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Abstract. We present a new technique for automatically synthesizing
the assumptions needed in compositional model checking. The compo-
sitional approach reduces the proof that a property is satisfied by the
parallel composition of two processes to the simpler argument that the
property is guaranteed by one process provided that the other process
satisfies an assumption A. Finding A manually is a difficult task that
requires detailed insight into how the processes cooperate to satisfy the
property. Previous methods to construct A automatically were based on
the learning algorithm L∗, which represents A as a deterministic automa-
ton and therefore has exponential worst-case complexity. Our new tech-
nique instead represents A as an equivalence relation on the states, which
allows for a quasi-linear construction. The model checker can therefore
apply compositional reasoning without risking an exponential penalty
for computing A.

1 Introduction

Compositional model checking is a divide-and-conquer approach to verification
that splits the correctness proof of a concurrent system into arguments over its
individual processes. Compositional reasoning [12,4,11,15,20,23] is always advis-
able when one tries to analyze a complex program; for model checking, which
automatically verifies a system by traversing its state space, compositionality is
particularly helpful, because the number of states grows exponentially with the
number of processes.

In order to check that a property P holds for the parallel composition M‖N of
two processes M and N , the compositional approach introduces an assumption
A such that P holds for M‖N if and only if P holds for M‖A. Because the
assumption A is an abstraction of the implementation N , neglecting details
not relevant for the property P , A can be much simpler than N . Recently,
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Fig. 1. Mutual exclusion protocol with two processes. Each process can request access
to a critical resource (r1, r2), obtain the resource (c1, c2), and release it (n1, n2).

there has been a lot of interest in finding A automatically. There are at least
three application scenarios for such a synthesis procedure. The first and most
obvious scenario is to use A as program documentation, to be used during system
optimization and maintenance: a modification to process N is safe as long as A
is still valid. In a second scenario, the model checker provides A as a certificate
(cf. [18]) for the validity of P : once A is known, revalidating the proof, possibly
using a different model checker, is simple. The third and most ambitious scenario
is to compute and use A during the same model checking run, accelerating the
verification by compositional reasoning.

An interesting candidate for A is the weakest environment assumption under
which process M guarantees P [8]. The weakest assumption is independent of N
and therefore only needs to be computed once if M is used in different environ-
ments. However, because the weakest assumption must account for all possible
environment behaviors, it usually has a large state space.

Several researchers have therefore investigated a different construction based
on the L∗ algorithm, a learning technique for deterministic automata [6,2,1]. In
this setting, a candidate assumption A′, represented as a deterministic automa-
ton, is evaluated against both N and P by model checking. As long as either A′

rejects some computation of N or M‖A′ accepts a computation that violates P ,
A′ is refined to eliminate the particular counter example. The advantage of this
approach is that it takes M into account and therefore produces assumptions
that are much smaller than the weakest assumption. However, it is a less general
technique: it will only yield an assumption if M‖N actually satisfies P (and
is therefore a compositional proof technique rather than a compositional veri-
fication technique). Furthermore, the structure of the deterministic automaton
does not correspond to the structure of the (possibly nondeterministic) process
N and is therefore usually not a good form of documentation. Also, learning (and
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Fig. 2. Error LTS for the mutual exclusion property. Mutual exclusion forbids a second
access to the critical resource by c2 after a first access by c1 has occurred that has not
yet been released by n1, and, symmetrically, an access by c1 after an access by c2 before
the next n2. In these cases, the property reaches the error state π.

storing) a deterministic automaton is expensive. Experience with the LTSA
tool [6] suggests that the cost of computing the assumption in this way is
several orders of magnitude higher than verifying the property by simple non-
compositional model checking. In the worst case, the size of A (and therefore
also the cost of the learning process) is exponential in the size of N .

In this paper, we argue that the synthesis of the assumption should not be sig-
nificantly more expensive than solving the verification problem itself. We present
a new approach to finding A, where, rather than synthesizing a deterministic au-
tomaton, we compute in linear time an equivalence relation ∼ on the states of
N . The assumption A is the quotient of N with respect to ∼.

This reduction technique resembles the methods for process minimization used
in compositional reachability analysis [21,22,10,3], which reduce a partially com-
posed system to an observationally equivalent process. However, our equivalence
relation is different: rather than preserving the entire observational behavior of
a process, we only preserve the reachability of an error. Since this is a much
coarser equivalence, the resulting quotient is much smaller.

Consider the mutual exclusion protocol in Figure 1. Each of the two processes
can request access to a critical resource with the action r1 (for process M) or
r2 (for process N), then obtain the resource with c1 or c2, and finally release
the resource with n1 or n2. The protocol satisfies the mutual exclusion property,
which forbids the c2 action to occur after c1 has happened and before the next
n1 has happened, and, symmetrically, the c1 action to occur after a c2 and
before the next n2. Mutual exclusion can be proven by model checking, i.e., by
composing M‖N with the error system for the mutual exclusion property, shown
in Figure 2, and showing that the error state π is unreachable.

Compositional model checking considers the composition M‖A instead of the
full system M‖N . In our approach, the assumption A is the quotient of N with
respect to an equivalence relation on the states of N that merges two states into
a single equivalence class if they either both lead to an error in M‖N or both
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Fig. 3. Assumption A = N/∼ for the compositional proof of mutual exclusion, defined
by the equivalence relation ∼ on the states of LTS N . The equivalence classes of ∼
are shown in grey.

avoid the error in M‖N . Figure 3 shows the equivalence relation for the example.
There are three equivalence classes: state j, states q, r, and states k, l, m, n, o, p.
The quotient A = N/∼ (where each equivalence class is a state, and there is an
edge from one equivalence class to another if there is an edge from one of the
members of the first class to a member of the second class) thus has only three
states.

Like the weakest assumption, the quotient A can be used as an assumption
both in proving and in disproving the property P . The full system M‖N satisfies
P if and only if the composition M‖A satisfies P . Our algorithm for constructing
the equivalence relation takes O(|M |·|N |·log |N |·|P |) time, exceeding the cost of
standard model checking only by a logarithmic factor. The generated assumption
A is related to the process N by a simple homomorphism. Our construction is
therefore a good solution for the first application scenario (documentation) as
well as for the second scenario (certification).

Can we furthermore use the construction of A in the third scenario, to ac-
celerate the model checking process by compositional reasoning? For this pur-
pose, the complexity of the basic construction is too expensive. We give a mod-
ified construction that runs in O(|M| · |N | · log |N | · |P |) time, where M is
an abstraction of M . The abstraction is computed in an automatic abstrac-
tion refinement loop that, starting with the trivial abstraction, incrementally
increases the size of the abstraction. The loop can be interrupted after any
number of iterations, yielding a sound (but not necessarily minimal) assump-
tion. The algorithm terminates when the assumption cannot be reduced any
further.
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2 Labeled Transition Systems

We use labeled transition systems (LTS) to describe the behavior of processes.
A labeled transition system M = 〈V, E, v0, A〉 is given as a set V of states
with a designated initial state v0 ∈ V , a finite alphabet A of actions, and a set
E ⊆ V × A × V of edges.

A sequence −→a = a1a2a3 . . . an ∈ A∗ of actions in the alphabet of an LTS M is
called a run of M if there is a sequence −→v = v0v1v2 . . . vn ∈ V +, starting in the
initial state v0, such that (vi−1, ai, vi) ∈ E is an edge of M for all i = {1, . . . , n}.
−→v is called a state trace of −→a . The set of runs of an LTS is called its language.

A system generally consists of multiple processes. The LTS of each process
restricts the possible behavior of the system: a sequence −→a of actions is a run of
the system iff it is a run of all processes.

Composition. The composition M‖N of two LTS M = 〈V1, E1, v
1
0 , A〉 and

N = 〈V2, E2, v
2
0 , A〉 is the LTS 〈V, E, v0, A〉 with

– V ′ = V1 × V2 and v0 = (v1
0 , v2

0),
– ((v1, v2), a, (v′1, v

′
2)) ∈ E′

⇔ (v1, a, v′1) ∈ E1 ∧ (v2, a, v′2) ∈ E2,
– V ⊆ V ′ is the set of reachable states of V ′, and
– E = E′ ∩ V × A × V is the set of reachable transitions.

Specification. An LTS M = 〈V, E, v0, A〉 is called deterministic if, for all
states v ∈ V of M and all actions a ∈ A of the alphabet of M at most one edge
with label a exits (|E ∩ {v} × {a} × V | ≤ 1). A deterministic LTS P is called a
property.

An LTS S satisfies P , denoted by S |= P , iff the language of S is contained
in the language of P . For a (deterministic) property P = 〈V, E, v0, A〉, the LTS
P = 〈V ∪ {π}, Eπ, v0, A〉 with Eπ = E ∪ {π} × A × {π} ∪ {(v, a, π) | v ∈ V, a ∈ A
and {v} × {a} × V ∩ E = ∅} is called the error LTS of P .

The error state π is treated specially in the composition S‖P of a process S
and an error LTS. For S = 〈V1, E1, v

1
0 , A〉 and P = 〈V2, E2, v

2
0 , A〉, S‖P is the

LTS 〈V, E, v0, A〉 with

– V ′ = (V1 × V2) ∪ {π} and v0 = (v1
0 , v2

0),
– ((v1, v2), a, (v′1, v′2)) ∈ E′

⇔ (v1, a, v′1) ∈ E1 ∧ (v2, a, v′2) ∈ E2,
– (π, a, v) ∈ E′ ⇔ v = π,
– ((v1, v2), a, π) ∈ E′ ⇔ {v1} × {a} × V1 ∩ E1 �= ∅ and

{v2} × {a} × V2 ∩ E2 = ∅,
– V ⊆ V ′ is the set of reachable states of V ′, and
– E = E′ ∩ V × A × V is the set or reachable transitions.

Model checking. The verification problem is to decide for a given system S
and a property P if S |= P . The verification problem can be solved by model
checking, which checks if the error state π is reachable in the composition S‖P .
If S = M‖N consists of two processes, the cost of model checking is in time and
space O(|M | · |N | · |P |).
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Abstraction. Abstraction is a general verification technique, in which the be-
havior of a given process is approximated over a smaller state space. In this paper,
we consider homomorphic abstractions, as introduced by Clarke, Grumberg, and
Long [5]. An LTS A = 〈V ′, E′, v′0, A〉 is a (homomorphic) abstraction of an LTS
N = 〈V, E, v0, A〉 if there exists a total and surjective function h : A → A′, such
that h(v0) = v′0, and for all edges (v, a, v′) in E there is an edge (h(v), a, h(v′))
in E′.

In the following, we identify the homomorphism h with the induced equiva-
lence v ≈ v′ ≡ h(v) = h(v′) on the states. The canonic abstraction defined by
an equivalence relation ≈ is the quotient LTS with respect to ≈. We denote the
equivalence class of a state n with respect to ≈ by [n]≈, or, if ≈ is clear from the
context, by [n]. Let V/≈ = {[v] | v ∈ V } denote the set of equivalence classes of
a set V of states. The quotient of the LTS N = 〈V, E, v0, A〉 with respect to ≈
is the LTS N/≈ = 〈V/≈, E′, [v0], A〉, where ([v], a, [v′]) ∈ E′ iff there are two
states w ∈ [v] and w′ ∈ [v′] such that ([v], a, [v′]) ∈ E.

Compositional verification. Our approach is based on the following compo-
sitional verification rule [19,2]:

(1) M‖A |= P
(2) N |= A

M‖N |= P

To prove that a two-process system M‖N satisfies a property P , the rule replaces,
in premise (1), the process N by the assumption A, which, according to premise
(2), must be chosen such that its language contains the language of N . In our
setting, A = N/≈ is the quotient of N with respect to an equivalence relation
≈ on the states of N . Since the language of an LTS is always contained in the
language of its quotient, we obtain the following simplified rule:

M‖N/≈ |= P
M‖N |= P

For an arbitrary equivalence relation ≈, the rule is sound but not necessar-
ily invertible: the language of M‖N may be a proper subset of the language
of M‖N/≈. In order to use the assumption both for proving and for disprov-
ing properties, we are interested in equivalences ∼ such that M‖N/∼ |= P iff
M‖N |= P. In the following sections, we present methods to construct such
equivalences.

3 Forward Equivalence

We call two states n1 and n2 of N forward-equivalent if merging them does
not make additional states in M‖N‖P reachable. For example, in Figure 3, the
states m, n, o, and p are forward equivalent.

Let m0, n0, and p0 be the initial states of M , N , and P , respectively. The
forward equivalence relation ∼F is defined as follows.
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Fig. 4. Labeling of M‖P in the computation of the forward and backward equivalences
in the mutual exclusion example. The labeling with VF , obtained during the forward
traversal and shown in the second column, indicate that states m, n, o, and p of N are
forward equivalent and can be merged into a single equivalence class R (cf. Figure 5).
The labeling with VB, obtained during the backward traversal and shown in the third
column, indicates that states q and r, and states k, l and R of NF are backward
equivalent. Merging these states yields the assumption shown in Figure 3.

Two states n1 and n2 of N are forward equivalent, n1 ∼F n2, iff, for all
states m of M and all states p of P , there is a path from v0 = (m0, n0, p0)
to the (m, n1, p) if and only if there is a path from v0 to (m, n2, p).

The forward equivalence relation yields an invertible verification rule:
M‖N/∼F |= P iff M‖N |= P .

We compute ∼F in two steps. In the first step, we decorate the states of
Q = M‖P with sets VF of states of N such that the label of a state q of Q
contains a state n of N iff there is a path from v0 to (n, q) in N‖Q. In the
second step, we extract the equivalence relation from the labels: for two states
n1 and n2 of N , n1 ∼F n2 iff for every label VF on some state of Q, n1 is in VF

if and only if n2 is in VF .
The labeling process is carried out as a fixed point computation, beginning

with {n0} as the label on (m0, p0) and the empty set on all other states. If there is
an edge with action a from a state (m, p) labeled with set VF to a state (m′, p′),
then every state n of N that has an incoming edge with action a from some
state in VF is added to the label of (m′, p′). By traversing the graph forward in
a breadth-first manner, it suffices to consider each edge in M‖P at most once.
The fixed point is therefore reached after at most |M | · |N | · |P | steps. Let NF

be the quotient of N with respect to ∼F .
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Fig. 5. The quotient NF of process N for the compositional proof of mutual exclusion.
States m, n, o, and p have been merged into the equivalence class R.

Figure 4 illustrates the computation of the forward equivalence on the states
of process N from the mutual exclusion example. The second column shows
the result VF of the forward labeling process. States m, n, o and p are forward-
equivalent, since they are not contained in the label of any state of M‖P . Figure 5
shows the resulting quotient NF .

A careful analysis shows that NF can be constructed in O(log |NF | · |M | · |N | ·
|P |) time. We fix an arbitrary order <M‖P on the states VM‖P of M‖P , and defer
a linear pre-order �N on the states VN of N , such that two states v, v′ ∈ VN are
identified iff they are forward equivalent (�N≡∼F ). Let dec : VM‖P → 2VN be
the function that maps each state of M‖P to the set of states it is decorated with.
We define ≺N= {(v, v′) ∈ VN

2 | ∃w ∈ VM‖P . v /∈ dec(w) � v′ ∧ ∀w′ <M‖P w. v ∈
dec(w) ↔ v′ ∈ dec(w)} and �N= {(v, v′) ∈ VN

2 | ∀w ∈ VM‖P . v ∈ dec(w) ↔
v′ ∈ dec(w)}.

We can therefore construct the quotients by sorting the states of VN with
respect to �N , using AVL-trees. Concurrently to the sorting, we immediately
merge equivalent states. The nodes of the AVL-tree is therefore bound by the
number |NF | of quotients. Since comparing two elements of VN can be performed
in time O(M), NF can be constructed in time O(log |NF | · |M | · |N | · |P |).

4 Backward Equivalence

We call two states n1 and n2 of NF (cf. Figure 5) backward-equivalent if merging
them neither introduces nor removes an error path in M‖N . In the example of
Figure 3, the states k, l, R and the states q, r are backward equivalent.
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Two states n1 and n2 of NF are backward equivalent, n1 ∼B n2, iff, for
all states m of M and all states p of P , there is a path from (m, n1, p)
to the error state π if and only if there is a path from (m, n2, p) to π.

Combining the backward equivalence relation with the forward equivalence
relation, we again obtain an invertible verification rule:

M‖NF /∼B |= P iff M‖NF |= P iff M‖N |= P.

The construction of ∼B is based on a labeling of the state graph of Q = M‖P
with sets VB of states of NF such that the label of a state q of Q contains a state
n of NF iff there is a path from (n, q) to π in NF ‖Q. We extract the equivalence
relation from the labels as follows: for two states n1 and n2 of NF , n1 ∼ n2 iff
for every label V on some state of Q, n1 is in V if and only if n2 is in V .

The labeling process is carried out as a fixed point computation beginning
with the entire state set of N as the label on the error state π and the empty
set on all other states. If there is an edge with action a between a state (m, p)
and a state (m′, p′) labeled with set V , then every state n of N that has an edge
with action a to some state in V is added to the label of (m, p). By following
the edges backwards from the error states in a breadth-first manner, it suffices
to consider each edge in M‖P at most once. The fixed point is therefore again
reached after at most |M | · |N | · |P | steps. The assumption A is defined by the
composition ∼ := ∼B ◦ ∼F of the two equivalence relations: for two states n1,
n2 of N , n1 ∼ n2 iff [n1]∼F ∼B [n2]∼F .

For the mutual exclusion example, the result VB of the backward labeling
is shown in the third column of the table in Figure 4. States k, l and R, and
states q and r occur in the label of the same states of M‖P . Consequently,
they are backward-equivalent, and ∼B reduces the forward quotient NF to the
assumption LTS depicted in Figure 3.

5 Assumptions from Abstractions

Traversing the state space of M‖P , as in the constructions of the previous sections,
is not feasible if M is large, for example because it is again composed from multi-
ple processes. In this section, we modify the algorithms to work on an abstraction
of M . We assume that the abstraction is defined by a given equivalence relation
≈. This equivalence relation is used to construct a modal transition system, which
in turn is used to compute upper and lower bounds for the labels VF (or VB) of
the states of M‖P . We present an algorithm for computing ≈ in Section 6.

Replacing M with an abstraction M introduces the possibility that two states
of N both lead to an error when composed with M, but only one of them leads
to an error when composed with M . The algorithm must therefore distinguish
situations that may lead to an error (i.e., the error is reached in the composition
with M but not necessarily in M) from situations that must lead to an error
(both in composition with M and in composition with M). Merging two states
of N is safe in two cases: (1) if they both must lead to an error and (2) if neither
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of them may lead to an error. We formalize this idea using modal transition
systems. (The concept of modal transition systems has recently been successfully
applied in model checking for single processes [7,14,9].)

A modal transition system (MTS) [17,16] is a tuple M=〈V, Emust , Emay , v0, A〉
such that Mmust = 〈V, Emust , v0, A〉 and Mmay = 〈V, Emay , v0, A〉 are labeled
transition systems and Emust ⊆ Emay .

An abstraction, given as an equivalence ≈ on the states of a labeled transi-
tion system M = 〈V, E, v0, A〉, defines a modal transition system M = 〈V/≈,
Emust , Emay , [v0], A〉, where there is a may edge ([v], a, [v′]) ∈ Emay iff there is
a state w ∈ [v] and a state w′ ∈ [v′] such that (w, a, w′) ∈ E.

An intuitive symmetric definition for the must edges Emust , which can be
applied both for the computation of forward and backward equivalence classes,
would be Emust={([v], a, [v′]) ∈ Emay | ∀w∈[v] ∀w′∈[v′]. (w, a, w′) ∈ E}. Stronger
results can be obtained by using different sets of must edges for forward and
backward analysis:

– For the computation of forward equivalence classes, an edge ([v], a, [v′]) ∈
Emust is a must edge iff for all states w′ ∈ [v′] there is a state w ∈ [v] such
that (w, a, w′) ∈ E.

– For the computation of backward equivalence classes, an edge ([v], a, [v′]) ∈
Emust is a must edge iff for all states w ∈ [v] there is a state w′ ∈ [v′] such
that (w, a, w′) ∈ E.

We extend the composition operator to modal transition systems. The com-
position M‖N of an MTS M = 〈V1, E

must
1 , Emay

1 , v1
0 , A〉 and an LTS N =

〈V2, E2, v
2
0 , A〉 is constructed such that (M‖N)must = Mmust‖N and (M‖N)may

= Mmay‖N .
We construct the assumption A for the model checking problem M‖N |= P

again as an equivalence � := �B ◦ �F on the states of N . Let M be the MTS
defined by an abstraction of M , and let m0, n0, and p0 be the initial states of
M, N , and P , respectively. The forward equivalence relation �F is defined as
follows: for two states n1 and n2 of N ,

n1 �F n2 iff for all states m of M and all states p of P , one of the
following two conditions holds: (1) there is a path from (m0, n0, p0) to
(m, n1, p) and a path from (m0, n0, p0) to (m, n2, p) in Mmust‖N‖P , or
(2) there is no path from (m0, n0, p0) to (m, n1, p) and there is no path
from (m0, n0, p0) to (m, n2, p) in Mmay‖N‖P .

To compute �F , we apply the fixed point construction from Section 3 twice:
once on the graph Mmust‖P , labeling each state with a subset Vlower of the
states of N , and once on the graph Mmay‖P , labeling each node with a subset
Vupper of the states of N . If a state [s] of Mmust‖P is labeled with (Vlower , Vupper)
then all states t ∈ [s] of M‖P are labeled with a subset VF ⊆ Vupper of Vupper
(using the method suggested in Section 3). Likewise, if ≈ does not identify the
initial state with any other state ([(m0, p0)] = {(m0, p0)}), all states t ∈ [s] of
M‖P are labeled with a superset VF ⊇ Vlower of Vlower . These upper and lower
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Fig. 6. Computation of the forward equivalence in the mutual exclusion example, based
on an abstraction M of process M . The MTS M is the result of merging states
b, c, d, e, f and g of M into equivalence class 1 and states h and i into equivalence
class 2. States m, n, o, and p of N are forward-equivalent because they occur in none
of the Vupper labels. Merging these states results in the quotient NF shown in Figure 5.

bounds on the labeling of the single states of M‖P allow for the definition of an
equivalence relation �F : For two states n1 and n2 of N , n1 �F n2 iff for every
pair of labels Vlower and Vupper on some state, either n1 is in Vlower and n2 is in
Vlower , or n1 is in V � Vupper and n2 is in V � Vupper . Let NF be the quotient of
N with respect to �F .

Figure 6 illustrates the computation of �F for the mutual exclusion example.
The MTS M is the result of merging states b, c, d, e, f and g of M into equivalence
class 1 and merging states h and i into equivalence class 2. States m, n, o, and
p of N are forward-equivalent because they occur in none of the Vupper labels.
Merging these states results in the quotient NF shown in Figure 5.

To compute NF , we proceed in two steps. In a first step, we compute those
states V 1

N ⊆ VN of N , which are in Vupper but not in Vlower for some state
of M‖P . Since these states always form a quotient of their own, they can
be excluded from further consideration. The construction of NF is then com-
pleted by construction quotients for the states in VN � V 1

N using the sorting
approach suggested in the previous section. The overall construction again takes
O(log |NF | · |M | · |N | · |P |) time.
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The backward equivalence relation �B can be defined and computed analog to
the forward equivalence relation �F . Since the equivalences ∼F and ∼B obtained
without abstraction (by the algorithms in Sections 3 and 4) are always coarser
than the equivalences �F and �B obtained using M, we again obtain invertible
proof rules:

M‖N/�F |= P iff M‖N |= P, and

M‖NF /�B |= P iff M‖NF |= P.

6 Abstraction Refinement

In this section, we give a construction for the equivalence ≈ on the states of
M needed in the algorithms in Section 5. We begin with the trivial two-state
abstraction (that merges all non-initial states) and then incrementally increase
the size of the abstraction in an abstraction refinement loop.

Since the constructions in Section 5 produce some (not necessarily minimal)
assumption for any abstraction, the loop can be interrupted at any time. Other-
wise, the loop terminates as soon as the upper and lower bounds (Vlower , Vupper)
coincide for all states of M‖P .

As long as there is some state labeled with (Vlower , Vupper ) such that Vlower �=
Vupper , we pick a may edge (s, a, s′) of Mmay‖P that does not occur in Mmust‖P .

To obtain a coarser forward equivalence relation �F , we refine ≈ by distin-
guishing any two states m1 and m2 represented by s′ (m′

1, m
′
2 ∈ [s′]M , where

[s]M = [m] for s = ([m], p) and [π]M = VM ) if there is an edge (m1, a, m′
1) in M

with m1 ∈ [s]M , but no edge (m2, a, m′
2) with m2 ∈ [s]M . I.e., the equivalence

relation ≈ is refined into the new equivalence ≈(s,a,s′), with

≈(s,a,s′) = ≈ �{(m1, m2) ∈ [s′]2M | (∃m ∈ [s]M . (m, a, m1) ∈ EM )
� (∃m ∈ [s]M . (m, a, m2) ∈ EM )}.

Note that the previously computed upper and lower bounds remain valid after
the refinement of ≈. We preserve and use this information: The previous values
of Vlower can be used as a starting point for the fixed point construction of the
new Vlower . Since a split can introduce new may edges, this method does not
only accelerate the computation of the fixed point, but also provides sharper
lower bounds. The refinement loop is guaranteed to terminate: in the worst
case, the number of refinement steps is equal to the size of M . How fast the loop
terminates depends on the choice of the may edges to refine on.

We avoid the explicit computation of the upper bounds Vupper by choosing
an edge (s, a, s′) such that

– s and s′ were labeled during the forward traversal with Vlower and V ′
lower ,

respectively, and
– Vlower × {a} × VN � V ′

lower is not disjoint from the edges of N .

The second condition avoids the choice of edges that cause no difference in the
labeling of s′. If there are multiple such edges, we pick one where the distance
from the initial state to s is minimal in Mmust‖P .
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Fig. 7. Experimental data from the sliding window protocol benchmark. Property A
expresses that the protocol does not invent messages, Property B and C express that
the sender process and the receiver process, respectively, do not invent messages, and
Property D expresses (incorrectly) that no messages are delivered. The figure shows
the number of states in the quotient of the receiver process (N) after a given number of
refinement steps. Since each refinement step introduces a new state in the abstraction
of the sender process (M), the number of refinement steps is equal to the number of
states in the quotient of M .

The refinement step for the backward equivalence �B can be defined
analogously.

7 Experimental Results

We have implemented the algorithms of this paper in a small prototype tool,
which is intended as a front-end to the model checker SPIN [13]. Our tool reads a
two-process system written in (a subset of) Promela and produces a modified sys-
tem, where the second process is replaced by the assumption LTS. The tool ap-
plies the abstraction refinement algorithm and switches every ten steps between
computing the forward and computing the backward equivalence. The process
can be interrupted after an arbitrary number of refinement steps and terminates
once the upper and lower bounds for the labels coincide in both constructions.

Figure 7 shows experimental data from the verification of the classic sliding
window protocol benchmark. In the sliding window protocol, the sender (process
M) transmits messages over an unreliable channel to the receiver (process N). To
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ensure that no packets are lost, the sender stores the messages in a sliding buffer
until acknowledgments are received. In our benchmark, there are three different
types of messages (red, white, and blue) and the buffer stores two messages at a
time, which results in 192 states each for the sender and the receiver.

We consider four properties: Property A expresses that the protocol does not
invent messages (“if there is no white message in the input of the sender, then
there will be no white message in the output of the receiver”). Properties B
and C express the same condition locally for the two processes, i.e., Property B
specifies that the sender does not invent messages (“if there is no white message
in the input of the sender, then there will be no white message on the network”),
Property C specifies that the receiver does not invent messages (“if there is
no white message on the network, then there will be no white message in the
output”). Property D expresses that the receiver never produces any output.
While Properties A, B, and C are satisfied by the sliding window protocol,
Property D is violated.

The refinement process terminates after 169 steps for Property A, 18 steps
for Property B, 168 steps for Property C, and 15 steps for Property D. The
resulting assumption has 8 states for Property A, 1 state for Property B, 8
states for Property C, and 1 state for Property D. Not surprisingly, replacing
the receiver process with these assumptions reduces the model checking time
(Property A: 4s instead of 19s, Property B: 3s instead of 19s, Property C: 4s
instead of 18s, Property D: 3s instead of 18s, on an Athlon XP 2600+ with 2GB
RAM).

If the purpose of computing the assumption is to improve the time and mem-
ory performance of a single model checking run, it appears to be beneficial to
interrupt the refinement process early. Figure 7 shows the number of states in
the quotient of N that is reached when the refinement process is interrupted
after a certain number of steps. A significant drop in the number of states in the
assumption occurs already very early on, when only a small percentage of the
states of M have been considered.

8 Conclusions and Future Work

Compositionality and abstraction are generally considered the two key methods
in avoiding the state-space explosion problem. The combination of the two meth-
ods in our assumption synthesis algorithm adds a new twist to classic abstraction
refinement: rather than starting with a coarse abstraction of process N , which
would need to be corrected through a successive elimination of spurious counter
examples, we start with an abstraction of its environment (M), which always
(at any point in the refinement cycle) allows us to produce an assumption that
is free of spurious counter examples.

Our approach has several advantages. First, and perhaps most important,
the resulting assumption is acceptance preserving. The result of model checking
is the same if we use the assumption or the original process. Second, while
using the assumption may significantly accelerate the model checking, there is
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no penalty in the form of increased complexity as introduced by the intermediate
state explosion problem [10,8] or by using deterministic automata [6,2,1,8]. In
the worst case, the generated assumption is as large as the process itself. Even
this, however, is unlikely to occur for well-designed software architectures.

A third advantage of our approach is that the generated assumptions have
applications beyond classic model checking. They are well-suited as certificates.
Using an arbitrary assumption automaton A for N , the language containment
check is PSPACE-hard in the size of N and EXPSPACE-hard in the size of A.
Since our method generates a homomorphic abstraction of N , language contain-
ment can be checked in linear time. For similar reasons, the generated abstraction
is useful both in the documentation of a process and in the maintenance phase.

In future work, we intend to expand on our prototype tool implementation.
In particular, the application to larger systems needs good heuristics for the
refinement of the modal LTSs. An interesting open question is the extension
of our method to obtain assumptions for more than one process. It is always
possible to replace one process after another by a homomorphic abstraction,
but more experience is needed to determine the sequence in which the processes
should be considered and to decide whether it is worthwile to alternate between
the processes during the refinement cycle.
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