
E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 292 – 306, 2006.
© IFIP International Federation for Information Processing 2006

Composition of Use Cases Using Synchronization
and Model Checking

R. Mizouni1, A. Salah2, S. Kolahi3, and R. Dssouli1

1 Electrical and Computer Engineering Department, Concordia University
{mizouni, dssouli}@encs.concordia.ca
2 Computer Science Department, UQAM University

aziz.salah@uqam.ca
3 Computer Science Department, Concordia University

s_kolahi@cs.concordia.ca

Abstract. Capturing the behavior of a system by use cases have been
intensively investigated in the last decade. The challenge is to find both the
adequate model that fits the needs of the analyst and a formal composition
mechanism which helps the generation of the expected behavior. In this paper,
we propose a formal approach for specifying and composing use cases based on
assignments. Those assignments are used to express new use cases. An
assignment provides the join points and the composition operators that will be
taken into account during the composition. These join points are, in fact,
determined through a model checking step. They represent states where a
property defined by the analyst holds. In order to evaluate these assignments,
we define a composition mechanism based on the well known concept of
synchronized product.

Keywords: Use cases, model checking, composition operators, synchronized
product.

1 Introduction

Capturing the system behaviors within use cases has gained a lot of interest during the
last decade. Use cases represent a partial behavior of the system, which helps the
requirement elicitation process. However, composing use cases in order to generate
the system specification is a challenging task. Its complexity lies within the formality
of the model representing use cases, the detection of states on which the composition
is performed, and the level of automation of the composition.

Defining interactions among use cases is another challenge for the analyst which
may be specified explicitly using composition operators, namely sequential
concatenation, iteration, alternative and etc. After the composition according to
specified operator semantics, the obtained behavior may not meet the analyst’s
intended point of view because of possible unexpected interactions. Retrieving
unexpected interactions is a hard task which makes the incremental construction of
the specification a helpful means for getting the right system behavior.

 Composition of Use Cases Using Synchronization and Model Checking 293

Use Case and Assignment

Assignement
Base Use Case
Referred Use Case

CTL Property

Base Use Case

Use Case Composition
Step

Join Points

StepModel CheckingSpecficiation Step

Fig. 1. Approach Overview

Furthermore, in order to explicitly specify the interactions, the analyst has to
choose the states where to compose use cases, called join points. This choice again is
a hard task that requires deep understanding of the characteristics of each state within
the use case. The usage of temporal property for determining these composition join
points helps the process of generating the system specification, especially when the
size of use cases increases.

This paper addresses a formal, automated and incremental approach for use case
composition using assignments. The approach consists of three steps, as shown in
Fig. 1: use cases and assignments specification step, a model checking step, and a
composition step. First, the analyst provides a set of use cases and a set of
assignments. For each assignment, a new use case that represents the evaluation of
this assignment is generated. Each assignment uses two use cases: the base use case
and the referred use case. The base use case is the one where the new behavior will be
added while the referred use case represents the additional behavior to be weaved
within the base use case. Moreover, the assignment includes a composition operator
and a CTL [1] property which is used to identify the join points. The states of the base
use case where the property holds are determined by a model checker, and then,
selected as joint points. The composition will be performed on these states respecting
the semantics of the composition operator of the assignment. These semantics are
achieved by means of the composition based on the synchronization product of two
use cases on common labels, as we will show later. The use case that results from the
composition represents the evaluation of the assignment.

The paper is structured as follows. In Section 2, we give an overview of the
notation we are using in the paper, and in Section 3, we present the definition of
assignments. In Section 4, we describe our approach for composing use cases and
synthesizing the system automaton. By an example of an invoicing system, Section 5
shows the applicability of our approach to distributed use cases. Discussion of related
works is given in Section 6. Finally, we draw our conclusions and discussions on
future works in Section 7.

2 Preliminaries

A use case is used to describe a functional behavior of the system regarding a certain
concern. The behavior represented as a use case is composed of sequences of actions.

294 R. Mizouni et al.

A finite state automaton model is used to express the behavior of a use case because
of its expressiveness power and its formality level. A finite state automaton (FSA) is
defined as a 5-tuple (S, s0,Sf , L, E), where S is the set of states, s0

 ∈ S is the initial
state, Sf

 ⊆ S is the set of final states, L is the set of labels, and E ⊆ S ×L × S is the set

of transitions. For a transition (s,l,s')∈E, we write 'ss l⎯→⎯ ∈E. A clone of a use
case is an automaton generated from the use case, with having the same structure and
same set of behaviors, but different edge labeling. Next, we present the formal
definition of a clone of a use case FSA.

Definition 1 (Clone of a use case)
A clone of use case FSA A=(S, s0, Sf,, L, E) respecting a renaming function Rename:
L→L' is a use case FSA A'=(S, s0,Sf , L’, E’) such that:

)),(,(''',),,(2121 slRenamesethatsuchEeEslse =∈∃∈=∀

The clone of a use case is obtained by renaming its different labels using a renaming
function.

We will use synchronization for composing FSAs. We present our definition of
synchronized product which is based on synchronization at common labels.

Definition 2 (Synchronized product on common labels)
Let Ai = (Si, s0

i, Sf
i, Li, Ei) for n FSAs. We define the synchronized product of Ai

i=1..n in their common labels as the connected component containing the state (s0
1,

…,s0
n) of the FSA (S, s0, Sf, L, E) where S ⊆ S1×…×Sn, s

0
=(s0

1,…, s0
n), S

f⊆ (Sf
1×…×Sn)

∪ (S1×Sf
2×…× Sn) ∪…∪ (S1×S2×…× Sf

n), L ⊆ (L1∪ L2∪…∪ Ln), and E is the set of
transition defined by the inference rules :

)2(
))(()),((),),...,(),...,((

)}(/{)),'((

)1(
),..,',..,,(),..,,..,,(

)1,(),'(

"'"""
11

1

2121

JiifssJiifssEssss

LljJwhereJkEss

Essssssss

nijLlEss

iiiin
l

n

j
nij

ki
l

i

ni
l

ni

jii
l

i

∉=∈=∈⎯→⎯

∩∈=∈∈⎯→⎯

∈⎯→⎯

≤≠≤∉∈⎯→⎯

≤≠≤

Rule (1) states that when a label belongs to a unique FSA, then only this FSA fires
the transition. Rule (2) shows that when a label belong to more than one FSA, then all
these FSAs synchronize in order to fire the transition at the same moment.

After specifying the use cases to compose, the analyst has to describe properties.
We use the Computation Tree Logic (CTL) formalism for its expressiveness to
describe both safety and liveness properties of the system in the states. Given a CTL
formula ϕ and a state s, s ╞ ϕ whenever ϕ is true in s.

Definition 3 (Join Point Set)
Let A = (S, s0, Sf, L, E) a use case FSA. Join point Set J of a CTL formula ϕ in A is a
set of states S such that J={s∈S / s╞ ϕ }.

This set defines the states where the composition will be performed.

 Composition of Use Cases Using Synchronization and Model Checking 295

3 Assignment Specification

3.1 Use Case Composition Operators

The analyst can specify different operators to model interactions between use cases.
The Include composition operator specifies that the base use case has to include
the behavior of the referred use case during the execution flow in the join point. After
the execution of the referred use case, the base use case would resume from the join
point. The Extend_with composition operator specifies that the behavior of the
base use case may include the behavior of the referred use case. Again After the
execution of the referred use case, the base use case would be resumed from the join
point. Finally, the Interrupt_with composition operator specifies that
the flow of execution of the base use case may be interrupted by the referred use case.
In this case, unlike the previous operators, base use case would not be resumed after
the execution of the referred one. We are presenting our approach in the case of these
three which are the most known operators. However, our approach is not limited to
them and the same process can be applied in order to consider other operators such as
sequential concatenation.

3.2 Assignment Description

Assignments are used to specify the composition information between two use cases.
These assignments are equations used to create new use case FSAs from the existing
ones with respect to the semantics of the composition operators. They follow the
syntax:

Z: = Composition_Operator (X, Y) Where ϕ

Where Z represents the FSA that will be generated from the evaluation of the
assignment, X is the base use case and Y is the referred one.
Composition_Operator represents one of the three specified composition
operators, Include, Extend_with, and Interrupt_with. Finally, Where ϕ
defines the set of join points where the composition will be performed. As said
previously, it is defined by the set of states where the property ϕ holds.

It is important to note that the composition is performed on states rather than
transitions. Contrarily to a transition based composition, a state based composition
results in all edges related to that state being affected by the assignment.
Furthermore, unlike other approaches such as aspect-oriented approaches, there is no
need for the qualifiers Before and After defined with the join point where the
composition is done. In our case, the two expressions “Before s” and “After s” lead
to bisimilar FSAs .

4 Use Case Composition Approach

4.1 Join Point Generation

After the definition of the assignment by the analyst, the property as well as the base use
case is sent for model checking. As stated before, this property is used to find the set of

296 R. Mizouni et al.

states on which the composition should be performed. Since model checkers return only
true or false with a counterexample, for each state of the base use case starting from the
initial one, we run the model checker as if it was the initial state of the base use case. If
it returns true then the property holds in that state, if it returns a counter example, then
the property does not hold in that state and is not a member of our joint point set. The
resulting set would act as the place where the composition should be done.

As a result of the model checking step, the join point set could be empty or not. In
case of empty set, the base use case will never verify such property and no new use case
can be generated from the evaluation of the assignment. Therefore a revision of either
the property or the use cases is needed. On the other hand, when the resulting join point
set contains more than one state, the composition of the two use cases should be done in
all these states. For that purpose, two approaches can be considered. The first one is to
do the composition in an incremental manner. This means that we compose first the two
use cases in one state. Then, the resulting use case from the first iteration is used for
composition in another state and so on until all the join points are considered. This
approach brings the problem of state traceability since the resulting states from the first
iteration are no more the states present in the base use case and hence they can not be
traced. Moreover the convergence of the approach has to be proved since the
synchronized product may duplicate states in the resulting use case. The second solution
consists of generating FSAs that takes into account the semantics of the assignment on
the different states where the property holds and then applying synchronization on all of
them in order to derive the new use case. We present this solution in the next section.

4.2 Composition Approach

After retaining the join point set, base and referred use cases have to be composed.
From behavioral point of view, the traces of the referred use cases are inserted within
the trace of the base use case in all the states of the join point set with respect to the
semantics of the operator. In order to achieve this composition, we propose to
synthesize a set of FSAs from the use case FSA, which we call builders. Each builder
reflects the semantics of the composition operator in a join point. Builders would
synchronize in order to generate the intended new use case. They are generated
automatically from use cases with respect to specific synthesis rules as we will show
next. Fig. 2 shows the composition approach. After determining the set of join points,
a set of referred use case clones has to be generated by labeling renaming. Next,
builders are generated and then composed, resulting in a synchronized product from
which we extract an intermediate use case FSA. Finally, we generate the new use case
by recovering the original labeling of the referred use case. This new use case is
added to the originally specified set of use cases and may be used for describing new
assignments. In the next section, we present the formal details of each of these steps.

4.2.1 Clone Synthesis
As mentioned in Definition 1, clones of a use case are generated using a renaming
function for relabeling the alphabet of the original use case. In fact, for each join point
s ∈ J, a clone of the referred use case has to be generated. This is for two reasons: (1)
to differentiate it during the synchronization and hence avoid deadlock caused by
common labels (2) to synchronize with the base use case builder generated for
composition in state s.

 Composition of Use Cases Using Synchronization and Model Checking 297

Synchronized Product

Generating
Intermediate New Us case

Assignment

YX

Referred Use Case Instances

Generating

Joint Point Set

Z

Generating
New Use Casenew use case

Automated Composition

Generating
 Builders

Generating

Fig. 2. Composition Approach

In order to automate the synthesis of the clone FSA, we define a renaming function
that modifies the labeling of the FSA. It uses the joint point state where the clone will
be considered for composition. Let A1= (S1, s

0
1, S

f
1, L1, E1) and A2= (S2, s

0
2, S

f
2, L2, E2)

two use case FSAs such that A1 is the base use case and A2 is the referred one. Let ϕ
be the property specified in the assignment and J the set of join points retained from
the model checking phase. The renaming function for state s ∈ J is:

ss

ss

ss

ss
s

s

endendf

beginbeginf

llfLl

thatsuchendbeginLendbeginLf

=
=

=∈∀
∪→∪

)(

)(

)(,

:},{},{:

2

22

The labels begin and end are put during the generation of builders. They are used
for synchronization in order to indicate where the referred use case has to be inserted
in the base use case. The generated clone of FSA A2 with the renaming function fs is

the FSA),,,,(222
0
222

ssfs ELSsSA
clone

= .

k

s10 sk

Referred builder
Generation

Base Builder

1Generation in s
Referred builder

Generation
Referred builder

GenerationGeneration in s
Base Builder

Generation in s

SYNCHRONIZATION

Renaming Function

...

Renaming Function Renaming Function

JOIN POINT SET

used for

used for used for

used for

used for

used for

s1

fs1
fs10

fsk

Referred Use case Referred Use case Referred Use case
Clone Generation Clone Generation Clone Generation

Base Builder

10

Fig. 3. Synthesis of base and referred builders

298 R. Mizouni et al.

4.2.2 Base Use Case Builders Synthesis
When there is more than one state in the join point set, we end up with a set of base
builders, each of them constructed in order to show the insertion of a corresponding
referred builder in the join point state, as illustrated in Fig. 3. It is the renaming

Table 1. Synthesis Rules of Base builders

Include (X,Y) Where ϕ (ϕ holds in the state s)

}q'{q,SQ ∪=
S (3)

ff SQ =

fS
 (4)

Txx

sxExx
a

a

∈⎯→⎯

≠∈⎯→⎯

'

))'((),('
 (5)

TxqTqqTTqx

sxExx
endfbeginfa

a

ss ∈⎯⎯⎯ →⎯∈⎯⎯⎯ →⎯∈∈⎯→⎯
=∈⎯→⎯

)'(,)'(,)(

)'(),'(

1
)()(

 (6)

Extend_with(X,Y) Where ϕ (ϕ holds in the state s)

}q'{q,SQ ∪=
S

(7)

ff SQ =

fS

(8)

Txx

sxExx
a

a

∈⎯→⎯
≠∈⎯→⎯

'

')(),(

(9)

TqqTqx

sx
endfbeginf ss ∈⎯⎯ →⎯∈⎯⎯⎯ →⎯

=
)'(,)(

)(
)()(

(10)

)'(),(

)(),(
''

'

TxqTxs

sxExx
aa

a

∈⎯→⎯∈⎯→⎯
=∈⎯→⎯

(11)

Interrupt_with(X,Y)Where ϕ(ϕ holds in state s)

}q'{q,SQ ∪=
S

(12)

}{q'SQ ff ∪=

fS

(13)

Txx

Exx
a

a

∈⎯→⎯
∈⎯→⎯

'

')(

(14)

TqqTqx

sx
endfbeginf ss ∈⎯⎯ →⎯∈⎯⎯⎯ →⎯

=
)'(,)(

)(
)()(

(15)

 Composition of Use Cases Using Synchronization and Model Checking 299

function fs which is building this link. In fact, for each state in the set of join points, a
clone of the referred use case is created using fs and a base builder is synthesized to
show the insertion of referred use case in the state s.

For each s ∈ J, we construct a base builder from the use case A1 with respect to the
renaming function fs. The synthesized base builder is an FSA

))},(),({,,,(0
1 TendfbeginfLQqQA ss

fs ∪= that reflects the semantics of the

composition operator as well as the join point s. The labels of the base use case are
not renamed in the base builder, only two labels fs (begin) and fs(end)) are added
which serve as the common label indicating the start and the end of the insertion of
the referred use case within the base one. The two builders will synchronize on these
labels. We present the set of synthesis rules of the FSA A1

s in Table 1 for each of the
composition operators we defined. These rules are defined for a unique join point s.

Let’s consider the case of an Extend_with composition in the state s. The
synthesis of the base builder follows the rules (7-11). Rule (7) defines the set of the
states of the builder FSA while Rule (8) defines the set of its final states. Rule (9)
shows that the labeling of all the transitions that are not outgoing from s are labeled
with the same label a. Rule (10) demonstrates that from the state s new added
transitions labeled with fs(begin) and fs(end) synchronize with the builder of referred
use case clone. Finally, Rule (12) shows that all the outgoing transitions of s are
duplicated in order to handle resuming of the base use case after the insertion of the
referred use case clone. Fig. 4 (d) gives an example of such a base builder.

Final State

x2x3

(c)

x6 x5

x1

x4

b1

b2

x1

 a

begin x1

end

gcb

e

d

f

Basebuilder of the assignment
W:=Interrupt_with (X,Y) Where P

x2x3 b2

(d)

x1

x4 x5x6

b1

Basebuilder of the assignment

a

e

f

e a

begin

end x1

g
cb

d

x1

Y:=Extend_with . (X,Y) Where P

x2x3

(a)

ae

c
d

x4 x6 x5

b

g

Use Case X

x1f

x2x3

(b)

 Z:=Include (X,Y)Where P

x1

x4

b2

b1

begin

end

a

x5x6

f
x1

x1

cgbd

Basebuilder of the assignment

e

s State Where P holds

Legend

s

s Initial State

Fig. 4. Examples of Base Builder of an assignment : (a) base use case (b) synthesized base
builder with include operator in state x1 (c) synthesized base builder with Interrupt_with
operator in state x1 (d) synthesized base builder with Extend_with operator in state x1

300 R. Mizouni et al.

4.2.3 Synthesis of Referred Builders
The synthesis of the referred builder is independent of the operator and the states in
the join points set. Each referred builder is synthesized from clones of the referred use

case using the following rules. Let),,,,(222
0
222

ssfs ELSsSA
clone

= the FSA of the

referred use case clone synthesized from A2 with the renaming function fs.

The referred builder of sA2 with the same renaming fs is a use case FSA

))},(),({,,,(2
0

2 TendfbeginfLQqQA ss
sfs ∪= such that:

{q})S(Q ∪=
S (16)

{q})(Qf =
S

 (17)

Tsq

s
beginfs ∈⎯⎯⎯ →⎯ 0)(

0
 (18)

Tss

Ess
a

a

∈⎯→⎯

∈⎯→⎯
'

'

 (19)

Tqs

Ss
endf

f

s ∈⎯⎯⎯ →⎯
∈

)(

(20)

Rule (16) defines the set of states of the referred builder as the set of states of the
referred use case with an additional state q. Rule (17) defines the set of final states of
the referred builder. According to Rule (18), a transition is fired from the initial state
of the builder to the corresponding state of the initial state of the referred use case.
This transition is labeled with fs(begin). Rule (19) implies that the builder evolves as
the referred use case. Finally, Rule (20) reflects that all the final states are transited to

the unique final state of sA2 with the label fs(end), which is the initial state of the

builder. Fig. 5 illustrates an example of a synthesized referred builder using these
rules.

f

x2x3 x1

x6 x5s

s

b1

(b)

s

x2x3

 end

 f

se

begin

a

c
b d

s

s

s

s

 end s

(a)

a

x5

x1

d b c

s

sss

se

x6

s

Fig. 5. Example of referred builder (a) referred use case clone with a renaming function fs(b) its
referred builder synthesized using rules (16-20)

 Composition of Use Cases Using Synchronization and Model Checking 301

4.2.4 Intermediate Use Case Generation
When builders are generated, their composition is achieved within their synchronized
product on common labels (using Definition 2). During this synchronization, the
referred builders will never synchronize since they have different edges labeling. In
addition, referred and base builders synchronize only on fs(begin) and fs(end), s∈J.

Hence, we verify that ∅=∩
∈

)(21
s

Js
LL ∪ . This verification does not constraint the

approach. In fact, if the intersection is not the empty set, a simple renaming for the
common labels can be made and then recovered after the synchronization.

The resulting automaton still does not represent the intermediate use case since some
of its transitions are labeled by fs(begin) and fs(end), s∈J. These transitions are treated
as ε-transition and removed using the ε-transition removal algorithm in [2]. They were
needed only for the generation of the synchronized product of the builders reflecting the
semantics of the composition operator in the join points. After this step, the synthesized
FSA represents the intermediate use case. It is illustrated in step (4) in Fig. 6.

4.2.5 Labeling and Final States Recovery
Let A1 = (S1, s

0
1, S

f
1, L1, E1) be the base use case and },{As

2clone
Js ∈ the set of the

referred use case clones where J is the set of join points. Let

T)),L(L ,Q,q (Q,C s
2

Js
1

f0

∈
∪= ∪ the generated intermediate use case. We call it

intermediate since it still holds the renaming of labels used to generate the different
clones of the referred use case. Therefore, we have to restore the original labeling to
gain the final use case. For this purpose, we define a renaming function g such that:

⎩
⎨
⎧

=∈∈∀
=∈∀

∪→∪
∈

llfgJsLl

llgLl

whereLLL

ss

s

Js

))((,,

)(,

:L)(:g

1

2121 ∪

The label restoration of the intermediate use case results in the new use case as
shown in step(5) of Fig. 6. By determining the set of final states, the final use case
would be achieved. The set of final states Sf of the newly generated use case D=(S, s0,
Sf, L1∪ L2, E) is defined with respect to the composition operator specified between
A1 and A2. In the case of Include and Extend_with composition operators, the
set of final states of the new use case represents all the states labeled by one of the
final state of the base use case.

f
n

f
in

Ssss

SsSsss

∈

∈∈

),...,,(

)(),),...,,((

21

121 (21)

However, in the case of Interrupt_with composition operator, the set of final
states of the new use case represents the union of all the states that are labeled by one
of the final states of the base use case or the referred use case. This stems from the
fact that the Interrupt_with operator does not let resumption of the base use
case after the execution. Therefore the set of the final states in this case follow the
rule (22) as well as the rule (21):

302 R. Mizouni et al.

f
n

f
in

Ssss

SsSsss

∈
∈∈

),...,,(

)(),),...,,((

21

221 (22)

It is important to mention that unlike the approach in [3] , our approach does not
introduce any non-determinism. In fact, if the use cases specified are deterministic,
the generated use cases from assignments would be also deterministic. An example of
the overall process of the composition is shown in Fig. 6.

1

 Generation

Clone

Use Case X

bc

4

a
g

1

2

3 4 y4y3

 Use Case Y

e

d

h

y2

y1

f

Z:= Include (X,Y) Where P

(a)

y2 y2

(b)

y1

d1f1

h1

y4

y1

h2

d2f2

y4

e2e1

y3y3

Clone2Clone1

<1,rb,1,rb>

<bb,y1,1,rb>

<bb,y2,1,rb>

<bb,y4,1,rb>

<be,rb,1,rb>

begin1

h1

g

e1

end1end1

a

f1 d1

<bb,y3,1,rb>

<4,rb,4,rb>

b

<2,rb,be,rb>

end2 end2

<2,rb,bb,y3>

c

<2,rb,bb,y4>

<2,rb,2,rb> <3,rb,3,rb>

e2h2

<2,rb,bb,y2>

d2f2

<2,rb,bb,y1>

begin2

(d)

y2

y1

rb

y3 y4

begin2

d2

h2

f2

e2

end2 end2

Referred Builder of Clone 2

y2

y1

rb

y4y3

begin1

d1

h1e1

f1

end1 end1

Referred Builder of Clone 1

1

2

4

be

3 4

bb

g

a

begin2

end2

bc

Base Builder in state 2

1

bb

be

4

2

43

begin1

end1

a

b
c

g

Base Builder in state 1

z3

z9

z6

z7

d1

b

c

z8

z11

z12

z10

z2

z4 z5

f1

d1

d2f2

c

a
a

e2 h2

e1 h1

b

d2 g
g

z1

z3

z9

z6

z1

z7

z8

z11

z12

z10

z2

z4 z5

a
a

g
g

d

f d

he

d

e h

d

f

c

c

bb

(f)

5

Labeling

Recovery

2

Generation

Builder

3

Synchronization

on common labels

(c)

(e)

z12

4 RemovalTransition

Fig. 6. Example of Use Case Composition using Assignment Expression: (a) original
specification: use case X and Y and the assignment Z (b) clones of the referred use case (c)
builders of the use case X in state 1 and state 2 as well as the referred builders of the clones of
Y (d) Synchronized product of base and referred builders (e) the intermediate use case (f) the
generated use case Z

 Composition of Use Cases Using Synchronization and Model Checking 303

5 Application on Distributed Use Cases

Distributed use cases are those where the communication between the different
entities is described. In order to show the applicability of our approach on the
distributed systems, we choose the specification of a distributed Invoice Ordering
System.

Canceling Order

9

10

C.S.invoiceID

S.M.invoicedID

6

Init

1

2

 3

5

4

S.C.newOrderInfo

S.M.creditCheck

S.C.existingOrderInfo

C.S.enterID

S.M.getInfoID

M.S.returnInfoID

7

M.S.isValid

M.S.isUnValid

S.C.newCredit

Invoicing Order

C.S.cancelOrder

S.C.confirmCancel

S.M.cancelID

S.C.canceled

M.S.canceled

C.S.confirmed

Init

3

6

 2

1

4

5

C.S.notConfirmed

Fig. 7. Invoice and Cancel order use cases

In order to let our use case model handle the description of distributed use cases,
we represent the labeling of the FSA in the form of (O1.O2.m) where O1 and O2 are
the communicating objects, and m is the message sent from the object O1 to the object

O2 [4]. We present in Fig. 7 two use cases of the invoice ordering system
specification. Three objects are communicating in the system: the customer (C), the
system (S), and the resource manager (M). Let's build a new use case, Ordering,
where it shows that the costumer is authorized to cancel its ordering if the order is not
yet invoiced. The assignment is:

Ordering: = Interrupt_with (Invoicing, Canceling) Where
(AG(orderID)∧ AG((!invoiced)U (invoiced))

The CTL property states that the customer may cancel his order from the time of
receiving the confirmation of his order ID (new or existing) and before invoicing his
order. According to this assignment, the set of states that verify the property is
{3,4,5,6,7}. The use case Canceling order will be composed with the

304 R. Mizouni et al.

Interrupt_With semantics in those states. We note that after the composition of
use cases, it is possible to decompose the obtained FSA to communicating FSAs per
object. This could be done with the projection of the behavior on the objects, as
presented in our previous work [4].

6 Related Work and Discussions

Many approaches have been developed to synthesize state-based models from a set of
use cases [5-11]. State-based models are basically needed to verify and validate the
user requirements in order to detect design problems as soon as possible. In this paper
we tackled the issue of automatic generation of system automaton based on use case
composition through assignment evaluation.

The emerged notations to specify use cases have different degrees of
expressiveness and formality. Glinz [12] uses statecharts to model scenarios. The
integration of scenarios is performed in a way to retrieve the relationship between
scenarios by keeping their internal structure unchanged, and to detect inconsistencies.
The approach proposed carries only the composition of disjoint scenarios with
elementary constructors (sequential, alternative, iteration and concurrency
constructor). As an extension of this work, Ryser [13] introduces a new kind of chart
and notation to model dependencies among scenarios. The advantage of this approach
is the fact of capturing clearly these inter-scenarios dependencies. Yet, this work is
presenting a notation rather than a methodology that can clarify the dependencies
between different scenarios. Bordeleau et al. [14] have proposed integration patterns
for scenario dependencies. UCMs are used to detect dependencies between scenarios.
A state-based specification per use case is generated for each component and
integrated to reflect the scenarios dependencies. The whole process is done manually
and relies on the creativity of the analyst to connect together the different statecharts
in the right way. Araujo et al. [15] focuses on representing aspects during the use case
modeling. They propose to differentiate between aspectual and non-aspectual
scenarios. Similar to our approach, the integration is done on the state machine level.
The relationships between use cases are defined through an interaction pattern and
defined in term of roles. In our case, we propose composition operators to generate
new use cases that integrate the behaviors of the original ones.

During the composition of use cases into transition-based system, the challenge is
to identify states at the scenario level that serve as join points between use cases.
There are two kinds of state characterization: trace-based [5-7, 16], and variable (or
label) state-based characterization [8, 9, 17]. In this paper, we propose to detect these
states using a model checking approach. The state where the composition has to be
made verifies a certain property of the use case. This helps considerably the analyst
since he has no more the arduous task to detect the right state.

Our approach differs substantially from the earlier presented work in some points.
During the process of generating the specification, the analyst has the opportunity to
define assignments in an incremental manner. Hence the order in which these
assignments are specified has a direct impact on the resulting use cases. In fact, the
states that will be generated from the model checking system will differ with different
orders in presenting the assignments. Consequently, having different combinations of
defining assignments and then choosing the proper order may ease the process of

 Composition of Use Cases Using Synchronization and Model Checking 305

obtaining the expected behavior. In addition, we kept the model as rich as possible by
having use cases described as FSAs without complicating the composition procedure.
Having well-established synthesis rules for each composition operator and a
composition based on the well known concept of synchronized product makes the
composition automated, formal and straightforward.

7 Conclusion

In this paper, we presented an approach for composing use cases based on the notion
of assignments. Each assignment includes a base use case, a referred use case, a
composition operator, and a CTL property which is used to identify the states on
which the composition will be done, called joint points. The CTL property and the
base use case are sent to a model checking tool in order to determine the joint points,
where to perform the composition. The composition approach consists of three steps.
First, clones of the referred use case are generated using a renaming function. Then,
proper builders that reflect the semantics of the composition operator and the join
pints are synthesized and their synchronized product on common labels is generated.
Finally the obtained automaton is processed through a relabeling function in order to
recover the original labeling. The obtained FSA represents the behavior of the base
and the referred use cases, merged on the states which hold the specified property
with respect to the semantics of the composition operator.

Our approach is fully automated because of the synthesis rules for constructing
builders and the synchronization mechanism used for composition. It also has the
advantage of providing a helpful support for the analyst, especially when join points
are not clearly evident, which may be the case proceeding with the composition. In
fact, the size of the use case automaton grows significantly after the composition,
adding to the complexity of specifying join points manually. Furthermore, an optional
validation by the analyst after the selection of the join points may be envisaged. The
expansion and enrichment of the model as well as the composition approach is seen as
a part of future work. A tool supporting and visualizing the composition approach is
under construction.

References

[1] E. M. Clarke, J. O. Grumberg, and D. A. Peled, Model Checking: MIT Press, 1999.
[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation second edition ed: Addison Wesley 2000.
[3] R. Mizouni, A. Salah, R. Dssouli, and S. Kolahi, "Role of Variables and Interactions in

Use Case Composition," presented at New Technologies for Distributed Systems
(NOTERE'06), Toulouse, France, 2006.

[4] A. Salah, R. Mizouni, R. Dssouli, and B. Parreaux, "Formal Composition of Distributed
Scenario," presented at FORTE : International Conference on Formal Techniques for
Networked and Distributed Systems, Spain, 2004.

[5] D. Harel and H. Kugler, "Synthesizing State-Based Object Systems from LSC
Specifications," Int. J. of Foundations of Computer Science, vol. 13, pp. 5-51, 2002.

[6] K. Koskimies and E. Mäkinen, "Automatic Synthesis of State Machines from Trace
Diagrams," Software-Practice and Experience, vol. 24, pp. 643-658, 1994.

306 R. Mizouni et al.

[7] E. Mäkinen and T. Systä, "MAS – An Interactive Synthesizer to Support Behavioral
Modeling in UML," presented at ICSE 2001, Toronto, Canada, 2001.

[8] R. Dssouli, S. Some, J. Vaucher, and A. Salah, "Service creation environment based on
scenarios," Information and Software Technology, vol. 41, pp. 697-713, 1999.

[9] S. Uchitel, J. Kramer, and J. Magee, "Synthesis of behavioral models from scenarios,"
IEEE Transactions on Software Engineering, vol. 29, pp. 99-115, 2003.

[10] J. S. Jon Whittle, "Generating statechart designs from scenarios.," presented at the 22nd
International Conference on Software Engineering, 2000.

[11] D. Amyot, W. D. Cho, X. He, and Y. He, "Generating Scenarios from Use Case Map
Specifications," presented at Third International Conference on Quality Software
(QSIC'03), Dallas, November 2003.

[12] M. Glinz, "An integrated formal model of scenarios based on statecharts," presented at
Proceedings of the~Fifth~European Software Engineering Conference, 1995.

[13] J. Ryser and M. Glinz, "Dependency Charts as a Means to Model Inter-Scenario
[14] Dependencies," presented at In G. Engels, A. Oberweis and A. Zündorf (eds.):

Modellierung 2001. GI-Workshop, volume P-1, Bad Lippspringe, Germany, 2001.
[15] F. Bordeleau and J. P. Corriveau, "On the Importance of Inter-Scenario Relationships in

Hierarchical State Machine Design," presented at In Proceedings of Fundamental
Approaches to Software Engineering (FASE'2001), held as part of the Joint European
Conferences on Theory and Practice of Software ETAPS'2001., Genova, Italy, 2001.

[16] J. W. J Araújo, D-K Kim, "Modeling and Composing Scenario-Based Requirements with
Aspects " presented at the 12th IEEE International Requirements Engineering Conference
(RE'04), Kyoto, Japan, 2004.

[17] I. Krüger, R. Grosu, P. Scholz, and M. Broy, "From MSCs to Statecharts," presented at
Distributed and Parallel Embedded Systems, 1998.

[18] A. Salah, R. Dssouli, and G. Lapalme, "Compiling real-time scenarios into a Timed
Automaton," presented at FORTE : International Conference on Formal Techniques for
Networked and Distributed Systems, 2001.

	Introduction
	Preliminaries
	Assignment Specification
	Use Case Composition Operators
	Assignment Description

	Use Case Composition Approach
	Join Point Generation
	Composition Approach

	Application on Distributed Use Cases
	Related Work and Discussions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

