
L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 1 – 9, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Generation of Workflow Provenance

Roger S. Barga1 and Luciano A. Digiampietri2

1 Microsoft Research, One Microsoft Way
Redmond, WA 98052, USA

2 Institute of Computing, University of Campinas,
Sao Paolo, Brazil

barga@microsoft.com

Abstract. While workflow is playing an increasingly important role in e-
Science, current systems lack support for the collection of provenance data. We
argue that workflow provenance data should be automatically generated by the
enactment engine and managed over time by an underlying storage service. We
briefly describe our layered model for workflow execution provenance, which
allows navigation from the conceptual model of an experiment to instance data
collected during a specific experiment run, and back.

1 Introduction

Many scientific disciplines today are data and information driven, and new scientific
knowledge is often obtained by scientists scheduling data intensive computing tasks
across an ever-changing set of computing resources. Scientific workflows represent
the logical culmination of this trend. They provide the necessary abstractions that
enable effective usage of computational resources, and the development of robust
problem-solving environments that marshal both data and computing resources. Part
of the established scientific method is to create a record of the origin of a result, how
it was obtained, experimental methods used, the machines, calibrations and parameter
settings, quantities, etc. It is the same with scientific workflows, except here the
result provenance is a record of workflow activities invoked, services and databases
used, their versions and parameter settings, data sets used or generated and so forth.
Without this provenance data, the results of a scientific workflow are of limited value.

Though the value of result provenance is widely recognized, today most workflow
management systems generate only limited provenance data. Consequently, this
places the burden on the user to manually record provenance data in order to make an
experiment or result explainable. Once the experiment is finished, the specific steps
leading to the result are often stored away in a private file or notebook. However,
weeks or months may pass before the scientist realizes a result was significant, by
which time provenance has been forgotten or lost – it simply slips through the cracks.

We believe the collection of provenance data should be automatic, and the
resulting provenance data should be managed by the underlying system. Moreover, a
robust provenance trace should support multiple levels of representations. In some
cases, it is suitable to provide an abstract description of the scientific process that took
place, without describing specific codes executed, the data sets or remote services

2 R.S. Barga and L.A. Digiampietri

invoked. In other cases, a precise description of the execution of the workflow, with
all operational details such as parameters and machine configurations provided, is
exactly what is required to explain a result. Given no single representation can satisfy
all provenance queries, the system should generate multiple related representations
simultaneously. The ideal model will allow users to navigate from the abstract levels
into lower levels and map the latter backwards to higher level abstractions. This also
allows scientists to specify exactly what they wish to share from their experiment.

In this paper, we suggest the workflow enactment engine should be responsible for
generating workflow provenance automatically during runtime, and an underlying
storage service should be responsible for managing workflow provenance data.
Provenance collection and management should happen transparently. That is, users
should not have to take any special actions or execute special commands to have
provenance of their workflow execution collected and maintained. Indeed, unless
users take extraordinary action, such as purging an experiment result, an accurate
provenance record will be maintained for results residing on their system. By making
the enactment system responsible for the creation and collection of execution
provenance, we are able to generate provenance automatically, freeing users from
having to manually track provenance during execution. Equally important, when
properly collected and maintained, workflow provenance data can be indexed and
queried as a first class data product using conventional data management tools and
techniques. In this paper, we also outline a layered or factored model for representing
workflow execution provenance, from an abstract description of the workflow
(scientific process) to a precise description of execution level details for a single
experiment, which enables provenance data to be linked and defined in a way for
more effective discovery, integration and cooperation.

2 Workflow Execution Provenance Model

In this section we outline the machine-readable model we propose to represent
provenance data captured during workflow execution. The attractions of creating a
machine-readable model of an experiment, that is, a workflow, are not difficult to
envisage. Three key benefits that a multilayered model can bring are explanation,
validation, and insight. Having an abstract model of the science being undertaken,
and being able to use the model to interpret behavior (services and data sets used),
together make it possible to explain or reason about the science. For validation,
knowing which individual activities were executed, identifying branches taken during
execution, steps skipped or inserted, and specific parameters supplied at runtime is
essential when trying to establish trust in a result. The ability to compare a set of
related experiment executions against an abstract workflow model, to identify
common patterns or options not yet explored, can be used to gain insight in authoring
new experiment designs. A related benefit, not discussed in this short paper is
optimization – a layered or factored model can expose opportunities to efficiently
store provenances traces in the underlying storage manager.

The first level in our model, illustrated in Figure 1 below, represents an abstract
description of the scientific process. This layer captures abstract activities in the
workflow and links/relationships among the activities or ports of activities, where an

 Automatic Generation of Workflow Provenance 3

abstract activity is a class of activities. These classes can be described by the function
of the activity (e.g., InvokeWebService, or Sequential, Parallel Branch and While
activities, etc) or through semantic description – for example, a class of alignment
activities, where Blastx and FASTA are instances that belong to this class.

Fig. 1. Level L0, represents abstract service descriptions

The second level in our model, illustrated in Figure 2 below, represents an instance

of the abstract model. This layer captures bindings or instances of activities and
additional relationships, as classes of activities are instantiated. This level refines
abstract activities specified in the previous level with a specific instance (for example,
InvokeWebService is bound to a specific activity instance InvokeBlastWebService and
Alignment tool is bound to Blastx tool. The additional information captured at this
level is required to assign fields of the classes of the previous level. For example, the
InvokeWebService has fields ProxyClass and MethodName that should be filled, with
a proxy where the web service can be found and name of the method to be invoked.

Fig. 2. Level L1, represents service instantiation descriptions

In the next level of the model L2, illustrated in Figure 3, represents the execution

of the workflow instance specified in level L1. From level L1 to level L2 the model
captures information provided at runtime, such as parameters and properties that
complete the specification of activities, including input data, runtime parameter
supplied, activities inserted or skipped during execution, etc. Information captured at

Fig. 3. Level L2, represents data instantiation of the executable workflow

4 R.S. Barga and L.A. Digiampietri

this level is sufficient to trace the execution of the workflow, from input parameters to
individual activities executed and runtime parameters supplied to each activity.

The final level of our model L3, illustrated in Figure 4 below, represents runtime
specific information. Here we capture operational specific details, such as the start
and end time of the workflow execution, the start and end time of the individual
activity execution, status codes and intermediary results, information about the
internal state of each activity, along with information about the machines to which
each activity was assigned for execution.

Fig. 4. Level L3, run-time provenance for a workflow execution

At each level of our model, we extend the amount of detail and amount of

information of the previous level. The linkage between levels is facilitated by three
types of operations: extend (class extension); instance (class instantiation) and import
(reference to a specific model). Resuming, in level 0 the user designs a class from a
model that is extended in level 1. In the level 2, the class of level 1 is instantiated.
Level 3 imports the model of level 2 to make references to its entities.

3 Basic Workflow Execution Provenance Sample

In this section we illustrate the information that can be captured in our model using a
simple example. Our implementation is based on the Windows Workflow Foundation

Fig. 5. Workflow level L0

 Automatic Generation of Workflow Provenance 5

(WinFX) [1], an extensible framework for developing workflow solutions. WinFX
has a predefined set of activities (If-Else, While, Parallel, InvokeWebService, etc)
and allows for user-defined custom activities by object inheritance from base
classes.

In level L0 the user defines type of workflow (Sequential, StateMachine or Rule
Driven) she wants to construct and identifies classes of activities available for use.
Fig. 5 shows the graphical representation of the workflow and corresponding code.
The data stored in the provenance for this level supports general queries, such as:
what experiments in my collection use web services? (invokeWebServiceActivities) or
what experiments utilize alignment tools? This level, in general, describes the design
space for all workflows that are an instance of this abstract model.

In level L1 the user replaces abstract activities with concrete activities, and enters
fields pre-defined for the individual abstract activities. For example, the activity
invokeWebServiceActivity1 of Figure 5 was specialized to captureTemperatureWS in
Fig. 6 and the property ProxyClass was filled with the desired proxy. Another
property that was filled in was MethodName, with the name of the method from
the Web Service the user wants to invoke. The provenance model of L2 models
a specific instance of the abstract workflow model that is being prepared for
execution.

Fig. 6. Workflow level L1

From the provenance in Level L1 the user can pose queries about specific
activities: What experiments (workflows) used the web service TemperatureService?
Or, what experiments invoke the following method of a service, or what experiments
use the same alignment tool?

6 R.S. Barga and L.A. Digiampietri

In the level L2, which is the executable workflow, all data sets are identified and
data parameters are supplied so that the workflow is ready to be executed. One
example of parameter that was filled is zipcode from captureTemperatureWS that has
the value “98007” (see more details in Fig. 7). In this level of the model, we can

Fig. 7. Workflow level L2

 Automatic Generation of Workflow Provenance 7

pose a number of queries which do not involve runtime information. These queries
can involve parameters, activities and abstract activities/structures. What workflows
used the value “98007” in zipcode parameters? What was the precondition for the
workflow follow the path If in the IfThenElseActivity1?

The last level (runtime level) can contain a great diversity of information. The kind
of information to be stored will depend of the goals of the user. For example, in a
system that utilizes a high performance Grid, the user may wish to know what activity
(job) was executed in each processor of the Grid and when this execution occurred.
In other systems, the user may wish to store information about the internal status of
each activity. These two examples are allowed by our provenance model, but require
changes in the applications to work (in the Grid example, the scheduler must send
information about the process to the provenance system, and in the second example
each activity must send information to the provenance system).

Fig. 8 shows a simple runtime record from the Executable Workflow of Fig. 7. In
this example, only information about start and end time of the workflow and of the
activities were stored and information about produced data.

Fig. 8. Workflow level 3

Note that in workflows designed using the Windows Workflow Foundation
system there are no ports/channels to data exchange. This exchange is made via
workflow global variables. Our provenance model allows for this information (and
information about the code of each CodeActivity) be stored inside the workflow
model (in level L2). The rules of the workflow also can be stored in the
ExecutableWorkflow level. Fig. 9 shows the Code and Rules for the workflow
ExecutableWorkflow in Fig. 7. Together, these are sufficient to recreate the original
workflow specification.

8 R.S. Barga and L.A. Digiampietri

Fig. 9. Rules and Code of the workflow from Fig. 7

4 Discussion

All experimental scientists know that keeping a good lab notebook is vital. This is
also true for the computational scientist conducting experiments using scientific
workflow systems. We believe the collection of provenance data should be
automatic, and the resulting provenance data should be managed by the underlying
system. In addition, we argue that a robust provenance trace should support multiple
levels of representations. This model will allow users to navigate from the abstract
levels into lower detailed provenance levels, depending on the amount of detail

 Automatic Generation of Workflow Provenance 9

required to validate a result. A multilevel representation would permit scientists to
specify exactly what they wish to share, or retain, from their experiment record.

The work presented here is very much an initial investigation in an area of growing
important for e-Science. Our layered provenance model for workflow execution is a
prototype to be used as a tool to explore user requirements, and to consider system
requirements for managing provenance data. We envisage this provenance data to be
a first class data resource in its own right, allowing users to both query experiment
holdings to establish trust in a result and to drive the creation of future experiments.

5 Related Work

The challenge of workflow execution provenance is growing in both importance and
as a research topic. Most existing provenance systems available today can be
classified into one of two broad categories: i) Flow based provenance systems and ii)
Annotation based provenance systems.

Flow Based Provenance Systems: In many existing Grid/Service workflow based
systems, the provenance recorded is generally a variant of the following: when a
service is invoked, the workflow manager stores the input, output and the service
name in a provenance repository. Also, logically related service invocations are
grouped by using a common ID. One disadvantage with this schema is that it can
sub-optimal for running provenance based queries, and precludes the ability to
compress or reuse provenance data records. And, if not properly designed it can
double the depth of the provenance trace, as traversals first have to lookup the
process, then lookup inputs to the process to get to the parent file. Systems that have
a workflow based provenance include: PASOA [2], Chimera [3], and myGrid [4].

Annotation Based Provenance Systems: Systems such as the storage resource
broker (SRB) [5] and GeoDise [6] store provenance store provenance in name-value
attribute pairs. While this schema can be used to build provenance trace, the
construction again can be very inefficient for the same reasons as in workflow based
provenance systems, and it does not lend itself to a layered model.

References

[1] Windows Workflow Foundation (WinFX), http://msdn.microsoft.com/workflow/.
[2] PASOA, http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome.
[3] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A New Model and

Architecture for Data-Intensive Collaboration. In CIDR, January. 2003.
[4] J. Zhao, M. Goble, C.and Greenwood, C. Wroe, and R. Stevens. Annotating, linking and

browsing provenance logs for e-science.
[5] M. Wan, A. Rajasekar, and W. Schroeder. Overview of the SRB 3.0: the Federated

MCAT. http://www.npaci.edu/ DICE/SRB/FedMcat.html, September 2003.
[6] S. Cox, Z. Jiao, and J. Wason. Data management services for engineering. 2002.

	Introduction
	Workflow Execution Provenance Model
	Basic Workflow Execution Provenance Sample
	Discussion
	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

