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Abstract. In many data-driven applications, analysis needs to be performed on 
scientific information obtained from several sources and generated by computa-
tions on distributed resources. Systematic analysis of this scientific information 
unleashes a growing need for automated data-driven applications that also can 
keep track of the provenance of the data and processes with little user interac-
tion and overhead. Such data analysis can be facilitated by the recent advance-
ments in scientific workflow systems. A major profit when using scientific 
workflow systems is the ability to make provenance collection a part of the 
workflow. Specifically, provenance should include not only the standard data 
lineage information but also information about the context in which the work-
flow was used, execution that processed the data, and the evolution of the  
workflow design. In this paper we describe a complete framework for data and 
process provenance in the Kepler Scientific Workflow System. We outline the 
requirements and issues related to data and workflow provenance in a multi-
disciplinary workflow system and introduce how generic provenance capture 
can be facilitated in Kepler’s actor-oriented workflow environment. We also 
describe the usage of the stored provenance information for efficient rerun of 
scientific workflows. 

1   Introduction 

Current technology significantly accelerates the scientific problem solving process by 
allowing scientists to access data remotely, distribute job execution across remote 
parallel resources, and efficiently manage data. Although an increasing amount of 
middleware to accomplish these tasks has emerged in the last couple of years, using 
different middleware technologies and orchestrating them with minimal overhead still 
remains difficult for scientists. Scientific workflow systems [1,2,3], aim to improve 
this situation by creating interfaces to a variety of technologies and providing tools 
with domain-independent customizable graphical user interfaces that combine differ-
ent Cyberinfrastructure [4] technologies along with efficient methods for using them. 
Workflows enormously improve data analysis, especially when data is obtained from 
multiple sources and generated by computations on distributed resources and/or  
various analysis tools. These advances in systematic analysis of scientific information 
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made possible by workflows have unleashed a growing need for automated data-
driven applications that also collect and manage the provenance of the data and proc-
esses with little user interaction and overhead. 

Requirements for Efficient Provenance Collection during Scientific Workflow De-
sign and Execution.  Scientific problem solving is an evolving process. Scientists 
start with a set of questions then observe phenomenon, gather data, develop hypothe-
ses, perform tests, negate or modify hypotheses, reiterate the process with various 
data, and finally come up with a new set of questions, theories, or laws. Most of the 
time before this process can end in results, scientists will fine-tune the experiments, 
going through many iterations with different parameters [5]. This repeating process 
can reveal a lot about the nature of a specific scientific problem and, thus, provides 
information on the steps leading to the solution and end results. Making this informa-
tion available requires efficient usage and collection of data and process provenance 
information. Another very important requirement for any scientific process is the 
ability to reproduce results and to validate the process that was followed to generate 
these results. Provenance tracking provides this functionality and also helps the user 
and publication reviewer/reader understand how the run happened and what parame-
ters and inputs were associated with the workflow run. 

A provenance collection system must have the ability to create and maintain asso-
ciations between workflow inputs, workflow outputs, workflow definitions, and in-
termediate data products. Collecting intermediate data products in addition to other 
provenance data serves multiple purposes as the results of some processes in the 
workflow can vary from run to run and some workflow tests require manually step-
ping through some of the steps to verify and debug results. The intermediate results 
along with the other provenance data can be also used to perform “smart” reruns, 
which will be described in section 5. 

These requirements illustrate the strong need to retain origin and derivation infor-
mation for data and processes in a workflow, to associate results with customized and 
executable workflow version, and to track workflow evolution as described in [16]. 
This paper discusses an implementation that aims to keep track of all these aspects of 
provenance in scientific workflows.  

In the rest of this paper, we review the related work and how our contribution dif-
fers from the rest of the previous work in this area, give a brief overview of the Ke-
pler scientific workflow system, and introduce a generic provenance collection 
framework in Kepler. Finally, we explain the “smart” rerun feature that exhibits a 
usage of extracted provenance information for performing efficient re-runs for a 
slightly modified workflow in Kepler. 

2   Related Work 

The need for data provenance has been widely acknowledged and is evident in nu-
merous applications and systems. Here, we give an overview of several research ef-
forts in the field, some of which were also listed in a recent survey of data provenance 
techniques by Simmhan et al. [6]. We plan to extend the data, execution and work-
flow provenance capabilities of our provenance framework based on the past work 
explained below. 
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The Chimera [7] Virtual Data System uses a process model for tracking prove-
nance in the form of data derivations. Using a Virtual Data Catalog (VDC), defined 
by a query-able Virtual Data Schema, Chimera represents executables as transforma-
tions, a particular execution as a derivation and inputs/outputs as data objects. Work-
flows in Chimera are defined as derivation graphs through a Virtual Data Language 
(VDL). The VDL is also used for querying the VDC independent of the catalog 
schema. Provenance in Chimera is used for tracking the derivation path that led to a 
data product, reproducibility of a derived product, and validation/verification of an 
experiment. 

In the MyGrid project, provenance data is recorded for workflows in XScufl lan-
guage that are executed using the Taverna workflow engine [8]. A provenance log is 
automatically recorded during the workflow execution in a framework differentiating 
between four provenance levels: The process level gathers information about the 
invoked processes, their inputs/outputs and processing times. The data level, inferred 
from the process level describes intermediate and final products derivation paths. The 
organization level stores the metadata for the experiment, and the knowledge level 
links the experiment’s scientific findings/“knowledge” with the other provenance 
levels as supporting evidence. The stored information is used to infer the provenance 
of intermediate and final results and for quality verification of the data in terms of 
tracing the processing steps. 

The above “provenance recording systems” are tightly coupled with their workflow 
execution environment. The Provenance Aware Service Oriented Architecture 
(PASOA) project aims to provide interoperable means for recording and using prove-
nance data using an open provenance protocol [9]. In [18] PASOA identifies several 
requirements for a generic, application independent, provenance architecture for  
e-Science experiments. Among those requirements are recording of interaction prove-
nance, actor provenance and input provenance, where interaction provenance is re-
cording interactions between components and the data passed between them, actor 
provenance is recording processes information and the time of the execution, and 
input provenance is tracking the set of input data used to infer a data product. Other 
requirements include reproducibility of an experiment, preservation and accountabil-
ity of provenance over time and customizability to support and integrate with diverse 
architectures.  

Other applications of data provenance are evident in database and geographic in-
formation systems. Data lineage in database systems where data provenance refers to 
‘a description of the origins of a piece of data and the process by which it arrived in a 
database’ has been addressed by Bunman et al. [10, 19]. Bunman et al. define the 
data lineage problem as “why” and “where” provenance. Why-provenance refers to 
the set of tuples that contributed to a data item, where as where-provenance defines 
how a data item is being identified in the source data. In Geographic Information 
Systems (GIS) data lineage is used for dataset validation. Metadata is recorded for 
tracking the transformations applied to derive a data item [11]. 

The VisTrails system [15] was developed to facilitate interactive multiple-view 
visualizations by providing a general infrastructure, which can be used in conjunction 
with any existing visualization system, like Kitware's Visualization Toolkit [17], to 
create and maintain visualization workflows as well as to optimize their execution.  
Often, progress is made by comparing visualizations that are created by the same 
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basic workflow, but with slightly different parameters or components.  Thus, the Vis-
trails system collects and maintains a detailed provenance record for each instance of 
a workflow as well as across different versions of a workflow thus tracking the evolu-
tion of the workflow.  The Vistrails system is the first system to track a workflow’s 
evolution [16], something that can be useful for anyone who wants to execute a work-
flow multiple times, store the results, and then compare multiple versions of the work-
flow in an organized fashion in order to find just the right set of components and 
parameters. 

Provenance tracking is important for scientific computing. This paper discusses an 
implementation for the Kepler scientific workflow system, which aims to keep track 
of all aspects of provenance in scientific workflows: in workflow evolution, data and 
process provenance, and efficient management and usage of collected data. While 
there are similarities between aspects of the above-mentioned previous work and our 
own, to the best of our knowledge, this approach to designing a provenance collection 
framework that is highly configurable, comprehensive, model of computation inde-
pendent, and includes facility for smart reruns is a unique contribution to provenance 
research in the scientific workflow community. 

3   Kepler Scientific Workflow System  

A scientific workflow is the automated process that combines data and processes in a 
structured set of steps to implement computational solutions to a scientific problem. 
Kepler [1] is a cross-project collaboration to develop a scientific workflow system for 
multiple disciplines that provides a workflow environment in which scientists can 
design and execute workflows.   

Kepler builds on top of the mature Ptolemy II software [12], which is a Java-based 
system and a set of APIs for heterogeneous hierarchical modeling. The focus of 
Ptolemy II is to build models based on the composition of existing components, 
which are called ‘Actors’, and observe the behavior of these simulation models when 
executed using different computational semantics, which are implemented as compo-
nents called ‘Directors.’ 

Actors are the encapsulations of parameterized actions performed on input data to 
produce output data. Actors communicate between themselves by sending Tokens, 
which encapsulate data or messages, to other actors through ports.  An actor can have 
multiple ports and can only send Tokens to an actor that it is connected to one of its 
output ports. The director specifies the model of computation under which the work-
flow will run.  For example, in a workflow with a Process Network (PN) director, 
actors can be thought of as separate threads that asynchronously consume inputs and 
produce outputs.  Under the Synchronous Dataflow (SDF) director, actors share a 
common thread, and the order of execution is statically determined because the num-
ber of tokens each actor will produce and consume is known ahead of time.  Also, 
different domains control how the ports relay Tokens.  For example, in PN each port 
behaves like a FIFO queue of unlimited size where as a port controlled by the SDF 
director acts like a FIFO queue with a size limited to the number of tokens an actor 
can produce or consume. 
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Fig. 1. The Kepler System Architecture 

 
Kepler actors perform operations including data access, process execution, visuali-

zation, and domain specific functions. Kepler uses Ptolemy II’s hierarchical actor 
oriented modeling paradigm to create workflows, where each step is performing some 
action on a piece of data. Workflows can be organized visually into sub-workflows. 
Each sub-workflow encapsulates a set of executable steps that conceptually represents 
a separate unit of work. The Kepler system can support different types of workflows 
ranging from local analytical pipelines to distributed, high–performance and high-
throughput applications, which can be data- and compute-intensive. [13] Along with 
the workflow design and execution features, Kepler has ongoing research on a num-
ber of built-in system functionalities, as illustrated in Figure 1, including support for 
single sign-in GSI-based authentication and authorization; semantic annotation of 
actors, types, and workflows; creating, publishing, and loading plug-ins as archives 
using the Vergil user interface; and documenting entities of different granularities  
on-the-fly.  

Ptolemy II separates the description of important aspects of a design such as be-
havior and architecture, or computation and communication. [14] Kepler inherits this 
concept of separation of concerns in design from the Ptolemy II. This provides sig-
nificant advantages such as lower design time and better re-usability of the design 
because system designers can build a new component for the system and plug them in 
for testing without changing any of the underlying architecture. Also, workflow de-
signers do not have to use ad hoc techniques to implement the workflow’s design and 
execution of the workflow graph. The Ptolemy II system provides a general strategy 
for separating the workflow composition from the overall orchestration of the model 
by introducing the separate concerns for actors, their composition, and the implemen-
tation of computational domains that run the workflows. These ‘separate concerns’ 
are combined visually into a model on the screen, which provides an easy way for 
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system users to see what the exact behavior of the workflow will be without clicking 
on menu to find out things like what the model of computation will be, for example. 

4   Generic Provenance Framework in Kepler  

Given the collaborative and domain-independent nature of the Kepler project, our 
provenance framework needed to include plug-in interfaces for new data models, 
metadata formats and cache destinations. To accomplish this goal we have created a 
highly configurable provenance component that can be easily used with different 
models of computation using the separation of concerns design principle. Just like a 
director, provenance collection is modeled as a separate concern that is bound visually 
to the associated workflow.  This way a user can easily see if provenance is being 
collected for a certain run of the workflow.  Another advantage to this design is its 
compliance with Kepler’s visual actor-oriented programming paradigm, and that it is 
consistent with the behavior of the Kepler user interface.  

4.1   Design Objectives 

A major objective when designing the provenance recording functionality was ease of 
use. We did not want the user to have to go through a complex configuration process 
or the actor designers to have to implement a complex API. Since Kepler is built on 
top of the Ptolemy II framework, we had to consider designs that would seamlessly 
integrate with existing code and work with any director.  

When designing the provenance collection system, another major consideration 
was supporting the multi-disciplinary and multi-project nature of the Kepler project. 
To be more flexible we made our collection facility parametric and customizable. For 
example, a user may want to limit the granularity of the collected data, publish it in a 
specific data source, or only save certain results to verify the behavior of a specific 
workflow component during testing. To facilitate this, we allow the user to choose 
between various levels of detail, and even save all of the provenance data needed to 
recreate a workflow result when the workflow is used as a part of the scientific dis-
covery. 

A workflow run consists of several pieces of information that need to be recorded 
including the context, the input data and its associated metadata, the workflow out-
puts, intermediate data products, the workflow definition, and information about the 
workflow evolution. Context is the who, what, where, when, and why that is associated 
with the run. Workflow definition is a specification of what exists in the workflow 
and can have a context of its own. It includes information about the workflow’s enti-
ties, their parameters and the connections between the actors. Workflow evolution, 
also known as a workflow trail [16], is a description of how the workflow definition 
has changed over time. This is an application of the ideas in [16]. By tracking the 
evolution of a workflow design, its runs, and its parameters over time, the scientist 
can efficiently manage the search of a parameter space and easily jump back to a 
previous version of the workflow that produced interesting results. 
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One of our side goals when designing the provenance recorder was its ability to  
help us debug a workflow during the implementation phase of workflow development. 
By mining and analyzing ‘process provenance,’ data related to the execution of the 
workflow, and intermediate data products that were processed at the time of an error, we 
may be able to figure out exactly what was happening at the time of an error in our 
prototype workflow. 

 

Fig. 2. A screenshot of Vergil that shows the different concerns for model of computation 
(green), provenance collection (blue), smart rerun (red) and actors 

4.2   Implementation 

To address ease of use, we designed the Provenance Recorder (PR) to be configured 
and represented in the same way as a Director in Kepler.  To enable provenance col-
lection in a workflow instance the user drags the PR from the toolbox and places it on 
the workspace with the Director and other workflow entities. Unlike using Directors, 
using the PR with a given workflow is optional, depending on the user’s requirements 
for tracking provenance.  Similar to the Director, it is configured with a standard 
configuration menu and becomes part of the workflow definition. (See Fig. 2.)  

We had to pursue the following steps to provide automatic collection of prove-
nance information in Kepler. We converted Kepler's internal XML workflow repre-
sentation, MOML, into our internal format for provenance data.  This format leaves 
out some of the unnecessary information MOML includes (i.e. actor coordinates and 
the custom actor icons in the user interface) and includes extra information (i.e. Token 
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production rate of the actors, etc.) critical to complete data provenance collection. 
Using the existing MOML generation capabilities in Kepler helped us to efficiently 
collect the provenance associated with the workflow definition.  Also, by keeping 
track of all information associated with the workflow definition we are able to track 
workflow evolution and jump back to interesting workflows saved in our provenance 
store. We leave out the details of our internal format for provenance collection and 
caching here as it is out of the scope of this paper.  

In order to collect information that is generated during a workflow run, the PR im-
plements several event listener interfaces. Different ‘concerns’ in Ptolemy II and 
Kepler, such as the ports through which actors communicate, maintain a list of event 
listener objects that are registered with them.  When something interesting happens, 
the event listeners registered with the specific ‘concern’ in question are notified, and 
take the appropriate action.  For example, when the PR is notified that a data product 
is created, it can then associate the appropriate data lineage information with this data 
product and put it in the provenance store.  Event listeners are also allowed to register 
and un-register with individual concerns so that we can easily control the amount of 
provenance data that is collected during any one run.  This can be very important 
because some workflows create a massive number of intermediate data products, 
which are not always necessary to recreate the results of a certain workflow.   

When the workflow is loaded, the PR will register with the appropriate ‘concerns’ 
in the workflow. When the workflow is executed, PR will process information re-
ceived as events, and save it in provenance store.  As we have mentioned before, the 
provenance recorder can save information that is useful for debugging the workflow.  
To accomplish this, we have the PR register with the appropriate concerns that send 
out notification of events related to the execution of the workflow and any errors that 
occur.  In this way we can find out exactly what actor was executing, with what inputs 
when a certain error occurred. 

Although we were able to automate much of the provenance collection, we had to 
extend the design to handle several other cases. For example, if an actor creates an 
external data product, it must register this product with the PR as well as reporting its 
internal actions. We developed a simple API allowing actors to notify the PR in these 
situations. Once the actors are extended using this API, the PR can collect and save 
these data products and actions in addition to any local data products that were auto-
matically collected using the event listener interfaces. 

5   Efficient Workflow Rerun Enabled by Provenance Data 

In Kepler, we have added functionality to enable efficient reruns of a workflow by 
mining stored provenance data. The idea behind a “smart” rerun [1] is as follows. 
When a user changes a parameter of an actor then runs the workflow again,  
re-executing all the preceding, unchanged steps (actors) in the workflow may be re-
dundant and time consuming. A “smart” rerun of the workflow will take data depend-
encies into account and only execute those parts of the workflow affected by the  
parameter change. The ability to store and mine provenance data is required to enable 
“smart” reruns since the intermediate data products generated in previous runs are 
used as the inputs to the actors that are about to be rerun. 
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We have created the Smart Rerun Manager (SRM) to handle all the tasks associ-
ated with the efficient rerun of a workflow. This includes data dependency analysis 
and provenance data management. The algorithm used by the SRM is derived from 
the Vistrail execution and cache management algorithm used in the Vistrails system 
[15].   The VisTrails cache management algorithm was developed to allow users of a 
visualization system to efficiently explore a parameter space. The premise is that we 
can extract intermediate results of the dataflow from a cache instead of recreating 
them in order to save time when rerunning the dataflow. 

5.1   Implementation and Algorithm Description  

The SRM is an event-based entity in the workflow, which is a 'separate concern' in the 
Kepler system just like the PR. They are both used and configured in a similar way. 
Once a SRM is placed on the workspace by dragging it from the toolbox, all prove-
nance data needed to perform a smart rerun of the workflow will be collected.  To 
allow users to choose whether or not they want to perform a smart rerun of the work-
flow, the SRM is activated by pressing a special “Smart Rerun” button in the user 
interface next to the standard “Run Workflow” button. In this section, we describe 
how the SRM system uses provenance data for optimized rerun and our changes to 
the underlying Vistrails algorithm, which the SRM builds upon. 

The basic idea behind the Vistrails algorithm is to search a graph representation of 
the dataflow for sub-graphs that can be eliminated. The precondition for elimination 
of these sub-graphs is that the actors they contain have already been run with the 
current parameters and input data. The next step is to retrieve the intermediate data 
products produced by this eliminated sub-graph from the provenance store for use as 
input to the actors that need to be rerun.  This part of the provenance store we will call 
the provenance cache.  Each sub-graph is identified with a unique ID, which is an 
important concept that we borrow from the Vistrails system. A unique ID, which is 
used as a key when searching the provenance cache for information related to a par-
ticular sub-graph, represents a unique state of a component (a.k.a. actor), its parame-
ters, and all the actor and parameters that come before it in the workflow. Each unique 
ID is associated with a specific actor and encapsulates the provenance information 
needed to uniquely identify and retrieve the intermediate data products produced by 
that actor. 

When activated by pressing the special “Smart Rerun” button in Kepler’s toolbar, the 
SRM builds a directed graph representing the data dependencies in the workflow. Each 
node in the graph represents an actor in the workflow and the edges represent the flow 
of data between actors. The SRM then analyzes this graph to detect sub-graphs that have 
been successfully computed before and the sub-graphs that must be rerun.  

The analysis begins at the graph’s sinks and recursively traverses all the input edges 
of each node in the direction opposite to the flow of data. At each node, a unique ID is 
generated and used as a key in the cache lookup. If this unique ID is associated with 
some data in the provenance cache, this means that the workflow as it exists from this 
node backward in the dependency graph has been executed successfully before.  In this 
case the actors represented by the nodes sub-graph corresponding to the unique ID can 
be eliminated from the list of actors to be rerun. Conceptually, the intermediate data 
product retrieved from the provenance store using the unique ID replaces this sub-graph. 
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How this is done in practice will be clarified soon. If this unique ID is not associated 
with any data products in the provenance store, we keep traversing our graph until we 
do find a unique ID with associated data in the provenance cache or we reach the source 
nodes in the graph and they need to be rerun as well.  

The last step of the “smart” rerun process is to replace the eliminated sub-graphs 
with components that can stream the data from the provenance cache.  In Kepler-
specific terms, we need to place the intermediate data products retrieved from the 
provenance cache on the appropriate actors input ports while the workflow is running.  
These intermediate data products are the tokens that flowed across this input edge 
from the eliminated actors in the previous runs of the workflow. We developed a 
special actor to replace the eliminated actors and replay the tokens that they would 
have produced. This special actor is called the Stream Actor because it streams data 
from the provenance store into the running workflow. This piece of the system is 
called the vtkDataObjectPipe in Vistrails. Figure 3 visually illustrates a simple exam-
ple where the SRM retrieves the intermediate results of the previous execution and 
replaces the previously executed parts of the workflow with a streaming actor. 

 
 

 

Fig. 3. Smart Rerun Manager retrieving the intermediate results of the previous execution and 
replacing the pre-executed parts of the workflow with a streaming actor. Bottom workflow 
shows StreamActor replacing actors whose computations would be redundant in the rerun. 
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It is important to note that the data associated with a successful lookup in the 
provenance cache can be associated with the preceding run of the workflow or any 
previous runs with the same components, connections, and parameters thus utilizing 
all past provenance information.  Also, two sub-graphs of the same workflow could 
potentially be replaced by data from two distinct runs of the workflow. This is a major 
strength of the Vistrails algorithm, which ensures that no work is repeated. 

For the most part, the SRM is able to use the Vistrails cache management algo-
rithm, however we have made some noteworthy changes and additions. The Vistrails 
system was designed with a single model of computation in mind and actually exe-
cutes portions of the workflow as a part of its graph analysis stage. Since the SRM 
must distinguish between different models of computation (Directors) in Kepler that 
expect different behaviors during the workflow run, we had to do the graph analysis 
step before handing off the execution of the workflow to the Director. This is an effi-
cient design in Kepler because each Director has a distinct behavior and trying to 
encode these behaviors in the SRM would result in redundant code. 

Also, our Stream Actor must take these separate models of computation into  
account. For example, when a workflow is executed using a Director, such as the 
Process Networks Director that requires each actor consume a stream of inputs and 
produce a stream of outputs, the SRM actor makes sure that the stream of tokens is  
replayed in the same order that it was collected when inserting data from the prove-
nance store into the workflow. In a domain, such as Synchronous Dataflow (SDF), 
where each actor consumes a certain number of inputs and produces a certain number 
of outputs, the Stream Actor gives the tokens to input ports at the rate they are ex-
pected.  What we mean by rate is clarified by the following example.  In a model 
controlled by the SDF Director assume that actor A declares that it will consume x 
tokens each time it is activated.  The SDF Director schedules the actors so that they 
will not run until they have the proper number of inputs.  If the actor B creates x/2 
inputs each time it executes and is connected to actor A, the SDF Director will sched-
ule B to execute twice so that the actor A will have enough inputs when it executes. 
As it is illustrated in this example, the SRM must guarantee the production rate of the 
StreamActor to ensure that the rerun is performed correctly. 

Another difference between the Vistrails algorithm and the algorithm that the SRM 
is using, is the way in which the SRM handles ‘non-cacheable’ actors in the work-
flow.  Non-cacheable actors are the actors whose output depends on when the run 
occurs as well as what the inputs and parameters are.  For example, an actor that que-
ries a remote database is non-cacheable if the database modifiable because it may 
receive different results depending when the query is executed. In contrast, the Vis-
trails system views every component as a function, for a specified input you can pre-
dict the output. A non-cacheable actor in the Vistrails system does not have its outputs 
saved, and thus its unique ID will never be found in the provenance cache. Non-
cacheable components in the context of Visualization workflows are those whose 
outputs cannot be saved or whose outputs are too large to be saved. Actors that de-
pend on the non-cacheable actor are not rerun unless there is a new input or parameter 
change upstream. If it is not specified otherwise, the SRM will rerun all actors that 
depend on a non-cacheable actor since their results depend on non-deterministic na-
ture of the non-cacheable actor. 
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The SRM’s user interface allows the user to specify if an actor is cacheable or if it 
must be rerun every time. In some cases you may want to save the state of an actor 
that behaves in a non-deterministic way. This enables the user choose between doing 
a “smart” rerun of the workflow with saved provenance data to exactly recreate a past 
run or to rerun the workflow to get the most up-to-date results but still avoid redun-
dant steps.  

The SRM is an example to valuable usage of data from our provenance store. It has 
the potential to save scientists hours while they explore the parameter space of their 
workflows and is an important feature of the Kepler system. 

6   Results and Conclusions 

This paper discusses our generic provenance framework for use with scientific work-
flows.  The framework is designed to support a wide range of workflow types and is 
extensible because of the modularity of its design and the flexibility of the event lis-
tener interfaces that it implements.  Most of the discussed functionality has been im-
plemented with the exception of a final data model design.  This paper does not focus 
on the internal structure of the collected information to support provenance and cach-
ing, but mentions these to explain the PR and SRM. We plan to continue working on 
the data models and make it available in the near future. We have already had interest 
in the PR from a wide variety of users, some of which have used our initial version 
and given positive feedback. 

Performance Evaluation. The PR has been designed to be as generic as possible and 
has met most of the design goals that we set out to achieve.  The event based nature of 
the design has allowed us to collect the variety of information needed in order for the 
system to be useful in a wide range of application areas while at the same time having 
a minimal performance impact on the system.  Specific performance measurements 
for workflows using the PR vary greatly depending on the amount of provenance data 
being saved and the ratio of data produced to time spent computing.  For example, a 
computationally intensive workflow may produce the same amount of provenance 
data as a workflow that runs in a matter of seconds, but has less overhead as the PR 
takes much smaller percentage of total run time. We can safely say that we have ac-
complished our design goal of efficiency because in the majority of our test cases the 
increase in run time attributed to the PR is minimal and usually only a couple of sec-
onds.  Also, in some cases where a specific actor generates excessive amounts of data, 
our design allows us to specify that we are not interested in this actor’s information by 
un-registering with its list of event listeners.  

7   Future Work    

We have developed several prototype relational and XML data models and plan to 
implement them in the Kepler Provenance Framework once we have design a suitable 
data model. The data model for storing provenance information in Kepler should 
accommodate the needs of different scientific domains as well as allow for efficient 
storage and retrieval of data. Another area of we are interested in researching is in 
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defining the policies for managing provenance data for different projects. This is an 
important problem that utilizes other functionality and system components in Kepler 
including the authentication and authorization framework, the data access API, and 
semantic annotations. Another planned usage of actor annotations is to annotate the 
actors so that the PR could automatically figure information related to what files they 
create during the run, what algorithm and data structures they use, etc. We also plan 
to implement querying and viewing system for collected provenance information. 

There are multiple provenance activities within the Kepler collaboration including 
provenance tracking in collection-oriented workflows and integrating with RDF based 
provenance stores. In this paper, we have only mentioned the existing implementa-
tion, the algorithms it utilizes, and its functionality. We plan to bring the ongoing 
research by other Kepler developers and researchers together under the Kepler prove-
nance framework once these research ideas are implemented and become available for 
public use. In particular we would like to experiment with the provenance model 
developed by Bowers et al. [20] to support a wide range of scientific use cases in 
phylogeny and the data model for the XMLSchema-based arbitrary textual and binary 
data format articulation capability by Talbott et al. [21].  

This paper already described the usage of the Vistrails algorithm for smart re-runs 
of the same workflow. We plan to further incorporate the Vistrails system capabilities 
into our provenance framework for systematically capturing detailed provenance and 
workflow evolution information. [22] This will require customizing or extending the 
existing Vistrails action-based model by information on the Kepler workflow model-
ing language (MoML) and updating the core Kepler modeling components to record 
this information during the modeling and experimentation phase for a scientific  
workflow. 
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