended to support typical harvesting scenarios. This paper
compares standard, conventional, and non-standard means of extending
RDF triples to associate them with attribution and timing information.
Then, it considers the implications of these techniques for harvesting and
presents some implementation sketches based on a journaling strategy.

1 Introduction

InNCSA’sCyberenvironmentsproject(http://www.ncsa.uiuc.edu/Projects/),
the need to capture provenance from multiple, distributed, heterogeneous portal
and workflow tools has led to the development of an RDF harvesting strategy. Be-
cause it is impractical to retool every aspect of the complex technical infrastructure
used in science to support RDF API’s, tools, and implementations, our approach
is to wrap these tools in middleware that makes minimal assumptions about its
environment, building consensus around simple abstractions such as log files and
journals.The combinationof abottom-up implementation strategywithRDF’sde-
scriptive power has given our social networking and data mining efforts diverse new
sources of provenance information with relatively little investment in new frame-
works, protocols, and API’s.

2 Conceptual Overview

Facts and Contradiction. Resolving contradictions across multiple, inde-
pendently-produced RDF graphs requires rules that sometimes depend on
second-order descriptions. For instance, imagine a reasoner that resolves con-
tradictions between pairs of statements by ordering them alphabetically and
rolling loaded dice. The dice-loading parameters are “global” in that they are

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 64–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Harvesting RDF Triples 65

independent of the statement pairs. Now imagine a reasoner that resolves contra-
dictions between pairs of statements by selecting the statement that was made
by the most trusted actor. In that case the trust parameters are “local” in that
they are derived in part from second-order information about which actor made
which statement[3].

Actors and Statements. Actors in a distributed environment produce and
consume information. Since it often matters which actor produced which infor-
mation, representing the information produced by actors as triples is insufficient
to enable reasoning about the information, since the triples alone do not contain
the context required to parameterize rules that depend on who said what. If ac-
tors can be uniquely identified, managing that contextual information amounts
to associating an actor’s identity with each triple or set of triples. Contradictions
can then be resolved in any number of ways, e.g., trust ranking.

Time and Negation. In general, models change over time[4]. RDF has no stan-
dard means to scope assertions temporally, which would enable contradictions to
be resolved based on sequencing and other temporal logic. Time is an especially
useful kind of contextual information, because it is “global” and therefore does
not require coordination between data producers beyond clock synchronization,
a solved problem[5].

3 Representation

RDF reification provides a standard way of associating arbitrary contextual in-
formation with any triple[6], including attribution and timing. However, repre-
senting attribution and temporal information about triples efficiently requires
constructs that aren’t available in RDF.

Reification. Second-order descriptions in RDF are achieved via reification,
in which an RDF triple p(S,O) is represented by, at minimum, four triples:
rdf:type(T,rdf:statement), rdf:subject(T,S), rdf:predicate(T,p) and rdf:object
(T,O) where T is a URI uniquely identifying the triple. Any other contextual
information can be represented by triples in the form p′(T,O′) for any p′ and O′.
This is inefficient to implement, because it multiplies the number of triples that
must be processed at least fivefold, and in some cases requires the generation
and management of a globally unique ID for each triple.

Journaling. In an application, an RDF graph must be built procedurally, one
triple at a time. In a distributed environment, a number of actors may modify
a graph over time by adding and deleting triples. By logging each modification
in a journal (e.g., log file), sufficient contextual information can be gathered to
enable attribution and time-based decisions. For instance, the actor responsible
for each modification, the type of modification (add/delete), and the time of the

66 J. Futrelle

modification can be recorded along with the triple being modified. Computing
time and actor-scoped subgraphs from the journal is simple, but its worst-case
performance is linear with the number of modifications. A journal is a convenient
source of time and actor-scoped triples, but not an efficient means of accessing
them by attribution and time.

n-Tuples. A simple way of adding information to a tuple is to add one or
more terms. Declarative systems such as Prolog allow arbitrarily many terms
per statement. RDF allows a fourth term for literal types, but is not generally
extensible to n-tuples. Attribution and time can be added to RDF tuples by
adding an actor term and a time interval term, or an actor term and two time
terms for the start and end of the time interval. Since these n-tuples cannot
be represented as RDF statements, a different representation is required which
can be processed to produce time and actor-scoped subgraphs. Given such a
representation, useful classes of problems concerning attribution and time can
be resolved directly against it using abstractions that do not support efficient
graph traversal, such as SQL.

4 Harvesting

Harvesting is a strategy for distributing data in which clients typically retrieve
data from servers asynchronously and store it for later processing. Harvesting
clients make decisions about which data to retrieve based on contextual infor-
mation about how likely it is to have changed since it was last retrieved (e.g.,
HTTP caching directives) or by partially exposing their decision criteria to a
server (e.g., OAI-PMH date range queries).

Harvesting Triples. It is not generally possible to harvest every triple from
a triple store without contextual information, for the same reason that it is not
generally possible to index every page on the web–both the web and RDF graphs
are not guaranteed to be completely connected. Minimally, a graph store must
expose information about which subgraphs may have changed over a given time
interval to enable a harvesting client to walk the graph and find all information
newer than the start of the time interval. Maximally, a graph store could expose
a complete change log, as in the journaling strategy.

Multi-tier Approach. To improve efficiency, several processing stages can be
interposed between actors modifying a triple store and reasoning engines carrying
out high-level operations such as rules-based inference. Figure 1 introduces a
three-tier approach.

In this example, an actor (“joe”) adds a triple p(S, O) to a triple store. The
triple is journaled along with the operation (“add”), actor (“joe”) and timing
(tk) information. An n-tuple store, consuming the journal entry, adds an en-
try recording an open time interval (tk to t∞). If the actor then deletes p(S, O),

Harvesting RDF Triples 67

Triple
store

Actor
"joe"

add p(S, O)

Journal

p(S, O, add, "joe", tk)

n-Tuple
store

p(S, O, "joe", tk, t∞)

Fig. 1. Harvesting n-tuples from a journaling triple store

a journal entry p(S, O, delete, “joe”, tk+1) will be written and the n-tuple store
will close the interval by modifying the relevant tuple as p(S, O, “joe”, tk, tk+1).

The n-tuple store can make decisions about what triples to harvest using
simple range and set membership queries. For instance it could trivially reject
modifications from untrusted actors or delete all tuples with closed time intervals
as a means of discarding non-current information.

Actors can write journal entries directly to a file or network stream instead
of modifying a triple store. Any number of simple text formats suffice for repre-
senting and transporting journal entries, and journals generated by independent
actors can be merged using simple, generic operations. The scenario is illustrated
in Figure 2.

In this example, the triple store is populated with a triple added by means
of an actor (“joe”) writing a journal entry. The advantage of this scenario is
that because the journal is rolled up into an n-tuple store containing attribution
and timing information about each triple, the triple store can be populated only
with the triples relevant to some reasoning task with respect to attribution and
timing.

5 A Practical Implementation

Harvesting triples can be accomplished through the multi-tier approach outlined
above. In this section, a practical proposal for implementing that approach is out-
lined. The strategy outlined in this section is currently being used in NCSA’s Cy-
berenvironments project (http://www.ncsa.uiuc.edu/Projects/index.html)
to link workflow provenance to social networking analysis codes.

68 J. Futrelle

Actor
"joe"

Journal

n-Tuple
store

p(S, O, "joe", tk, t∞)

p(S, O, add, "joe", tk)

Triple
store

add p(S, O)

Fig. 2. Harvesting triples from a journaling actor

Journaling. In this section we present an RDF representation of journal entries
and several format realizations, including standard RDF/XML and nonstandard
extensions to N-Triples.

The proposed RDF representation is based on reification, which is used in
conjunction with a proposed vocabulary representing attribution and timing. We
propose that attribution and timing information for each triple be represented
using Dublin Core creator and date properties, using an actor URI for the value
of the creator element and an ISO 8601 timestamp for the value of the date
element. To denote the operation the actor performed on the model (e.g., add
or delete) we introduce the wsww:operation property where wsww is a prefix for
the example “who said what when” namespace URI http://tupeloproject.
org/wsww. Possible values for the wsww:operation property are wsww:add and
wsww:delete.
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:wsww="http://tupeloproject.org/wsww">

<rdf:statement rdf:about="http://example.org/#genid927">

<rdf:subject rdf:resource="http://example.org/#someSubject"/>

<rdf:predicate rdf:resource="http://example.org/#somePredicate"/>

<rdf:object rdf:resource="http://example.org/#someObject"/>

<dc:creator rdf:resource="http://example.org/#joe"/>

<wsww:operation rdf:resource="http://tupeloproject.org/wsww#delete"/>

<dc:date rdf:dataType="http://www.w3.org/2001/XMLSchema#dateTime>

2005-12-01T15:09:00Z

</dc:date>

</rdf:statement>

</rdf:RDF>

http://tupeloproject.org/wsww
http://tupeloproject.org/wsww

Harvesting RDF Triples 69

This syntax is verbose and requires the generation of a unique ID per journal
entry. To mitigate these problems, we extend the N-Triples format so that each
line contains not just the subject, predicate, and object but also the actor URI,
operation, and an ISO 8601 timestamp. In this extended notation, the previous
example is written on a single line as follows (←↩ denotes the continuation of a
line):

<http://example.org/#someSubject> ←↩
<http://example.org/#somePredicate> ←↩
<http://example.org/#someObject> ←↩
<http://example.org/#joe> ←↩
<http://tupeloproject.org/wsww#delete> ←↩
2005-12-01T15:09:00Z .

The extended N-Triples representation does not require generating a unique
ID and can be compiled into standard representations should an application
require it.

n-Tuples in SQL. This section outlines an SQL implementation of an n-tuple
store which can be used to index a stream of journal entries. This example im-
plementation has been designed for conceptual correctness and is not optimized.

The n-tuples can be represented using the following table definition:

CREATE TABLE ntuples (
subject VARCHAR(255) NOT NULL,
predicate VARCHAR(255) NOT NULL,
object VARCHAR(255) NOT NULL, actor VARCHAR(255) NOT NULL,
start_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
end_time TIMESTAMP,
CHECK (end_time IS NULL OR start_time <= end_time),
CHECK (NOT EXISTS
(SELECT * FROM ntuples nt
WHERE nt.subject = subject
AND nt.predicate = predicate
AND nt.object = object
AND nt.actor = actor
AND (start_time, end_time) OVERLAPS

(nt.start_time, nt.end_time))));

The table corresponds closely to the abstract n-tuple model. In this represen-
tation, the start_time and end_time columns represent a half-open interval
(containing the start time but not the end time) over which the triple is asserted
to be a member of the set of all non-deleted assertions by the actor. A NULL
end_time indicates that the actor has not deleted the triple since start_time.
The CHECK constraints reject intervals whose end times precede start times, as
well as overlapping identical statements by the same actor.

70 J. Futrelle

Adding a triple consists of performing an INSERT:

INSERT INTO ntuples
(subject, predicate, object, actor, start_time)

VALUES (’http://example.org/#someSubject’,
’http://example.org/#somePredicate’,
’http://example.org/#someObject’,
’http://example.org/#joe’,
’2005-11-28T03:09:00Z’);

Deleting a triple consists of performing an UPDATE:

UPDATE ntuples
SET end_time = ’2005-12-01T15:09:00Z’
WHERE subject = ’http://example.org/#someSubject’
AND predicate =’http://example.org/#somePredicate’
AND object = ’http://example.org/#someObject’
AND actor = ’http://example.org/#joe’
AND end_time IS NULL;

Retrieving n-tuples based on trust is simple. Suppose the table trusted_actors
contains a column called actor containing the URI of each trusted actor. The
following query returns n-tuples created by trusted actors:

SELECT * FROM ntuples
WHERE actor IN (SELECT actor FROM trusted_actors);

Open Archives Implementation. The Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH) is a popular harvesting framework. This sec-
tion outlines how the n-tuple abstraction can be adapted to OAI-PMH’s model
of a metadata collection.

OAI-PMH requires that a service expose one or more sets of records. A record
is a time-stamped, identified item that can be retrieved in one or more metadata
formats. It can also be deleted, and an OAI-PMH service is required to report
that fact in response to queries about the record rather than acting as if the
record never existed.

The OAI-PMH model matches the n-tuple model in several important ways.
First, the n-tuple model contains information about the time at which triples
were added and/or deleted. Second, sets of triples can be extracted from the n-
tuple store and represented in several metadata formats, including RDF/XML
and N3.

The most important mismatch between the n-tuple model and the OAI-PMH
model is the granularity of description. In the n-tuple model, each triple is asso-
ciated with attribution and timing information, but not otherwise identified. In
OAI-PMH, a record is generally a collection of statements (e.g., a set of Dublin
Core fields) associated with a single identifier and set of timing information.
A closer match in the n-tuple model to OAI-PMH’s concept of a record is the
subject. The set of all non-deleted triples on a subject can be considered an

Harvesting RDF Triples 71

OAI-PMH record, whose identifier is the subject URI and whose timestamp is
the most recent add or delete time from among the set of all triples, deleted or
not, on the subject.

In SQL, the following query will retrieve all the non-deleted triples on a given
subject (where the subject is ?s):

SELECT subject, predicate, object FROM ntuples
WHERE subject = ?s AND end_time IS NULL;

This is based on the simplifying assumption that the n-tuple store does not allow
an actor to delete a triple at some specific time in the future; that case could be
handled by adding the clause OR end_time > CURRENT_TIMESTAMP.

Determining OAI-PMH timestamp for a record in SQL from the n-tuple table
requires some temporal arithmetic, which can be accomplished with the following
view:

CREATE VIEW oai_ts
AS SELECT subject, MAX(upd_time) upd_time
FROM
(SELECT subject, MAX(start_time) upd_time FROM ntuples
GROUP BY subject UNION
SELECT subject,
MAX(COALESCE(end_time, CURRENT_TIMESTAMP)) upd_time

FROM ntuples GROUP BY subject)
GROUP BY subject;

Again, triples explicitly deleted in the future can be handled with a more complex
query.

Actors in the n-tuple model make reasonable OAI-PMH sets, although a prac-
tical issue is how to map actor URI’s to OAI-PMH set identifiers. A record’s
membership in a set corresponding to an actor can be determined by finding
any n-tuple with the record’s subject and the actor URI. The set of all sets cor-
responding to actors is also simple to compute in SQL from the n-tuple model
using SELECT DISTINCT(actor).

6 Conclusion

Harvesting heterogeneous information from multiple sources is critical to en-
abling collaborative e-science, and RDF provides a convenient abstraction for
integrating heterogeneous information. To harvest RDF triples, it is useful to
know “who said what when.” Implementing this second-order information us-
ing RDF reification scales poorly. Instead, extending the representation of RDF
triples to include information about attribution and timing can enable harvesting
decisions without the need for a fast triple store.

In this paper, I have outlined a three-tier approach to harvesting RDF triples
in which a journal is “rolled up” into an n-tuple store before being compiled into

72 J. Futrelle

an RDF graph. The three tiers in the approach correspond to example imple-
mentations based on files, relational databases, and triple stores. The practical
feasibility of the three-tier approach is demonstrated by harmonizing it with
OAI-PMH, a standard protocol for metadata harvesting. The resulting approach
supports reasoning in a dynamic, loosely-coupled, collaborative environment.

This strategy is currently in use as part of the CLEANER / CUAHSI Cyber-
Collaboratory project at NCSA, a collabration, data management, and work-
flow portal for environmental scientists and engineers. We use a logging API
to capture user actions from workflow execution as well as asynchronous and
synchronous collaboration and use the harvested triples to perform social net-
work analysis and provide customized recommendations to users to help guide
them through complex sets of resources and tools. For more information see
http://cleaner.ncsa.uiuc.edu/home/.

References

1. Wong, S. C., Miles, S., Fang, W., Groth, P., and Moreau, L. Provenance-based
validation of e-science experiments. In Proceedings of 4th International Semantic
Web Conference (ISWC’05), volume 3729 of Lecture Notes in Computer Science,
pages 801-815, Galway, Ireland, November 2005. Springer-Verlag.

2. Lagoze, C. and de Sompel, H. V. 2001. The Open Archives Initiative: Build-
ing a low-barrier interoperability framework. http://www.cs.cornell.edu/lagoze/
papers/oai-jcdl.pdf. http://citeseer.ist.psu.edu/lagoze01open.htm

3. Heymans, S., Nieuwenborgh, D.V., Vermeir, D. Preferential reasoning on a web of
trust. In Proceedings of 4th International Semantic Web Conference (ISWC’05),
volume 3729 of Lecture Notes in Computer Science, Galway, Ireland, November
2005. Springer-Verlag.

4. Huang, Z., and Stuckenschmidt, H. Reasoning with multi-version ontologies: a tem-
poral logic approach. In Proceedings of 4th International Semantic Web Conference
(ISWC’05), volume 3729 of Lecture Notes in Computer Science, Galway, Ireland,
November 2005. Springer-Verlag.

5. “Network Time Protocol,” IEFT RFC 958.
6. “RDF Semantics.” W3C Recommendation, 10 February 2004. http://www/w3.org/

TR/rdf-mt/#Reif

http://www.cs.cornell.edu/lagoze/papers/oai-jcdl.pdf
http://www.cs.cornell.edu/lagoze/papers/oai-jcdl.pdf
http://www/w3.org/TR/rdf-mt/#Reif
http://www/w3.org/TR/rdf-mt/#Reif

	Introduction
	Conceptual Overview
	Representation
	Harvesting
	A Practical Implementation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

