A Virtual Spanner for Efficient Face Routing in
Multihop Wireless Networks*

Héctor Tejeda', Edgar Chévez!, Juan A. Sanchez, and Pedro M. Ruiz?

! Escuela de Ciencias Fisico-Matematicas, Universidad Michoacana, México.
{elchavez, htejeda}@fismat.umich.mx
% Facultad de Informética, University of Murcia, Spain {jlaguna,
pedrom}@dif.um.es.

Abstract. Geographic routing for ad hoc and sensor networks has gained
a lot of momentum during the last few years. In this scheme routes are
created locally by each individual node, just based on the position of the
destination and its local neighbors. To do that, a node selects its best
neighbor (according to some metric) out of those being closer than itself to
the destination. This operation is called greedy mode. When a node has no
such neighbors, it enters into face routing mode. However, for face routing
to work properly, the underlying graph needs to be planarized by remov-
ing crossing edges, which may eventually be very good from the routing
metric point-of-view. In this paper, we introduce a new localized scheme to
build a planar virtual spanner in a simple and efficient way, with low con-
trol overhead. The produced virtual spanner allows face routing to be exe-
cuted, without the need to remove any of the original links in the network.
Thus, the best links according to the routing metric can still be used, Our
simulation results show that by performing face routing over the virtual
spanner, we manage to enhance the routing performance both for greedy-
face-greedy routing and face routing between a 40 to 60% compared to
existing planarity tests.

1 Introduction

Mobile ad hoc networks (often referred to as MANETS) as well as wireless sensor
networks consist of wireless nodes that communicate with each other in the
absence of a fixed infrastructure. When a node needs to send a message to
another host which is outside of its radio range, it uses other intermediate hosts
as relay nodes. Those intermediate nodes are dynamically selected by the routing
protocol being used. This kind of networks are useful in many scenarios such as
disaster relief, battlefield environments, etc.

Among all routing protocols for these networks, geographic routing [BMSUOI]
has emerged recently as a very efficient way to provide guaranteed delivery routes
without flooding the whole network with control messages. However, nodes are
required to be able to know their position and, by exchanging control messages,

* Partially supported by CONACyT and the Spanish MEC by means of the “Ramon
y Cajal” program and the SAVIA project (CIT-410000-2005-1).

P. Cuenca and L. Orozco-Barbosa (Eds.): PWC 2006, LNCS 4217, pp. 45970 2006.
© IFIP International Federation for Information Processing 2006

460 H. Tejeda et al.

the position of its neighbors. To send a message from the source to the desti-
nation, each intermediate node selects locally its best neighbor to forward the
message towards that destination among those which are closer than itself. Those
nodes are often said to provide advance towards the destination. The best node
depends on the routing metric. For instance, if we are using hop count as the
routing metric, it could be the one which is closest to the destination. This oper-
ation is called greedy mode. When greedy mode reaches a local minimum (i.e. no
neighbor can provide advance towards the destination) then the protocol needs to
resort to a recovery mechanism until a node is found which can continue greedy
forwarding. This mechanism is face routing described in [BMSUOQI]. The basic
idea is that when no progress can be made in greedy mode, packets are sent fol-
lowing the edges of the faces of a planar decomposition of the underlying graph,
until greedy mode can again continue, or the destination is eventually reached.
This approach combining greedy and face modes when necessary, is commonly
known as GFG (Greedy-Face-Greedy) routing [BMSUOQI]. As we said, the face
routing part requires the underlying graph to be planar.

There are several methods to extract a planar subgraph from a given Unit
Disk Graph (UDG), which models the entire network. A UDG is a graph in
which an edge [u,v] exists only if dist(u,v) < r being r the radio range. The
Relative Neighborhood graph, RNG [Tou8(0] is obtained by applying the RNG
test to every edge of the UDG: an edge [u,v] is retained in RNG(G) if there
is no vertex z such that max{dg(u,2),da(v,2)} < dg(u,v). That is, if there
is no vertex in the intersection of their disks. The Gabriel graph, GG [GS69],
applies a slightly different test to every edge of the graph. It retains an edge
[u,v] in GG(G) if there is no node in the disk with diameter wv. Finally, the
Morelia test [BCGT04] manages to preserve some long edges by using a stronger
condition for the removal of edges. An edge [u,v] is not included in MG(G) if
there is a couple of points [z,y] so that one of them (or both) is in the disk
with diameter uv and [x,y] crosses [u,v]. Given a UDG G we have RNG(G) C
GG(G) C MG(GQ).

The guaranteed delivery provided by face routing has a price, which is that the
computed routes are generally not optimal. The main reason is that traversing
faces to avoid voids, may eventually produce a large deviation from shortest
path. Another important reason is that the elimination of links to avoid crossings
may degrade the routing performance when the protocol enters into face routing
mode. As a matter of fact, long links (which are the ones preferred to reduce
hop count) are the ones which are usually eliminated first, because they usually
cross many other links.

To mitigate this problem, we propose the creation of a planar virtual spanner
of the original graph using a tessellation. Given that crossing edges are forbidden
in face routing to guarantee correctness of the algorithm, we build our virtual
spanner in such a way that guarantees its planarity (there are no crossing vir-
tual edges). Then, when a node enters into face mode, it will route using virtual
edges, which will then be translated to a path using real nodes. Once the next
hop virtual neighbor is selected using face routing, the real nodes will route

A Virtual Spanner for Efficient Face Routing 461

the message towards the representative of the selected neighboring tessel. Given
that real nodes will route using all available links (no links are eliminated), the
performance in face mode of the protocol is enhanced. We shall show this in our
simulation results.

The remainder of the paper is organized as follows: Section [2] presents our
network model and the problem formulation. Section [illustrates how the vir-
tual spanner is built. We explain how to route based on the virtual spanner in
section @l Finally we present some simulation results in section bl and give some
conclusions and future work in section

2 Network Model and Problem Formulation

This section introduces the notation and the model we use throughout the paper.
We consider routing algorithms on Euclidean graphs, i.e. weighted graphs where
edge weights represent Euclidean distances between the adjacent nodes in a
particular embedding in the plane. As usual, a graph G is defined as a pair
G := (V, E) where V denotes the set of vertices and E C V? denotes the set of
edges. The number of nodes is denoted by n := |V| and the Euclidean length of
anedge e € F is denoted by cq(e). A pathp := vy, ..., v, with each v; € V is alist
of nodes such that two consecutive nodes are adjacent in G, i.e. (v;,v;41 € E). A
path p also can be denoted by the corresponding list of edges. In our evaluations
we will use the traditional hop count metric. Thus, given a path p = vq,... vk
the cost of such path is the number of edges traversed.

In this paper we consider the standard UDG model for ad-hoc networks where
all nodes have the same transmission range (7). Thus, given two nodes vy, vy € V|
the edge [v1,v2] € E & cmathrma([v1, v2]) < 7.

As in previous geographic routing works in the literature, we assume that
nodes know their positions and those of their neighbors. It is also assumed that
sources of data packets know the position of the destination.

3 The Virtual Spanner

We divide the plane in regions with a regular tessellation, which is a tessellation
(or planar subdivision) made up of congruent regular polygons. The idea is that
an entire region may be represented by a single virtual point, the center of the
regular polygon. If we link the centers of the polygons we observe a peculiar
behavior: the centers define a dual tessellation that is also planar. The dual of
a triangle tessellation is a hexagonal tessellation, while a square tessellation is
auto dual.

Only three regular polygons tessellate the Euclidean plane: triangles, squares
or hexagons, from elementary geometry. They are depicted in figure

The virtual node for a polygon is chosen as the centroid of the polygon.
Two virtual nodes will share an edge if in their respective cells two real nodes
are neighbors. Thus, we need to choose a suitable polygon size for building the
virtual graph, so that we achieve a good trade-off between the simplicity to build

462 H. Tejeda et al.

the virtual graph (guaranteeing that is planar), and the number of cells to be
checked in its creation process. We have analyzed three options as we show in
figure [l

a) The transmission radius does not cover all the cell.
b) Any two points in the cell are within radio range.
¢) A node in one cell can reach any other node in a neighboring cell.

Case a) complicates the design because it may require multihop routing within
a cell. In case c) there may be a very big number of cells in which to look for
possible virtual edges. We decided to use case b) because it is the configuration
which avoids multihop within a cell in which the number of cells to look for
virtual neighbors is low.

Cf
"

a) b))

Fig. 1. Variation of polygon size with transmission radius fixed

If the graph is dense enough, there will be at least one node in each cell.
Thus, each virtual node will be connected to all neighboring virtual nodes. The
resulting virtual graph is exactly the dual of the graph, which is planar. In
real situations we cannot guarantee that every cell will have a node. Thus, to
preserve connectivity we must find all possible virtual neighbors. They may be
in cells which are not contiguous to the current one. In figure 2l we show for
each different tessellation (triangular, square and hexagonal) the possible cells
that may contain nodes which are neighbors of nodes in the current cell ¢. The
cell ¢ can reach more cells when using a triangular configuration (24 cells). With
a square configuration 20 cells are candidates and when using hexagonal cells
only 18 cells. Please note that the dual of the virtual graph may not be planar
if we have void cells and want to preserve connectivity. This crossings can be
eliminated using a local test, and the complexity of the test depends on the
number of neighboring cells.

The grid with triangles, squares or hexagons is located arbitrarily in the plane.
Each cell is identified by a coordinate pair as is showed in Figure Bl Note that
real nodes only need to know the type of tessellation and the communication
radius at deployment time. Based on that, and given their current position they
can easily compute the coordinates of their centroid. In addition, only with local
information about the position of its neighbors they can compute their local view

A Virtual Spanner for Efficient Face Routing 463

%

R

(a) Triangles (b) Squares (c) Hexagons

Fig. 2. Regular tessellations in the plane and cell centroids. Additionally, the cells
shown are those reachable from ¢ using a radius R equal to the diameter of the cell.

R .7

. .
(1.0) /(20) \(3.0) / (4.0)

Y . - . . .

(0.0) (0.0) | (10) (2,0) (3.0)

(0.1)

1.1, Z.l [EX) 4. g * . .
ADNZD [DN (1) (1.1 @1 3.1

. . . .
(02) (12) (22) (32)

. .
w2/ 22\ 62 /42
(0.2) * *

R

(a) Triangles (b) Squares (c) Hexagons

Fig. 3. Fixing the origin, the virtual coordinates are computed with elementary calcu-
lations

of the virtual graph (virtual edges). This has no additional overhead because
position of real neighbors is already known or was computed using beacons.

We show below some elementary calculations for the node to compute the
coordinates of the virtual node for each real node. It only uses the transmission
radius R and its position (z,y).

In addition, each real node also needs to compute the virtual edges shared
with reachable cells. Every real node can make exactly the same calculations
independtly without the need of a central authority or coordination among them.
This connectivity test is accomplished in two stages:

1. Test surrounding cells that are neighbors by their side.
2. Test all other cells that are reachable from current cell but are not neighbors
by their side.

The first stage is easier than the second one because it always produces a
planar graph. There are no edge crossings, as it is depicted in figure [In the
first stage, a virtual edge is added between centroids of two cells adjacent by
the side if there are two mutually reachable real nodes, one in each of those

464 H. Tejeda et al.

Table 1. Formulas for a node to compute position of its centroid and its tessel

Type of tilling Position of centroid Tessel
ye — 3R(y+1/3)/4 y «truncate (3y,/4/R)
Hexagonal if ymod2=0 if ymod2=0
then z. <« v3R(z+1/2)/2 then z —truncate (2z,/v/3/R)
else .+ v/3Rx/2 else z «truncate ((2z, + v3R/2)/v3/R)
e — Rz /2
. if (x4+y)mod2=0 x —truncate (z,/2/R
Triangular then y. <« V3R(y+2/3)/2 y «—truncate EQy:/(/S}R)
else y.— V3R(y+1/3)/2
ze + (z+ 1/2)R/V?2 x «—truncate (v/2z,/R)
Square
Ye — (y+ 1/2)R/V/2 y «—truncate (v2y./R)

cells. Unfortunately, the virtual graph produced after the first stage may not be
connected. Thus, we need to apply the second stage to obtain a connected graph
without crossings of virtual edges.

For the second part, we start testing if we can add a virtual edge to the
centroid of those cells (see figure 2) which are second degree neighbors (side
neighbors of our side neighbors). If for one of those, we cannot add the virtual
edge (i.e. there is no other real node in that cell directly reachable from any
real node in current cell) then we try again with those cells being neighbors by
side of this particular cell we couldn’t find nodes to add the virtual edge. This
condition guarantees that the resulting virtual graph will be planar. Figure
shows the resulting virtual graph after both stages.

(a) Triangles (b) Squares (c) Hexagons

Fig. 4. First connectivity test. Natural neighbors.

As an example, we give the concrete algorithms used in each stage to add edges
to the virtual spanner with an hexagonal tilling. The algorithms for squares and
triangles are similar and are not included in here due to space limitations.

The algorithm for the first connectivity test using hexagons is given in
algorithm [T1

A Virtual Spanner for Efficient Face Routing 465

Algorithm 1. Algorithm for the first stage with hexagons
1: procedure REVIEWHEXAGONSSTAGEL (I, t) > I are the neighbor cells

2:

k<0 > by their side to t, they are enumerated from 0 to 5
while k£ < 6 do

if isThereEdge(t, I) then
addEdge(t, I1)

end if

k—k+1

end while
end procedure

For the second stage with an hexagonal tilling, all reachable cells which are

not side neighbors of the current cell (¢) are tested. The test needs to take into
account existing virtual links which have been added before, to avoid creating a
non-planar virtual spanner. The detailed algorithm is given in 21

Algorithm 2. Algorithm for the second stage with hexagons

1: procedure REVIEWHEXAGONSSTAGE2(I, E, t) > E are the rest of the cells
2: k<0 > reachable by ¢, enumerated from 0 to 11
3: while k£ < 6 do > Review for the odd cells from E
4: a «— 2k
5: b0 «lisThereEdge(t, I1)
6: bl «lisThereEdge(Ix, Eq)
7 b2 —isThereEdge(t, Ex)
8: if 50 AND b1 AND b2 then
9: addEdge(t, Ex)
10: end if
11: k—k+1
12: end while
13:
14: k<0
15: while k£ < 6 do > Review for the even cells from F
16: a «— (k+1) mod 6
17: b+ (2k+1) mod 6
18: b0 «—isThereEdge(t, I1)
19: bl «—isThereEdge(Ix, Ep)
20: b2 —isThereEdge(t,)
21: b3 «—isThereEdge(I,, Ep)
22: b4 —isThereEdge(¢, Ep)
23; if 1(b0 AND b1) AND 1(b2 AND b3) AND b4 then
24: addEdge(t, Ep)
25: end if
26: k—k+1
27: end while

28: end procedure

466 H. Tejeda et al.

As we stated, the goal of this virtual graph is enhancing the performance of
face routing. Thus, we will explain in the next section how real nodes do face
routing using the virtual graph, whereas we show the performance enhancements
achieved later on.

4 Routing with the Virtual Graph

When the protocol enters into face mode, we plan to perform face routing based
on the virtual spanner. However, only real nodes can process messages. Thus, we
need to understand the two points of view of our proposed scheme. On a high
level view we use the virtual nodes whenever a planar graph is needed to forward
a message using face routing. In the low level view we always use a real node,
which needs to send a message towards another real node, based on its relation
with the intended virtual node. We explain how this works based on the Face
Routing (FR) algorithm [KSU99]. However, any geographic routing algorithm
making use of face routing (i.e. relaying in a planar spanner) can be used as well.
For instance, in our experiments we use the GFG variant [BMSUO1].

A brief description of the proposed algorithm is presented below. At each
step of the algorithm the node currently trying to send the packet to the next
neighbor in face mode performs the following operations:

1. Based solely on its coordinates, the node finds out his cell and corresponding
virtual node.

2. Using the information from neighbors (obtained by any geographic routing
protocol using periodic beacons), the node finds which virtual edges exist
according to the procedures explained in the previous section. As we ex-
plained before, a virtual edge can only exist to a virtual node if there is a
real neighboring node in the corresponding cell.

3. In face mode the current real node routing in face mode will use the virtual
graph to select (according to face routing) the proper virtual edge to follow.
Once it is selected, it uniquely defines the cell that needs to be reached using
real nodes. The node then sends the packet to any real node in the next cell
based on some metric. For instance in our simulations we send the packet to
the real node which is more distant to the current real node. If the selected
cell is not directly reachable, the real node will greedily hand the packet to
another node within the same cell, to reach the target cell.

4. Once a real node in the destination cell (the next cell in the path) received
the packet it will forward the packet by repeating the process. Inside a cell
the packets can be forwarded greedily because all nodes in a cell a mutually
reachable.

The steps above can be used for traversing the face as is depicted in Figure[Gl
The source node and the target are labeled with 22 and 24 respectively. The
source node is in virtual cell (4,5). Virtual edges exists between (4,5) and
(3,5),(3,4),(4,4), (4,6). Using the left hand rule node 22 forwards the packet to
cell (3,4) selecting an arbitrary node in such cell. The sequence of virtual nodes,
and the sequence of real nodes are depicted in Figure 6

A Virtual Spanner for Efficient Face Routing 467

(a) Triangles (b) Squares (¢) Rectangles

Fig. 5. Second test. Reachable neighbors.

Fig. 6. Face routing in virtual hexagonal graph

5 Experimental Results

In this section we present simulation results to assess the performance of GFG
and face routing when run over the different variants of the Virtual Graph. We
compare the results with those of the Relative Neighborhood Graph, the Gabriel
Graph and the Morelia Graph. We also present real shortest paths computed us-
ing Dijkstra’s algorithm. Of course, the shortest path cannot be computed using
only local information, but provides a good indication of the overall performance
of the different proposals.

When the protocol enters in face mode, there may be several metrics to decide
to which real node within the next cell to send the packet to. In our simulations,
we use the euclidean distance, because it is the most common metric used by
geographic routing protocols to select neighbors in greedy mode.

468 H. Tejeda et al.

5.1 Simulation Setup

We used connected random unit disk graphs for our simulations. We test our
spanners with different densities, from 4 to 18 with increments of 2. Each one of
those densities corresponds to a mean number of neighbors. For each density we
used 1000 nodes, which were placed randomly in the simulation area. For each
scenario we generated randomly 100 different graphs, so we have obtained 800
graphs for simulation. The size of the simulation area was adapted to preserve
the density of the network. Finally, for every graph, we select 1000 different
(source,destination) pairs. Thus, each point in the graph represents the average
over 100000 routing tasks.

5.2 Simulation Results

We present in this subsection the results of our simulations for different densities
of the graphs.

100%

Relative Neighborhood Graph ——

3

,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,

¥
&

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

pe\umpemmm,“m
“y
!
.
‘ot
H 7
porontaImprovement v st NG,

Density

(a) Greedy-Face-Greedy Routing (b) Face Routing

Fig. 7. Efficiency of the Virtual Spanner against three standard spanner test

Figure shows the percentual improvement in terms of the mean number of
hops required to route from source to destination for different network densities.
As we can see in the graph, the higher the density, the better the performance
that the proposed protocol achieves, up to a mean density of 10. The reason is
that for those mean densities the amount of routing performed in face mode is
high. Thus, our proposed virtual spanners allow for a significant reduction in the
hop count. The reason being that the virtual spanner manages to use long edges,
while traditional plannarization tests (i.e. GG, RNG and MG) remove them. So,
the higher the density the more options has the virtual spanner to select best
edges. In addition, the increase in density makes traditional tests to remove more
(eventually long) edges. As the mean network density goes beyond 10 neighbors
per node, we see that our proposed schemes still outperform traditional tests,
although the percentual improvement compared to GG and RNG and MG is is
reduced. The reason for that reduction is that for those high densities most of
the routing is peformed in greedy mode, thus there is no big difference between

A Virtual Spanner for Efficient Face Routing 469

approaches. In addition, by having a fixed number of nodes and increasing den-
sity means that the overall length of the paths is reduced as density increases.
That also affects the reduction in the percentual performance benefit. But, in
any case for any density our proposed schemes outperform traditional schemes.
For instance, our hexagonal tilling obtains a 40 to 57% improvement compared
to RNG for all the ranges of density. The square tilling obtains basically the same
results, whereas triangular one has a little bit lower performance, outperforming
all of them traditional planarity tests.

To assess the real benefit of the virtual spanner, we performed the same
experiments but using only face routing to go from source to destination. As
we see in figure again a lower density produces longer paths. As before,
the reason is that paths become longer because the simulation area is enlarged
to accommodate such nodes maintaining the mean density. Figure shows
that our proposed schemes outperform all other approaches for all densities. In
addition, we can see that in this case the gain is higher than with GFG because
in this experiment all the routing has been done in face mode regardless of the
density of the network.

6 Conclusions and Future Work

We have shown that with the application of the Virtual Graph for representing
the underlying structure of a wireless ad-hoc network we can achieve face routing
with a fewer number of hops, outperforming in all cases existing techniques
(Relative neighborhood graph, Gabriel graph and Morelia graph).

The proposed virtual spanner can be built locally by nodes based solely on
local information about neighbors. Thus, it can be perfectly integrated with any
geographic routing protocol such as GFG, face routing, etc. Our proposed virtual
spanner based on hexagons manages to reduce by a 40 to 60% the number of hops
required to route a message from source to destination both for GFG and face
routing protocols. This scheme can be integrated with any geographic routing
protocol, and can help at improving the performance of such protocols.

For future work, we are working on the use of different routing metrics which
may allow the virtual spanner to improve not only the number of hops but energy
consumption and quality of the selected paths.

References

[BCG104] P. Boone, E. Chavez, L. Gleitzky, E. Kranakis, J. Opartny, G. Salazar,
and J. Urrutia. Morelia test: Improving the efficiency of the gabriel test
and face routing in ad-hoc networks. Lecture Notes in Computer Science,
3104:23-24, January 2004.

[BMSUO1] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad-hoc wireless networks. ACM/Kluwer Wireless Networks,
7(6):609-616, 2001.

470 H. Tejeda et al.

[GS69] K. Gabriel and R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, 18:259-278, 1969.

[KSU99] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric
networks. In Proc. 11th Canadian Conference on Computational Geometry,
pages 51-54, Vancouver, August 1999.

[Tou80] G. Toussaint. The relative neighbourhood graph of a finite planar set.
Pattern Recognition, 12(4):261-268, 1980.

	Introduction
	Network Model and Problem Formulation
	The Virtual Spanner
	Routing with the Virtual Graph
	Experimental Results
	Simulation Setup
	Simulation Results

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

