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Abstract. Data streams flowing from the physical environment are as
unpredictable as the environment itself. Radars go down, long haul net-
works drop packets, and readings are corrupted on the wire. Yet the data
driven scientific models and data mining algorithms do not necessarily
account for the inaccuracies when assimilating the data. Low overhead
provenance collection partially solves this problem. We propose a data
model and collection model for near real time provenance collection. We
define a system architecture for stream provenance tracking and motivate
with a real-world application in meteorology forecasting.

1 Introduction

Dynamic data-driven scientific applications utilize data streaming in real-time
from environmental sensors and instruments to effect simulation, modeling, and
analysis that is more responsive to the physical domain (such as the atmosphere)
and the computational environment. Responding in near real time to events in
the environment, however, requires minimizing the latency between the occur-
rence of an event in the environment and the detection and processing of that
event through a reduction and analysis pipeline. When decisions are being made
in near real time to process incoming data and trigger the appropriate model or
service, keeping records of the activities being applied is jettisoned in favor of
keeping service time low. Avoiding the recording of historical data is not a viable
solution because scientists need the ability to trace a result, such as a statistical
result, back to the one or more events in streams that caused them. We need a
low overhead model for provenance collection on streams.

The general approach to stream processing is to execute a set of tasks contin-
uously on the incoming events. These tasks can be defined as database queries
[1,2,3,11] or a pipeline of computational entities [4] that operate on the data
events. We use the term filters to refer to the tasks executed on data streams. In
this paper we focus on provenance tracking for stream filtering systems. Prove-
nance collection in stream filtering systems pose the following challenges:

1. Identifying provenance entities - Provenance systems generally collect
data about datasets [6]. In a stream filter system, events can be tiny, just a
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few kilobytes in size and can be generated at high rates. Collecting prove-
nance on an event by event basis can overwhelm the system. The challenge is
in identifying the correct “atomic unit” that is traceable by the stream filter
system and strikes a reasonable balance between efficiency and meaningful
provenance.

2. Capturing stream filtering conditions with low overhead - Filters
executing on streams can be dynamically deployed and are subject to recon-
figuring on the fly [3]. Data streams drop data periodically, such as when a
feed from one of the 120 continental U.S. Doppler radars goes down briefly.
Network congestion may cause delays and bursts in transfer of stream events.
Transport over long haul networks can corrupt data as well. Filters accom-
modate these changes by changing modes (e.g., approximation mode under
imbalanced load [2]). The challenge lies in dynamically and efficiently track-
ing provenance of filter execution in a distributed environment.

3. Maintaining relevance with non-persistent data - Filters are typically
associated with a lifetime, i.e., they can be specified to run for a particular
duration of time [11]. Yet, the products they produce can long outlive the
filters that produced them. The challenge is to trace back the source of a
derived event and the conditions of stream filtering long after the filtering
task was completed.

4. Dynamic accuracy estimation - Provenance can be used to produce
quality of service guarantees. In stream filtering systems, aggregation of the
stream data enables the detection of global behavior that cannot be done on
single streams. Approximations and accuracy changes in input streams may
affect the accuracy of the derived streams [18]. It is challenging to collect
provenance across multiple streams and thus deduce the accuracy of derived
streams.

In this paper, we address these challenges by creating a data model and a col-
lection model for representing and capturing stream-related provenance that
targets the unique needs of stream-driven applications. We define an architec-
ture for stream provenance tracking and show how the provenance collection
system fits within the context of the Calder [17] grid-based stream processing
system. We demonstrate the feasibility of provenance collection through an ex-
ample of meteorology forecasting application [5]. We restrict our discussion to
provenance collection over data streams that monitor the physical environment,
such as the atmosphere, soil, ocean, etc. In future work we will examine the
computer-induced streams that support fault tolerance and reliability in a dy-
namic data driven application.

The remainder of the paper is organized as follows. Section 2 motivates a
new model for stream provenance tracking and discusses related work. Section 3
describes the data and collection models for stream provenance tracking.
Section 4 discusses an implementation of this provenance model in the Calder [17]
system and Section 5 demonstrates an application of this provenance service in
meteorology forecasting. Section 6 summarizes the conclusions and outlines the
future work.
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2 Motivation and Related Work

Currently, provenance techniques do not target stream filtering systems and
hence only partially satisfy its needs. In this section, we discuss the challenges
identified in Section 1 and related work in this area. We have leveraged on the
provenance techniques proposed by the provenance solutions [6,14,9,18], in cre-
ating a new provenance tracking model for streams. A recent survey [12] provides
an overview of the existing provenance solutions for e-Science applications.

The first challenge is to identify the smallest unit for which provenance is col-
lected in stream filtering systems. A data stream is an indefinite sequence of time
ordered events, (e1, e2, . . . , en, en+1) where timestamp(en) < timestamp(en+1).
The virtual data schema used by the Virtual Data Grid project [6] represents
the datasets, their relationships and the computations. In streams, a dataset
corresponds to an event in a stream, so tracking provenance of datasets without
burdening the system is a challenge. Provenance information can be encoded
along with each dataset, but the events are not persistent and hence the prove-
nance information is not available to the stream filter system after the event is
processed. We would like to trace the source of events in derived streams to the
events of inputs streams without identifying every event individually.

The second challenge is in capturing the provenance history of streams and
filter states with low overhead on the system. Response time is crucial for stream
filtering systems. Thus, low overhead (in time, resources etc) for provenance col-
lection is of utmost importance. Log4j [8], which logs error and status messages
to a log file, for instance creates a non-trivial load on the service about which
it records data. Also aggregating the provenance traces into meaningful infor-
mation is difficult with systems like Log4j. Capturing the provenance of filter
execution is internal to the system and is expected to have a lower overhead
compared to provenance collection for data streams.

The third challenge is to trace the source of a stream long after the filtering
process has completed. We need to be able to clearly identify the environment
in which a particular set of events (subset of a stream identified by timestamp)
were generated. Also stream filtering systems adapt themselves to changes in
underlying resources [2,11]. This involves changes in query execution plans and
approximations when streams are not available. The provenance model needs to
accommodate these changes and preserve the details for future reference.

The PASOA [14] project focuses on collecting provenance information on in-
teraction between services in a workflow using a formalized protocol [7]. Karma
provenance service [13] is used in the LEAD [5] project for tracking provenance
of meteorological data and it’s usage in web-services. In stream filtering systems,
the provenance is collected for each stream and the filters that execute on the
streams. The communication between the internal components of the stream
filtering system is not as important as the entities as a whole. Security issues
in a SOA-based provenance system is discussed in [16]. Security of provenance
data is an important issue that is applicable to streams as well.

Finally, the provenance model needs to enable tracing the accuracy of a sub-
set of the stream to a specific time period. Deducing an accuracy value for an
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derived event based on the accuracy of the input streams and stream filtering
environment is a challenge in itself. Trio [18], is a database system that aug-
ments conventional data model with accuracy and lineage and enables querying
using understandable extensions to SQL. This is made possible by associating
lineage and accuracy information with datasets in Trio. This is not applicable
to streams, because the events are not persistent. We need to be able to trace
accuracy of a subset of stream long after the stream was generated.

3 Provenance Tracking in Stream Systems

We propose the following data model and provenance collection model for stream
filtering systems to address the challenges discussed in previous sections.

Data Model
We identify three atomic units of provenance collection in streams: base streams,
adaptive filters and derived streams. Base streams are streams that are generated
outside the stream filtering system. The generation source may be a instrument,
experiment, or any process. Adaptive filters are declarative queries or application
code that are associated with a life time and continuously execute on the data
streams; Derived streams are streams that are produced by executing adaptive
filters on base streams or other derived streams.

We propose a timestamp based append only stack approach for collecting
provenance of streams and filters, and a bottom-up provenance tree to associate
the base streams and derived streams. By append only stack we mean a data
structure in which information can only be added not removed; and also that
the latest information identified by the timestamp represents the current status.
This provenance stack accommodates a set of information collected initially (base
provenance information like the input streams, filter used etc) and a list of
changes (dynamic provenance information like changes in stream rates, filter
mode changes etc). The provenance stack can to be stored as a file or as a
table in a database, in a persistent manner. Provenance information for a base
stream constitutes the data format of the stream, its sources, information on the
stream generation process, owner and permissions, user defined annotations and
metadata. When users specify the filter to be executed, it could be appended
with some annotation on its purpose. The execution plan and annotations serve
as base provenance information for the filters. For a derived stream, the base
provenance information is the list of input streams and the filters executed to
derive the stream. The derived streams refer to the provenance of their input
streams and that of their filters. Thus the lineage of a derived stream can be
traced using a provenance tree where the input streams are at the root level and
derived stream is at the leaf (bottom-up provenance tree).

System metadata (owner, permissions, etc) and user defined metadata, can be
stored as name value pairs or using predefined schemas. The model supports an-
notations by storing them as inline text or storing them independently as in [9],
and referring to them using URLs.
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Low Overhead Provenance Collection Model
Our collection model is based on the assumption that each stream consists of a
sequence of time ordered events and each event is associated with a timestamp.
A subset of stream can be defined by a starting timestamp and an ending
timestamp. Data streams are subject to rate and accuracy changes. To store
the provenance of a stream, it is important to capture the changes in input
streams and associate them to the set of events in the derived stream that are
affected by the change. To facilitate this, the changes are logged with a starting
timestamp. It is sufficient to match a change with the starting timestamp as
it applies to the rest of the stream from that timestamp onwards. This model
helps to capture the provenance information of a stream dynamically and keep
the information up-to-date.

We need to be able to trace the source of a derived event and the stream
filtering environment under which it was produced, long after the filtering task
is completed. For this we only need to store the provenance history of all streams
and filters in a persistent storage and not the events themselves. After the base
provenance collection, information is logged only when something changes in
the environment and hence the overhead for provenance collection and need for
storage space are minimal. The provenance history is stored as one provenance
stack per stream or filter. By looking through the provenance information of
the derived stream, their input streams and the filters, one can trace the filter
states and conditions under which a particular set of events were derived. The
same methodology applies to deducing the accuracy of the derived stream events.
Given, that a well-defined formula exists in a particular domain to calculate the
accuracy of the derived stream from that of the input streams and the filter
being used, the provenance model can support it.

Example - A sample provenance document for a derived stream is given in
Figure 1. The stream under consideration is a derived stream (ID D0010) and
uses two input streams (base stream with ID B0011 and derived stream with ID
D0005). The stream was started at Feb-10-2006 at 13:00:00 hours and the steady
rate was 50 events/sec recorded 15 minutes after stream was registered. From the
change log, we can see that the stream B0011 was missing for about 10 minutes
during which the filters changed mode to approximate the missing stream. The
accuracy of the derived stream reduced to 85% during the approximation. From
the next change log timestamped at 13:45:00 it is known that the B0011 stream
came back up and hence the approximations were removed and the accuracy of
the derived stream increased to 100%.

4 Calder Provenance Service

Calder [17], is a distributed stream processing system that supports a ser-
vice interface for query processing. The Calder system, is an extension of the
dQUOB [11] project, and is composed of two subparts: a set of data manage-
ment services and a set of dynamically configurable query processing engines,
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Fig. 1. Sample Provenance Document for a Derived Stream

as shown in Figure 2. Filters are specified as database queries expressed using
a subset of SQL. Calder uses an extended OGSA-DAI v 6 [10] grid data service
interface to support a data stream resource. The provenance service of Calder
implements the provenance models described in Section 3 and supports a service
oriented interface for querying the provenance information. It uses a native XML
database to store the provenance history of streams and filters. Users register the
base streams and filter queries by invoking the provenance service. Registration
of derived stream is made by the system when a new query is submitted. The
derived streams can then be retrieved in a timely manner as streams or asynchro-
nously as chunks from the rowset service (Figure 2). Once a stream/filter query
is registered, users can append it’s provenance stack with additional information
like annotations and metadata.

We appended the Calder system with a monitoring service to facilitate dy-
namic collection of provenance information during stream processing. The prove-
nance service interfaces with the monitoring service by an event-notification
interface. Figure 2 shows the architecture of Calder with provenance and mon-
itoring services. The provenance information propagates as shown in Figure 3.
The query planner is responsible for executing the filtering query. It updates the
monitoring service whenever the execution plan of a query changes. A query exe-
cution plan may change due to a set of streams going down or a processing node
failure. The monitoring service also gets updated by the query processing engines
when an event of interest occurs. Events of interest include rate changes, missing
streams, approximations and accuracy changes. The flexible service interface of
Calder enables a scalable framework. A single instantiation of the Calder system
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Fig. 2. Calder Architecture Fig. 3. Provenance Updates in Calder

can spawn multiple internal services and query processor engines on-demand to
accommodate the load.

5 Application in LEAD

We discuss an application of Calder and it’s provenance service in the context
of the LEAD [5] meteorology forecasting project. Time bounded stream mining
is the dynamic deployment of data mining agents that run for a bounded period
of time, look for environmental events of interest, and report their results in the
form of a trigger that can be used to invoke subsequent behavior. Our approach
to on-demand data mining is to view the streams generated by heterogeneous
instruments as belonging to a single data domain over which processing can be
performed. The user interacts with the data domain through a declarative query.

The value to the user of time bounded stream mining can best be illustrated
by means of an example. An atmospheric scientist is studying spring severe
weather over the US Midwest. When a large storm front is moving in from across
the Plains, she wishes to kick off a small, regional forecast simulation wherever
storm cells emerge. She does this by sprinkling data mining agents in front of the
storm line, each configured to run for a specified time (say 3 hours). Each mining
agent executes a tight loop for the specified time looking at NEXRAD Level II
Doppler scans within a small geospatial region for severe storm precursors. If
the agent finds something of interest, it triggers a regional (small scale) forecast
prediction simulation. When complete, the simulation invokes statistical analysis
on the results. Figure 5 shows a sample continuous filtering query that can be
executed on the incoming Level II data for the given scenario. Calder dynamically
instantiates the query and query processing engine on a remote node, say on the
TeraGrid [15]. The provenance service collects information on each of the data
mining agents and streams used. It tracks changes in stream rates, temporary
outages if any, and the conditions under which the operation was conducted.
Such provenance information can be used to trace the result of a forecast model
back to one or more events in streams that caused them.
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Fig. 4. Data Mining Agents in LEAD

RULE C:1

SELECT FROM level II as scan

WHERE

(classif (normalize(

MDA (scan in "bounding box")))

> "threshold"

START 2006-04-25 12:00:00

EXPIRE 2006-04-25 20:00:00

THEN

ACTION (threshold, scan)

Fig. 5. Query: Run the given data mining
algorithm on incoming data streams and
do the specified action

6 Conclusion

This paper discusses the unique challenges of low-overhead provenance collec-
tion in stream filtering applications. We introduce data and collection models
addressing these challenges and discuss a prototype implemented as part of the
Calder stream processing system. Our work is motivated through a real-world
application of meteorology forecasting. Our current effort is focused on eval-
uating the performance of the system in the context of the dynamic weather
forecasting. We are also working on extending the provenance collection service
into a larger context management service that provides usage patterns, history
of streams, user annotations and feedback on quality of streams.
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