
L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 118 – 132, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Provenance Collection Support in the Kepler Scientific
Workflow System

Ilkay Altintas1, Oscar Barney2, and Efrat Jaeger-Frank1

1 San Diego Supercomputer Center, University of California, San Diego,
9500 Gilman Drive, San Diego, CA 92092-0505

{altintas, efrat}@sdsc.edu
2 Scientific Computing and Imaging Institute, University of Utah

50 S. Central Campus Drive, Salt Lake City, UT 84112
oscar@sci.utah.edu

Abstract. In many data-driven applications, analysis needs to be performed on
scientific information obtained from several sources and generated by computa-
tions on distributed resources. Systematic analysis of this scientific information
unleashes a growing need for automated data-driven applications that also can
keep track of the provenance of the data and processes with little user interac-
tion and overhead. Such data analysis can be facilitated by the recent advance-
ments in scientific workflow systems. A major profit when using scientific
workflow systems is the ability to make provenance collection a part of the
workflow. Specifically, provenance should include not only the standard data
lineage information but also information about the context in which the work-
flow was used, execution that processed the data, and the evolution of the
workflow design. In this paper we describe a complete framework for data and
process provenance in the Kepler Scientific Workflow System. We outline the
requirements and issues related to data and workflow provenance in a multi-
disciplinary workflow system and introduce how generic provenance capture
can be facilitated in Kepler’s actor-oriented workflow environment. We also
describe the usage of the stored provenance information for efficient rerun of
scientific workflows.

1 Introduction

Current technology significantly accelerates the scientific problem solving process by
allowing scientists to access data remotely, distribute job execution across remote
parallel resources, and efficiently manage data. Although an increasing amount of
middleware to accomplish these tasks has emerged in the last couple of years, using
different middleware technologies and orchestrating them with minimal overhead still
remains difficult for scientists. Scientific workflow systems [1,2,3], aim to improve
this situation by creating interfaces to a variety of technologies and providing tools
with domain-independent customizable graphical user interfaces that combine differ-
ent Cyberinfrastructure [4] technologies along with efficient methods for using them.
Workflows enormously improve data analysis, especially when data is obtained from
multiple sources and generated by computations on distributed resources and/or
various analysis tools. These advances in systematic analysis of scientific information

 Provenance Collection Support in the Kepler Scientific Workflow System 119

made possible by workflows have unleashed a growing need for automated data-
driven applications that also collect and manage the provenance of the data and proc-
esses with little user interaction and overhead.

Requirements for Efficient Provenance Collection during Scientific Workflow De-
sign and Execution. Scientific problem solving is an evolving process. Scientists
start with a set of questions then observe phenomenon, gather data, develop hypothe-
ses, perform tests, negate or modify hypotheses, reiterate the process with various
data, and finally come up with a new set of questions, theories, or laws. Most of the
time before this process can end in results, scientists will fine-tune the experiments,
going through many iterations with different parameters [5]. This repeating process
can reveal a lot about the nature of a specific scientific problem and, thus, provides
information on the steps leading to the solution and end results. Making this informa-
tion available requires efficient usage and collection of data and process provenance
information. Another very important requirement for any scientific process is the
ability to reproduce results and to validate the process that was followed to generate
these results. Provenance tracking provides this functionality and also helps the user
and publication reviewer/reader understand how the run happened and what parame-
ters and inputs were associated with the workflow run.

A provenance collection system must have the ability to create and maintain asso-
ciations between workflow inputs, workflow outputs, workflow definitions, and in-
termediate data products. Collecting intermediate data products in addition to other
provenance data serves multiple purposes as the results of some processes in the
workflow can vary from run to run and some workflow tests require manually step-
ping through some of the steps to verify and debug results. The intermediate results
along with the other provenance data can be also used to perform “smart” reruns,
which will be described in section 5.

These requirements illustrate the strong need to retain origin and derivation infor-
mation for data and processes in a workflow, to associate results with customized and
executable workflow version, and to track workflow evolution as described in [16].
This paper discusses an implementation that aims to keep track of all these aspects of
provenance in scientific workflows.

In the rest of this paper, we review the related work and how our contribution dif-
fers from the rest of the previous work in this area, give a brief overview of the Ke-
pler scientific workflow system, and introduce a generic provenance collection
framework in Kepler. Finally, we explain the “smart” rerun feature that exhibits a
usage of extracted provenance information for performing efficient re-runs for a
slightly modified workflow in Kepler.

2 Related Work

The need for data provenance has been widely acknowledged and is evident in nu-
merous applications and systems. Here, we give an overview of several research ef-
forts in the field, some of which were also listed in a recent survey of data provenance
techniques by Simmhan et al. [6]. We plan to extend the data, execution and work-
flow provenance capabilities of our provenance framework based on the past work
explained below.

120 I. Altintas, O. Barney, and E. Jaeger-Frank

The Chimera [7] Virtual Data System uses a process model for tracking prove-
nance in the form of data derivations. Using a Virtual Data Catalog (VDC), defined
by a query-able Virtual Data Schema, Chimera represents executables as transforma-
tions, a particular execution as a derivation and inputs/outputs as data objects. Work-
flows in Chimera are defined as derivation graphs through a Virtual Data Language
(VDL). The VDL is also used for querying the VDC independent of the catalog
schema. Provenance in Chimera is used for tracking the derivation path that led to a
data product, reproducibility of a derived product, and validation/verification of an
experiment.

In the MyGrid project, provenance data is recorded for workflows in XScufl lan-
guage that are executed using the Taverna workflow engine [8]. A provenance log is
automatically recorded during the workflow execution in a framework differentiating
between four provenance levels: The process level gathers information about the
invoked processes, their inputs/outputs and processing times. The data level, inferred
from the process level describes intermediate and final products derivation paths. The
organization level stores the metadata for the experiment, and the knowledge level
links the experiment’s scientific findings/“knowledge” with the other provenance
levels as supporting evidence. The stored information is used to infer the provenance
of intermediate and final results and for quality verification of the data in terms of
tracing the processing steps.

The above “provenance recording systems” are tightly coupled with their workflow
execution environment. The Provenance Aware Service Oriented Architecture
(PASOA) project aims to provide interoperable means for recording and using prove-
nance data using an open provenance protocol [9]. In [18] PASOA identifies several
requirements for a generic, application independent, provenance architecture for
e-Science experiments. Among those requirements are recording of interaction prove-
nance, actor provenance and input provenance, where interaction provenance is re-
cording interactions between components and the data passed between them, actor
provenance is recording processes information and the time of the execution, and
input provenance is tracking the set of input data used to infer a data product. Other
requirements include reproducibility of an experiment, preservation and accountabil-
ity of provenance over time and customizability to support and integrate with diverse
architectures.

Other applications of data provenance are evident in database and geographic in-
formation systems. Data lineage in database systems where data provenance refers to
‘a description of the origins of a piece of data and the process by which it arrived in a
database’ has been addressed by Bunman et al. [10, 19]. Bunman et al. define the
data lineage problem as “why” and “where” provenance. Why-provenance refers to
the set of tuples that contributed to a data item, where as where-provenance defines
how a data item is being identified in the source data. In Geographic Information
Systems (GIS) data lineage is used for dataset validation. Metadata is recorded for
tracking the transformations applied to derive a data item [11].

The VisTrails system [15] was developed to facilitate interactive multiple-view
visualizations by providing a general infrastructure, which can be used in conjunction
with any existing visualization system, like Kitware's Visualization Toolkit [17], to
create and maintain visualization workflows as well as to optimize their execution.
Often, progress is made by comparing visualizations that are created by the same

 Provenance Collection Support in the Kepler Scientific Workflow System 121

basic workflow, but with slightly different parameters or components. Thus, the Vis-
trails system collects and maintains a detailed provenance record for each instance of
a workflow as well as across different versions of a workflow thus tracking the evolu-
tion of the workflow. The Vistrails system is the first system to track a workflow’s
evolution [16], something that can be useful for anyone who wants to execute a work-
flow multiple times, store the results, and then compare multiple versions of the work-
flow in an organized fashion in order to find just the right set of components and
parameters.

Provenance tracking is important for scientific computing. This paper discusses an
implementation for the Kepler scientific workflow system, which aims to keep track
of all aspects of provenance in scientific workflows: in workflow evolution, data and
process provenance, and efficient management and usage of collected data. While
there are similarities between aspects of the above-mentioned previous work and our
own, to the best of our knowledge, this approach to designing a provenance collection
framework that is highly configurable, comprehensive, model of computation inde-
pendent, and includes facility for smart reruns is a unique contribution to provenance
research in the scientific workflow community.

3 Kepler Scientific Workflow System

A scientific workflow is the automated process that combines data and processes in a
structured set of steps to implement computational solutions to a scientific problem.
Kepler [1] is a cross-project collaboration to develop a scientific workflow system for
multiple disciplines that provides a workflow environment in which scientists can
design and execute workflows.

Kepler builds on top of the mature Ptolemy II software [12], which is a Java-based
system and a set of APIs for heterogeneous hierarchical modeling. The focus of
Ptolemy II is to build models based on the composition of existing components,
which are called ‘Actors’, and observe the behavior of these simulation models when
executed using different computational semantics, which are implemented as compo-
nents called ‘Directors.’

Actors are the encapsulations of parameterized actions performed on input data to
produce output data. Actors communicate between themselves by sending Tokens,
which encapsulate data or messages, to other actors through ports. An actor can have
multiple ports and can only send Tokens to an actor that it is connected to one of its
output ports. The director specifies the model of computation under which the work-
flow will run. For example, in a workflow with a Process Network (PN) director,
actors can be thought of as separate threads that asynchronously consume inputs and
produce outputs. Under the Synchronous Dataflow (SDF) director, actors share a
common thread, and the order of execution is statically determined because the num-
ber of tokens each actor will produce and consume is known ahead of time. Also,
different domains control how the ports relay Tokens. For example, in PN each port
behaves like a FIFO queue of unlimited size where as a port controlled by the SDF
director acts like a FIFO queue with a size limited to the number of tokens an actor
can produce or consume.

122 I. Altintas, O. Barney, and E. Jaeger-Frank

Fig. 1. The Kepler System Architecture

Kepler actors perform operations including data access, process execution, visuali-

zation, and domain specific functions. Kepler uses Ptolemy II’s hierarchical actor
oriented modeling paradigm to create workflows, where each step is performing some
action on a piece of data. Workflows can be organized visually into sub-workflows.
Each sub-workflow encapsulates a set of executable steps that conceptually represents
a separate unit of work. The Kepler system can support different types of workflows
ranging from local analytical pipelines to distributed, high–performance and high-
throughput applications, which can be data- and compute-intensive. [13] Along with
the workflow design and execution features, Kepler has ongoing research on a num-
ber of built-in system functionalities, as illustrated in Figure 1, including support for
single sign-in GSI-based authentication and authorization; semantic annotation of
actors, types, and workflows; creating, publishing, and loading plug-ins as archives
using the Vergil user interface; and documenting entities of different granularities
on-the-fly.

Ptolemy II separates the description of important aspects of a design such as be-
havior and architecture, or computation and communication. [14] Kepler inherits this
concept of separation of concerns in design from the Ptolemy II. This provides sig-
nificant advantages such as lower design time and better re-usability of the design
because system designers can build a new component for the system and plug them in
for testing without changing any of the underlying architecture. Also, workflow de-
signers do not have to use ad hoc techniques to implement the workflow’s design and
execution of the workflow graph. The Ptolemy II system provides a general strategy
for separating the workflow composition from the overall orchestration of the model
by introducing the separate concerns for actors, their composition, and the implemen-
tation of computational domains that run the workflows. These ‘separate concerns’
are combined visually into a model on the screen, which provides an easy way for

 Provenance Collection Support in the Kepler Scientific Workflow System 123

system users to see what the exact behavior of the workflow will be without clicking
on menu to find out things like what the model of computation will be, for example.

4 Generic Provenance Framework in Kepler

Given the collaborative and domain-independent nature of the Kepler project, our
provenance framework needed to include plug-in interfaces for new data models,
metadata formats and cache destinations. To accomplish this goal we have created a
highly configurable provenance component that can be easily used with different
models of computation using the separation of concerns design principle. Just like a
director, provenance collection is modeled as a separate concern that is bound visually
to the associated workflow. This way a user can easily see if provenance is being
collected for a certain run of the workflow. Another advantage to this design is its
compliance with Kepler’s visual actor-oriented programming paradigm, and that it is
consistent with the behavior of the Kepler user interface.

4.1 Design Objectives

A major objective when designing the provenance recording functionality was ease of
use. We did not want the user to have to go through a complex configuration process
or the actor designers to have to implement a complex API. Since Kepler is built on
top of the Ptolemy II framework, we had to consider designs that would seamlessly
integrate with existing code and work with any director.

When designing the provenance collection system, another major consideration
was supporting the multi-disciplinary and multi-project nature of the Kepler project.
To be more flexible we made our collection facility parametric and customizable. For
example, a user may want to limit the granularity of the collected data, publish it in a
specific data source, or only save certain results to verify the behavior of a specific
workflow component during testing. To facilitate this, we allow the user to choose
between various levels of detail, and even save all of the provenance data needed to
recreate a workflow result when the workflow is used as a part of the scientific dis-
covery.

A workflow run consists of several pieces of information that need to be recorded
including the context, the input data and its associated metadata, the workflow out-
puts, intermediate data products, the workflow definition, and information about the
workflow evolution. Context is the who, what, where, when, and why that is associated
with the run. Workflow definition is a specification of what exists in the workflow
and can have a context of its own. It includes information about the workflow’s enti-
ties, their parameters and the connections between the actors. Workflow evolution,
also known as a workflow trail [16], is a description of how the workflow definition
has changed over time. This is an application of the ideas in [16]. By tracking the
evolution of a workflow design, its runs, and its parameters over time, the scientist
can efficiently manage the search of a parameter space and easily jump back to a
previous version of the workflow that produced interesting results.

124 I. Altintas, O. Barney, and E. Jaeger-Frank

One of our side goals when designing the provenance recorder was its ability to
help us debug a workflow during the implementation phase of workflow development.
By mining and analyzing ‘process provenance,’ data related to the execution of the
workflow, and intermediate data products that were processed at the time of an error, we
may be able to figure out exactly what was happening at the time of an error in our
prototype workflow.

Fig. 2. A screenshot of Vergil that shows the different concerns for model of computation
(green), provenance collection (blue), smart rerun (red) and actors

4.2 Implementation

To address ease of use, we designed the Provenance Recorder (PR) to be configured
and represented in the same way as a Director in Kepler. To enable provenance col-
lection in a workflow instance the user drags the PR from the toolbox and places it on
the workspace with the Director and other workflow entities. Unlike using Directors,
using the PR with a given workflow is optional, depending on the user’s requirements
for tracking provenance. Similar to the Director, it is configured with a standard
configuration menu and becomes part of the workflow definition. (See Fig. 2.)

We had to pursue the following steps to provide automatic collection of prove-
nance information in Kepler. We converted Kepler's internal XML workflow repre-
sentation, MOML, into our internal format for provenance data. This format leaves
out some of the unnecessary information MOML includes (i.e. actor coordinates and
the custom actor icons in the user interface) and includes extra information (i.e. Token

 Provenance Collection Support in the Kepler Scientific Workflow System 125

production rate of the actors, etc.) critical to complete data provenance collection.
Using the existing MOML generation capabilities in Kepler helped us to efficiently
collect the provenance associated with the workflow definition. Also, by keeping
track of all information associated with the workflow definition we are able to track
workflow evolution and jump back to interesting workflows saved in our provenance
store. We leave out the details of our internal format for provenance collection and
caching here as it is out of the scope of this paper.

In order to collect information that is generated during a workflow run, the PR im-
plements several event listener interfaces. Different ‘concerns’ in Ptolemy II and
Kepler, such as the ports through which actors communicate, maintain a list of event
listener objects that are registered with them. When something interesting happens,
the event listeners registered with the specific ‘concern’ in question are notified, and
take the appropriate action. For example, when the PR is notified that a data product
is created, it can then associate the appropriate data lineage information with this data
product and put it in the provenance store. Event listeners are also allowed to register
and un-register with individual concerns so that we can easily control the amount of
provenance data that is collected during any one run. This can be very important
because some workflows create a massive number of intermediate data products,
which are not always necessary to recreate the results of a certain workflow.

When the workflow is loaded, the PR will register with the appropriate ‘concerns’
in the workflow. When the workflow is executed, PR will process information re-
ceived as events, and save it in provenance store. As we have mentioned before, the
provenance recorder can save information that is useful for debugging the workflow.
To accomplish this, we have the PR register with the appropriate concerns that send
out notification of events related to the execution of the workflow and any errors that
occur. In this way we can find out exactly what actor was executing, with what inputs
when a certain error occurred.

Although we were able to automate much of the provenance collection, we had to
extend the design to handle several other cases. For example, if an actor creates an
external data product, it must register this product with the PR as well as reporting its
internal actions. We developed a simple API allowing actors to notify the PR in these
situations. Once the actors are extended using this API, the PR can collect and save
these data products and actions in addition to any local data products that were auto-
matically collected using the event listener interfaces.

5 Efficient Workflow Rerun Enabled by Provenance Data

In Kepler, we have added functionality to enable efficient reruns of a workflow by
mining stored provenance data. The idea behind a “smart” rerun [1] is as follows.
When a user changes a parameter of an actor then runs the workflow again,
re-executing all the preceding, unchanged steps (actors) in the workflow may be re-
dundant and time consuming. A “smart” rerun of the workflow will take data depend-
encies into account and only execute those parts of the workflow affected by the
parameter change. The ability to store and mine provenance data is required to enable
“smart” reruns since the intermediate data products generated in previous runs are
used as the inputs to the actors that are about to be rerun.

126 I. Altintas, O. Barney, and E. Jaeger-Frank

We have created the Smart Rerun Manager (SRM) to handle all the tasks associ-
ated with the efficient rerun of a workflow. This includes data dependency analysis
and provenance data management. The algorithm used by the SRM is derived from
the Vistrail execution and cache management algorithm used in the Vistrails system
[15]. The VisTrails cache management algorithm was developed to allow users of a
visualization system to efficiently explore a parameter space. The premise is that we
can extract intermediate results of the dataflow from a cache instead of recreating
them in order to save time when rerunning the dataflow.

5.1 Implementation and Algorithm Description

The SRM is an event-based entity in the workflow, which is a 'separate concern' in the
Kepler system just like the PR. They are both used and configured in a similar way.
Once a SRM is placed on the workspace by dragging it from the toolbox, all prove-
nance data needed to perform a smart rerun of the workflow will be collected. To
allow users to choose whether or not they want to perform a smart rerun of the work-
flow, the SRM is activated by pressing a special “Smart Rerun” button in the user
interface next to the standard “Run Workflow” button. In this section, we describe
how the SRM system uses provenance data for optimized rerun and our changes to
the underlying Vistrails algorithm, which the SRM builds upon.

The basic idea behind the Vistrails algorithm is to search a graph representation of
the dataflow for sub-graphs that can be eliminated. The precondition for elimination
of these sub-graphs is that the actors they contain have already been run with the
current parameters and input data. The next step is to retrieve the intermediate data
products produced by this eliminated sub-graph from the provenance store for use as
input to the actors that need to be rerun. This part of the provenance store we will call
the provenance cache. Each sub-graph is identified with a unique ID, which is an
important concept that we borrow from the Vistrails system. A unique ID, which is
used as a key when searching the provenance cache for information related to a par-
ticular sub-graph, represents a unique state of a component (a.k.a. actor), its parame-
ters, and all the actor and parameters that come before it in the workflow. Each unique
ID is associated with a specific actor and encapsulates the provenance information
needed to uniquely identify and retrieve the intermediate data products produced by
that actor.

When activated by pressing the special “Smart Rerun” button in Kepler’s toolbar, the
SRM builds a directed graph representing the data dependencies in the workflow. Each
node in the graph represents an actor in the workflow and the edges represent the flow
of data between actors. The SRM then analyzes this graph to detect sub-graphs that have
been successfully computed before and the sub-graphs that must be rerun.

The analysis begins at the graph’s sinks and recursively traverses all the input edges
of each node in the direction opposite to the flow of data. At each node, a unique ID is
generated and used as a key in the cache lookup. If this unique ID is associated with
some data in the provenance cache, this means that the workflow as it exists from this
node backward in the dependency graph has been executed successfully before. In this
case the actors represented by the nodes sub-graph corresponding to the unique ID can
be eliminated from the list of actors to be rerun. Conceptually, the intermediate data
product retrieved from the provenance store using the unique ID replaces this sub-graph.

 Provenance Collection Support in the Kepler Scientific Workflow System 127

How this is done in practice will be clarified soon. If this unique ID is not associated
with any data products in the provenance store, we keep traversing our graph until we
do find a unique ID with associated data in the provenance cache or we reach the source
nodes in the graph and they need to be rerun as well.

The last step of the “smart” rerun process is to replace the eliminated sub-graphs
with components that can stream the data from the provenance cache. In Kepler-
specific terms, we need to place the intermediate data products retrieved from the
provenance cache on the appropriate actors input ports while the workflow is running.
These intermediate data products are the tokens that flowed across this input edge
from the eliminated actors in the previous runs of the workflow. We developed a
special actor to replace the eliminated actors and replay the tokens that they would
have produced. This special actor is called the Stream Actor because it streams data
from the provenance store into the running workflow. This piece of the system is
called the vtkDataObjectPipe in Vistrails. Figure 3 visually illustrates a simple exam-
ple where the SRM retrieves the intermediate results of the previous execution and
replaces the previously executed parts of the workflow with a streaming actor.

Fig. 3. Smart Rerun Manager retrieving the intermediate results of the previous execution and
replacing the pre-executed parts of the workflow with a streaming actor. Bottom workflow
shows StreamActor replacing actors whose computations would be redundant in the rerun.

128 I. Altintas, O. Barney, and E. Jaeger-Frank

It is important to note that the data associated with a successful lookup in the
provenance cache can be associated with the preceding run of the workflow or any
previous runs with the same components, connections, and parameters thus utilizing
all past provenance information. Also, two sub-graphs of the same workflow could
potentially be replaced by data from two distinct runs of the workflow. This is a major
strength of the Vistrails algorithm, which ensures that no work is repeated.

For the most part, the SRM is able to use the Vistrails cache management algo-
rithm, however we have made some noteworthy changes and additions. The Vistrails
system was designed with a single model of computation in mind and actually exe-
cutes portions of the workflow as a part of its graph analysis stage. Since the SRM
must distinguish between different models of computation (Directors) in Kepler that
expect different behaviors during the workflow run, we had to do the graph analysis
step before handing off the execution of the workflow to the Director. This is an effi-
cient design in Kepler because each Director has a distinct behavior and trying to
encode these behaviors in the SRM would result in redundant code.

Also, our Stream Actor must take these separate models of computation into
account. For example, when a workflow is executed using a Director, such as the
Process Networks Director that requires each actor consume a stream of inputs and
produce a stream of outputs, the SRM actor makes sure that the stream of tokens is
replayed in the same order that it was collected when inserting data from the prove-
nance store into the workflow. In a domain, such as Synchronous Dataflow (SDF),
where each actor consumes a certain number of inputs and produces a certain number
of outputs, the Stream Actor gives the tokens to input ports at the rate they are ex-
pected. What we mean by rate is clarified by the following example. In a model
controlled by the SDF Director assume that actor A declares that it will consume x
tokens each time it is activated. The SDF Director schedules the actors so that they
will not run until they have the proper number of inputs. If the actor B creates x/2
inputs each time it executes and is connected to actor A, the SDF Director will sched-
ule B to execute twice so that the actor A will have enough inputs when it executes.
As it is illustrated in this example, the SRM must guarantee the production rate of the
StreamActor to ensure that the rerun is performed correctly.

Another difference between the Vistrails algorithm and the algorithm that the SRM
is using, is the way in which the SRM handles ‘non-cacheable’ actors in the work-
flow. Non-cacheable actors are the actors whose output depends on when the run
occurs as well as what the inputs and parameters are. For example, an actor that que-
ries a remote database is non-cacheable if the database modifiable because it may
receive different results depending when the query is executed. In contrast, the Vis-
trails system views every component as a function, for a specified input you can pre-
dict the output. A non-cacheable actor in the Vistrails system does not have its outputs
saved, and thus its unique ID will never be found in the provenance cache. Non-
cacheable components in the context of Visualization workflows are those whose
outputs cannot be saved or whose outputs are too large to be saved. Actors that de-
pend on the non-cacheable actor are not rerun unless there is a new input or parameter
change upstream. If it is not specified otherwise, the SRM will rerun all actors that
depend on a non-cacheable actor since their results depend on non-deterministic na-
ture of the non-cacheable actor.

 Provenance Collection Support in the Kepler Scientific Workflow System 129

The SRM’s user interface allows the user to specify if an actor is cacheable or if it
must be rerun every time. In some cases you may want to save the state of an actor
that behaves in a non-deterministic way. This enables the user choose between doing
a “smart” rerun of the workflow with saved provenance data to exactly recreate a past
run or to rerun the workflow to get the most up-to-date results but still avoid redun-
dant steps.

The SRM is an example to valuable usage of data from our provenance store. It has
the potential to save scientists hours while they explore the parameter space of their
workflows and is an important feature of the Kepler system.

6 Results and Conclusions

This paper discusses our generic provenance framework for use with scientific work-
flows. The framework is designed to support a wide range of workflow types and is
extensible because of the modularity of its design and the flexibility of the event lis-
tener interfaces that it implements. Most of the discussed functionality has been im-
plemented with the exception of a final data model design. This paper does not focus
on the internal structure of the collected information to support provenance and cach-
ing, but mentions these to explain the PR and SRM. We plan to continue working on
the data models and make it available in the near future. We have already had interest
in the PR from a wide variety of users, some of which have used our initial version
and given positive feedback.

Performance Evaluation. The PR has been designed to be as generic as possible and
has met most of the design goals that we set out to achieve. The event based nature of
the design has allowed us to collect the variety of information needed in order for the
system to be useful in a wide range of application areas while at the same time having
a minimal performance impact on the system. Specific performance measurements
for workflows using the PR vary greatly depending on the amount of provenance data
being saved and the ratio of data produced to time spent computing. For example, a
computationally intensive workflow may produce the same amount of provenance
data as a workflow that runs in a matter of seconds, but has less overhead as the PR
takes much smaller percentage of total run time. We can safely say that we have ac-
complished our design goal of efficiency because in the majority of our test cases the
increase in run time attributed to the PR is minimal and usually only a couple of sec-
onds. Also, in some cases where a specific actor generates excessive amounts of data,
our design allows us to specify that we are not interested in this actor’s information by
un-registering with its list of event listeners.

7 Future Work

We have developed several prototype relational and XML data models and plan to
implement them in the Kepler Provenance Framework once we have design a suitable
data model. The data model for storing provenance information in Kepler should
accommodate the needs of different scientific domains as well as allow for efficient
storage and retrieval of data. Another area of we are interested in researching is in

130 I. Altintas, O. Barney, and E. Jaeger-Frank

defining the policies for managing provenance data for different projects. This is an
important problem that utilizes other functionality and system components in Kepler
including the authentication and authorization framework, the data access API, and
semantic annotations. Another planned usage of actor annotations is to annotate the
actors so that the PR could automatically figure information related to what files they
create during the run, what algorithm and data structures they use, etc. We also plan
to implement querying and viewing system for collected provenance information.

There are multiple provenance activities within the Kepler collaboration including
provenance tracking in collection-oriented workflows and integrating with RDF based
provenance stores. In this paper, we have only mentioned the existing implementa-
tion, the algorithms it utilizes, and its functionality. We plan to bring the ongoing
research by other Kepler developers and researchers together under the Kepler prove-
nance framework once these research ideas are implemented and become available for
public use. In particular we would like to experiment with the provenance model
developed by Bowers et al. [20] to support a wide range of scientific use cases in
phylogeny and the data model for the XMLSchema-based arbitrary textual and binary
data format articulation capability by Talbott et al. [21].

This paper already described the usage of the Vistrails algorithm for smart re-runs
of the same workflow. We plan to further incorporate the Vistrails system capabilities
into our provenance framework for systematically capturing detailed provenance and
workflow evolution information. [22] This will require customizing or extending the
existing Vistrails action-based model by information on the Kepler workflow model-
ing language (MoML) and updating the core Kepler modeling components to record
this information during the modeling and experimentation phase for a scientific
workflow.

Acknowledgements

The authors would like to thank the rest of the Kepler team for their excellent collabo-
ration, especially to Timothy McPhillips for the discussion on requirements for a
provenance framework and future steps, Claudio Silva and Juliana Freire for their
help on VisTrails and insight on workflow provenance, and Steven Parker for his
support and guidance. This work was supported by DOE Sci-DAC DE-FC02-
01ER25486 (SDM) and NSF/ITR 0225673 (GEON).

References

1. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency
and Computation: Practice & Experience, Special Issue on Scientific Workflows, to ap-
pear, 2005. http://kepler-project.org/

2. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R.,
Wipat, A. Wroe, C.: Taverna: Lessons in creating a workflow environment for the life sci-
ences”. Accepted for publication in Concurrency and Computation: Practice and Experi-
ence Grid Workflow Special Issue

 Provenance Collection Support in the Kepler Scientific Workflow System 131

3. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor,
I., Wang, I.: Programming Scientific and Distributed Workflow with Triana Services”. In
Grid Workflow 2004 Special Issue of Concurrency and Computation: Practice and Experi-
ence, to be published, 2005

4. Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the Na-
tional Science Foundation Blue Ribbon Advisory Panel on Cyberinfrastructure

5. Lipps, J. H.: The Decline of Reason?. http://www.ucmp.berkeley.edu/fosrec/Lipps.html,
6. Simmhan, Y. L., Plale, B., Gannon, D., A survey of data provenance in e-science. In

SIGMOD Rec. 34(3): 31-36, 2005
7. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A Virtual Data System for Repre-

senting, Querying, and Automating Data Derivation. In Proceedings of the 14th Confer-
ence on Scientific and Statistical Database Management, 2002

8. Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L.,
Oinn, T.: Provenance of e-Science Experiments - experience from Bioinformatics. In Pro-
ceedings of The UK OST e-Science second All Hands Meeting 2003 (AHM'03)

9. Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-oriented
grids. In Proceedings of the 8th International Conference on Principles of Distributed Sys-
tems (OPODIS'04), 2004

10. Buneman, P., Khanna, S., Tan, W.C.: Why and Where: a characterization of data prove-
nance. In Proc. ICDT 2001

11. Lanter, D.P., Design of a lineage-based meta-data base for GIS, In Cartography and Geo-
graphic Information Systems, 18(4):255-261, 1991

12. Ptolemy Project, See Website: http://ptolemy.eecs.berkeley.edu/ptolemyII/
13. Altintas, I., Birnbaum, A., Baldridge, K.K., Sudholt, W., Miller, M., Amoreira, C., Potier,

Y., Ludaescher, B.: A Framework for the Design and Reuse of Grid Workflows. Lecture
Notes in Computer Science, Scientific Applications of Grid Computing: First International
Workshop, SAG 2004, Beijing, China, September 20-24, 2004, Volume 3458 (3), pp 119-
132, ISBN3-540-25810-8.

14. Yang, G., Watanabe, Y., Balarin, F., Sangiovanni-Vincentelli, A.: Separation of Concerns:
Overhead in Modeling and Efficient Simulation Techniques. Fourth ACM International
Conference on Embedded Software (EMSOFT'04), September, 2004

15. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., and Vo, H.: Vis-
trails: Enabling interactive multipleview visualizations. In IEEE Visualization 2005, pages
135–142, 2005

16. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., and Vo, H.: Managing the
Evolution of Dataflows with VisTrails. In Proceedings of the IEEE Workshop on Work-
flow and Data Flow for Scientific Applications (SciFlow 2006)

17. The Visualization Toolkit (VTK), See Website: http://public.kitware.com/VTK/
18. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and using

provenance in e-Science experiments. Technical Report, Electronics and Computer Sci-
ence, University of Southampton, 2005

19. Buneman, P., Khanna, S., Tan, W. C.: Data Provenance: Some Basic Issues. In Proceed-
ings of the 20th Conference on Foundations of Software Technology and theoretical Com-
puter Science, 2000

20. Bowers, S., McPhillips, T., Ludaescher, B., Cohen, S., Davidson, S.B.:A Model for User-
Oriented Data Provenance in Pipelined Scientific Workflows� . In Proceedings of the
IPAW'06 International Provenance and Annotation Workshop, Chicago, Illinois, USA
May 3-5, 2006

132 I. Altintas, O. Barney, and E. Jaeger-Frank

21. Freire, J, Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E, Vo, H.T.: Managing
Rapidly-Evolving Scientific Workflows. In Proceedings of the IPAW'06 International
Provenance and Annotation Workshop, Chicago, Illinois, USA May 3-5, 2006

22. Talbott, T.D., Schuchardt, K.L., Stephan, E.G., Myers, J.D.: Mapping Physical Formats to
Logical Models to Extract Data and Metadata: The Defuddle Parsing Engine. In Proceed-
ings of the IPAW'06 International Provenance and Annotation Workshop, Chicago, Illi-
nois, USA May 3-5, 2006

	Introduction
	Related Work
	Kepler Scientific Workflow System
	Generic Provenance Framework in Kepler
	Design Objectives
	Implementation

	Efficient Workflow Rerun Enabled by Provenance Data
	Implementation and Algorithm Description

	Results and Conclusions
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

