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Abstract. We propose a novel active learning strategy based on the com-
pression framework of [9] for label ranking functions which, given an input
instance, predict a total order over a predefined set of alternatives. Our
approach is theoretically motivated by an extension to ranking and ac-
tive learning of Kääriäinen’s generalization bounds using unlabeled data
[7], initially developed in the context of classification. The bounds we ob-
tain suggest a selective sampling strategy provided that a sufficiently, yet
reasonably large initial labeled dataset is provided. Experiments on Infor-
mation Retrieval corpora from automatic text summarization and ques-
tion/answering show that the proposed approach allows to substantially
reduce the labeling effort in comparison to random and heuristic-based
sampling strategies.

1 Introduction

This paper presents an active learning strategy for label ranking functions -
mappings from instances to rankings over a finite set A of alternatives. The su-
pervised learning of label-ranking functions has attracted considerable attention
from the Machine Learning (ML) community (see e.g.[3,5]) since it encompasses
tasks ranging from multi-class(-label) classification to ranking for Information
Retrieval (IR) applications.

In this study we are interested on IR-like applications, such as Document
Retrieval (DR). In this case, an instance x is a query and the label � of x is
a partial order over a given document collection A. In a supervised setting,
the aim is to learn a mapping (or a ranking function) from a predefined set of
queries for which there exists a set of relevance judgments that indicates which
documents in A are relevant to each query. In such a case labeling an instance
often requires an expert to carefully examine the set of alternatives. The human
effort to create labeled datasets may in general be unrealistic. It is thus necessary
to design accurate methods for reducing the size of the required labeled set.

Different strategies have been proposed in the classification framework to
cope with this kind of problem. One approach is selective sampling: given an
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input pool or stream of unlabeled examples, the algorithm selects a few of them
and queries an oracle to obtain their labels. These new labeled examples are
then added to the training set. Such strategies have been developed around two
main ideas. (a) The shrinking of the version space, which in the case of linear
discriminant functions, consists in the selection of the unlabeled instance with
the smallest margin [11], and (b) the selection of examples which will reduce an
approximation of the generalization error [4].

These theoretical motivations, unfortunately, do not extend to label ranking
functions. Indeed, there is no equivalent notion of the version space, and ap-
proximations of the generalization error are mostly unknown. For the specific
case where all the labels of instances are total orders and when the ranking
is predicted by a real-valued scoring function, the notion of margin may be
extended. Hence, [2] showed that by taking the minimum difference of scores
between two alternatives, and selecting the unlabeled examples with the small-
est extended margin is a performing heuristic. However, although the ”extended
margin” heuristic can be also applied in the general case, we cannot expect it
to perform well: taking the example of DR, a real-valued scoring function may
assign very similar scores to two relevant or two irrelevant documents. Hence,
for a given instance, the extended margin may be close to zero independently
from the fact that relevant documents have higher scores than irrelevant ones.

In this paper, we propose a new selective sampling strategy for label rank-
ing. Our starting point is the generalization error bounds using unlabeled data
proposed by [7] for classification: the generalization error of a classifier can be
bounded by the error of another classifier plus the probability of disagreement
between both classifiers. In the specific framework of label ranking described
in section 2, we show in section 3 that the bounds proposed by [7] can be ex-
tended for label ranking in the following way: given a fixed, but arbitrary, cost
function and given some prior knowledge about the labels, a cost-specific notion
of disagreement between two ranking functions can be constructed. Then the
generalization error of a ranking function f̄ we want to learn can be bounded
by two terms: the generalization error of a specific ranking function f̄ cv built
using cross-validation (CV) sets, and the probability of disagreement between
this ranking function and f̄ . We then consider the problem of selective sampling
as choosing the unlabeled examples to reduce the generalization error bound of
f̄ , which can be done in a greedy fashion by selecting instances for which the
disagreement between f̄ and f̄ cv is the highest. Finally, in section 4, we show
experimental results on two IR corpora from automatic text summarization and
question/answering systems comparing our approach to the extended margin
heuristic and the random sampling strategy.

2 Notation

Let us define the following notations in addition to those given in the intro-
duction. For simplicity, we identify the set of alternatives A by {1, ..., A}. The
instance and the label spaces are denoted respectively by X and L. A ranking
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function is defined as f̄ : X → σA, where σA is the set of permutations of
{1, ..., A}. Hence for an instance x ∈ X , an alternative i ∈ A is preferred over
an alternative j ∈ A iff f̄(x)(i) < f̄(x)(j). We furthermore suppose that the
training set is composed of a labeled set Z� = ((xi, �i))n

i=1 ∈ Zn and an unlabeled
set XU = (x′

j)
n+m
j=n+1 ∈ X m, where Z represents the set of X × L. We suppose

that each pair (x, l) ∈ Z� is drawn i.i.d with respect to a fixed but unknown
distribution D and we denote the marginal distribution over X by DX .

We will furthermore assume that for each instance x, only a subset Ax of
A is considered, and that Ax is known even if the label of x is unknown. The
set of possible labels for x, denoted Lx, contains thus only preference relations
over Ax. When the labels are induced from binary relevance judgements, any
label of Lx can be represented by two sets of indices Y +

x and Y −
x of relevant and

irrelevant alternatives in Ax.
These notations allow us to formulate naturally costs functions in IR. For

example, precision at k which counts the proportion of relevant alternatives in
the first k positions can be defined by:

cp@k(f̄(x), �) =
1
k

∑

i∈Y+
x

[[f̄(x)(i) ≤ k]] (1)

where [[pr]] is one if predicate pr holds and 0 otherwise. Another example is the
rank loss function which measures the mean number of irrelevant elements better
ranked (the lower the better) by f̄ than relevant ones:

cRloss(f̄(x), �) =
1

|Y +
x ||Y −

x |
∑

j∈Y−
x

∑

i∈Y+
x

[[f̄(x)(j) < f̄(x)(i)]] (2)

Finally we will denote by ε̂Z(f̄) = 1
n

∑n
i=1 c(f̄(xi), �i) the empirical risk of a

ranking function f̄ and by ε(f̄) = E(x,�)∼Dc(f̄(x), �) its true risk. When f̄ pre-
dicts outputs based on a real-valued (i.e. scoring) function over the set Ax, we
denote by f the associated scoring function.

3 A New Query Selection Strategy

In this section, we present a divergence measure for ranking functions, and
present our ranking bounds based on unlabeled data. From that we propose
the ranking active learning algorithm which is the central point of the paper.

3.1 Generalization Error Bound for Ranking Functions

We define a randomized ranking function as a σA-valued random variable such
that for each instance x, a randomized ranking function f̄θ is chosen according
to a probability distribution Θ over a finite set of ranking functions {f̄1, ..., f̄K}
and an ordered list f̄θ(x) over A is returned. If Θ is a uniform distribution we de-
note the randomized ranking function by f̄K . The generalization error bound we
propose in the following is based on a divergence function dc : σA × σA → [0, 1]
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associated with a risk function c measuring for any query x ∈ X the disagree-
ment between two ranking functions f̄ and f̄ ′. We define dc as

dc(f̄(x), f̄ ′(x)) = max
�∈Lx

[
c(f̄(x), �) − c(f̄ ′(x), �)

]

Clearly, dc is a divergence upper bounded by 1 (i.e., 1 ≥ dc(y, y′) ≥ 0 for any y,
y′ and dc(y, y′) = 0 iff y = y′). Moreover, we have:

∀(x, �) ∈ Z, c(f̄(x), �) ≤ c(f̄ ′(x), �) + dc(f̄(x), f̄ ′(x))

For two randomized ranking functions f̄Θ and f̄ ′
Λ the notion of risk can be

extended by denoting c(f̄Θ(x), �) = Eθ∼Θc(f̄θ(x), �) and dc(f̄Λ(x), f̄ ′
Θ(x)) =

Eλ∼Λ,θ∼Θdc(f̄λ(x), f̄ ′
θ(x)).

From these definitions we still have:

∀(x, �) ∈ Z, c(f̄Λ(x), �) ≤ c(f̄ ′
Θ(x), �) + dc(f̄Λ(x), f̄ ′

Θ(x)) (3)

Equation 3 shows a link between the values of the risk function c on f̄Λ and on
f̄Θ and therefore indicates a possible link between the risk of those two (possibly
random) ranking functions. In the stochastic case, the true and empirical risks
of a randomized ranking function f̄Θ are defined as

ε̂Z(f̄Θ) =
1
n

n∑

i=1

c(f̄Θ(xi), �i) = Eθ∼Θ
1
n

n∑

i=1

c(f̄θ(xi), �i)

ε(f̄Θ) = E(x,�)∼Dc(f̄Θ(x), �) = Eθ∼ΘE(x,�)∼Dc(f̄θ(x), �)

Notice that if Z is drawn i.i.d. according to D, then ε̂Z(f̄Θ) is an unbiased
estimator of ε(f̄Θ). We can also notice that, if XU is drawn i.i.d. according to
DX , the mean of dc(f̄Λ(x′), f̄ ′

Θ(x′)) for x′ ∈ XU is an unbiased estimator of
Ex′∼DX dc(f̄Λ(x′), f̄ ′

Θ(x′)). The following theorem is an extension to ranking
functions of a classifier risk bound based on unlabeled data introduced in [7].

Theorem 1. For any two (possibly randomized) ranking functions f̄Λ and f̄ ′
Θ,

we have:
ε(f̄Λ) ≤ ε(f̄ ′

Θ) + Ex′∼DX dc(f̄Λ(x′), f̄ ′
Θ(x′))

Proof : Using inequality 3, we get the result by taking the expectation over
(x, �) ∼ D.

Thus, using unlabeled data, one can obtain an upper bound on the risk of f̄Λ,
if such a bound exists for f̄ ′

Θ. From now, we suppose that one of the ranking
function f̄ ′

Θ is obtained by cross-validation on a training labeled data set which
is defined as follows.

Definition 2 (Cross-validation sets). Given a labeled dataset Z drawn i.i.d.
according to D, a cross-validation (CV) set of size K is any partition of Z into
K disjoint subsets Z1, ..., ZK of equal size1. Moreover, for any CV set Z1, ..., ZK,
we associate the sets, for i = 1, ..., K, Ztrain

i =
⋃

j �=i Zj and Ztest
i = Zi.

1 The results contained in this paper remain valid if the CV set size do not divide |Z|,
but to simplify the notation, we have restricted ourselves to the case where it does.
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Hence, given a ranking learning algorithm R, and a CV set of size K, {Z1, ..., ZK}
for Z, a randomized ranking function obtained by cross-validation is the ran-
domized function defined by the uniform probability distribution on the set
{R(Ztrain

1 ), . . . , R(Ztrain
K )}. We will denote by f̄ cv

K , the obtained randomized
ranking function, and by f̄j , the function R(Ztrain

j ). The results of the rest of
this section show how the risk bound of such randomized ranking function can be
estimated, and then how the bound of Theorem 1 can be computed in practice.
Those results are based on the following version of the Hoeffding’s bound:

Theorem 3 (Hoeffding bound). Let X1, ..., Xn be n copies of a [0, 1]-valued
random variable X, then, for all δ > 0:

P

(
EX ≤ 1

n

∑n
i=1 Xi +

√
ln(1/δ)

2n

)
> 1 − δ

Combining Theorem 1 and the Hoeffding bound we obtain the following bound
for the true risk of f̄ cv

K

Lemma 4. Let Z be drawn i.i.d. according to D and let {Z1, ..., ZK} be a CV
set of size K such that K divides n. Then, with probability at least 1 − δ/2 over
samples Z, the risk of f̄ cv

K is given by:

ε(f̄ cv
K ) ≤ 1

K

∑K
j=1 ε̂Zj

(f̄ cv
j ) +

√
K
2n ln 2K

δ

Proof : Hoeffding bound implies that for all j ∈ {1, . . . , K} we have

P

(
ε(f̄ cv

j ) > ε̂Zj
(f̄ cv

j ) +
√

K
2n ln 2K

δ

)
≤ δ

2K . The result of the lemma then follows
from the union bound theorem: P(∪Ai) ≤

∑
P(Ai).

The following lemma bounds Edc(f̄(x′), f̄ cv
K (x′)) by its expected value com-

puted over a training unlabeled dataset.

Lemma 5. Let XU be an unlabeled dataset drawn independently from a labeled
dataset Z, and let f̄ be a ranking function that has been learned independently
of a subset X

(k)
U = {x′

j1
, ..., x′

jk
} of size k of XU . Then we have:

P

⎛

⎝ E
x′∼DX

dc(f̄(x′), f̄ cv
K (x′)) ≤ 1

k

k∑

l=1

dc

(
f̄(x′

jl
), f̄ cv

K (x′
jl

)
)

+

√
ln(2

δ )
2k

⎞

⎠ > 1− δ

2

where the probability is taken over the choices of XU .

Proof : Since dc is a [0, 1]-random variable which is function of the x′ ∈ X
(k)
U ,

and since the x′ are i.i.d., the result follows from Theorem 3, [with δ := δ/2,
n := k, X := dc(f̄(x′), f̄ cv

K (x′)), Xi := dc(f̄(x′
ji

)f̄ cv
K (x′

ji
)) ].

Theorem 1, together with the last two lemmas give an upper bound of the risk
of any a priori chosen ranking function. This bound can be accurately estimated
from the labeled data and a subset of the unlabeled data, provided that the size
of the latter and n/K are large enough, and provided that the divergence dc can
be easily estimated. The next proposition shows that this is the case for the risk
function c := cRloss that we consider in our experiments.
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Proposition 6. Let f̄ and f̄ ′ be two ranking functions, and x an unlabeled in-
stance in the case where labels are generated based on binary relevance judge-
ments of the alternatives. Then, using the risk functions of Equation 2, we have:

dcRloss
(f̄(x), f̄ ′(x)) ≤ max

p,q:p+q=Ax

1
pq

p∑

k=1

δ(f̄(x), f̄ ′(x))k

where δ(f̄(x), f̄ ′(x)) is the list of length Ax containing all the values of f̄(x)(i)−
f̄ ′(x)(i) for 1 ≤ i ≤ Ax ordered in decreasing value.

Proof : Assume that the true label � of x is Yx = (Y1, ..., YAx). We denote
rg(i) = f̄(x)(i) − 1, and for each i ∈ Y +

x , rg+(i) =
∑

j∈Y +
x

[[f̄(x)(i) > f̄(x)(j)]]
(the number of relevant alternatives ranked before relevant alternative i). Then,
using equation 2, we have cRloss(f̄(x), �) = 1

|Y +
x ||Y −

x |
∑

i∈Y +
x

(rg(i)−rg+(i)). Since
rg+ and rg′+ do only consider relevant alternatives, we have

∑
i∈Y +

x
rg+(x) =∑

i∈Y +
x

rg′+(i), and therefore

cRloss(f̄(x), �) − cRloss(f̄ ′(x), �) ≤ 1
|Y +

x ||Y −
x |

|Y +
x |∑

i=1

δ(f̄(x), f̄ ′(x))i

The results yields by taking the maximum value of the right-hand side of the
last equation over all possible values of these numbers.

For a given instance x, the complexity of dcRloss
is O(|Ax|ln|Ax|), since the

most expensive computation is sorting a list of size |Ax|.

3.2 A Uniform Risk Bound for Active Learning

To minimize ε(f̄Θ), one can try to minimize Ex′∼DX dc(f̄(x′), f̄ cv
K (x′)). However,

in order to use Theorem 1 in an active learning algorithm, we will need a bound
that is uniformly valid for all ranking functions f̄ , and all “possible” sequence of
queries. This can be done in the same way as for the sample compression scheme
[6] in supervised learning via the union bound.

In the sample compression scheme, given a (labeled) training set S of an a pri-
ori defined size m, any classifier returned by a learning algorithm is described by
a compression set. A compression set is a subset of the training set S and there-
fore, when S is given, can be described as a vector of indices i = (i1, i2, . . . , ik)
with ij ∈ {1, . . . , m} ∀j and i1 < i2 < . . . < ik. This implies that there exists a
deterministic reconstruction function, associated with the algorithm, that out-
puts a classifier when given a training set and a vector of indices. The perceptron
and the SVM are such an example. In that setting, given an a priori defined
vector i of indices, one can use the examples of the training set that do not
correspond to any index of i to bound the risk of the classifier defined by i (and
the training set S). Moreover, provided a prior distribution is given on the set
of all possible vector of indices, one can extend such a bound to a bound which
is valid simultaneously for all classifiers that can be reconstructed [8].
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Since any active learning ranking algorithm R considered in this paper is
deterministic, the set of all possible ranking functions that can be output by R
depends only on the set of all examples of XU that have been queried during
the execution together with all the corresponding labels that have been given in
response to the queries. Moreover, if we make the following assumption:

Assumption 7. There exists a deterministic function φ : X → L such that for
all (x, �) drawn according to D, we have � = φ(x).

The set of all possible ranking functions that can be output by R will then
depend only on the labeled set Z together with the final set of all the activated
examples. Thus, as for the sample compression scheme, we have a reconstruction
function associated with R. We can therefore apply the same techniques as for
the sample compression scheme to deduce risk bounds that will be valid for all
ranker functions that can be reconstructed. The next results formalize this idea.

Starting from the whole set XU of unlabeled, minimizing the generalization
error of f̄ can then be done by considering a subset of X

(k)
U of k elements of XU

for which the value of dc(f̄(x′), f̄ cv
K (x′)) are maximal (Algorithm 1). Then, we

can ask for the labels of x′ ∈ X
(k)
U and learn f̄ on Z� ∪ Z

(k)
U\ , where Z

(k)
U\ denotes

the labeled dataset, together with examples x′ ∈ XU that have been activated.

Algorithm 1. Active Learning strategy for ranking
Input :

– A set of labeled Z� and unlabeled examples XU ,
– k the number of examples to be activated, T the maximum number of rounds.

Initialize :

– ∀j ∈ {1, ..., K} learn f̄cv
j on Zj , set Z

(k)
U\ ← ∅ and t ← 1.

repeat

– Learn f̄ on Z� ∪ Z
(k)
U\ ,

– Select a subset X
(k)
U ⊂ XU |∀x′ ∈ X

(k)
U the value dc(f̄(x′), f̄cv

K (x′)) is maximal,
– Ask for the labels of x′ for x′ ∈ X

(k)
U ,

– Remove X
(k)
U from XU and reaffecte Z

(k)
U\ , Z

(k)
U\ ← Z

(k)
U\ ∪ X

(k)
U , t ← t + 1

until convergence of
�

x′∈XU

dc(f̄(x′), f̄cv
K (x′)) ∨ t > T ;

Output : f̄

The interested reader may refer to [5] to have descriptions of existing super-
vised algorithms for learning ranking functions in step 1 of the algorithm.

In the following, we suppose that Z = {(x1, �1), (x2, �2), . . . (xn, �n)} and
XU = {x′

n+1, x′
n+2, . . . x

′
n+m}. Moreover, we will also suppose that any single

query of the ranking active learning algorithm corresponds to an activation of
exactly k unlabeled data (for a parameter k fixed a priori), the total number of
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activated examples will then always be of the form k · t for some t ∈ N. Thus,
the compression set of any ranking function related to the algorithm R is the
union of the set Z and a subset of size k · t of XU . The set of the labeled data
is always in the compression set because the algorithm always consider Z. Now,
one can define a prior distribution on the set of all outputs of R by defining a
prior PN on N together with, for each t that has weight in PN, a prior Pt on the
set of all possible vector of indices of the forms i = (1, 2, . . . , n, i1, i2, . . . , ikt)
with ij ∈ {n + 1, . . . , n + m} ∀j and i1 < i2 < . . . < ikt.

Most of the time, the prior PN will have all its weights on the set {1, 2, . . . T}
for some parameter T defined a priori. Moreover, unless m is too big, since the
examples of XU are supposed i.i.d., we will choose Pt as the uniform distribu-
tion under the constraint that the n first indices must always be chosen, that
is Pt(i, t) =

(
m
kt

)−1 for any (i, t). We will denote by R(i,t) the corresponding
ranking function. Under those assumptions, we have the following result.

Theorem 8. Let R be any ranking active learning algorithm whose queries are
all of size k. Let PN and {Pt}t∈N

be the priors defined above. Finally, let f̄ cv
K be

any stochastic ranking function (possibly defined by cross validation on a labeled
dataset). Then ∀t ∈ N and ∀ i = (1,2,. . . ,n,i1,i2,. . . ,ikt) :we have:

P

(
E

x′∼DX
dc

(
R(i,t)(x′), f̄ cv

K (x′)
)

≤ ε̂
Z∪X

(kt)
U

+

√
ln (m

kt)−ln PN(t)+ln(2/δ)
2(m−kt)

)
> 1 − δ

2

where

ε̂
Z∪X

(kt)
U

def= 1
m−kt

∑

x′∈XU\X
(kt)
U

dc

(
R(i,t)(x′), f̄ cv

K (x′)
)

.

Proof : Similarly as in the proof of Lemma 4, for each (i, t), we use Hoeffding
inequality [with δ := δ.PN(t)·Pt(i,t)

2 ] and then apply the union bound.
Theorem 8, together with Theorem 1 and Lemma 4 gives us a generalization

error bound (with level of confidence 1 − δ) on any ranking function learned
using this type of active learning procedure. Also it shows that any such R will
converge to a ranking function that is at least as good as the cv-ranking function
f̄ cv

K even if R is constructing deterministic ranking function only. Moreover, it is
clear from the definition of the divergence dc that, for any already constructed
ranking function f̄ , the corresponding label of any unlabeled data for which the
value of dc is maximal will gives rise to one of those three situations: (1)–the
c-value of f̄ cv

K is “good” and the one of f̄ is “bad”,(2)–the c-value of f̄ cv
K is

“bad” and the one of f̄ is “good”, or (3)–both are “bad”. Clearly a query in the
situation (1) or (3) points out a weakness of f̄ . From an active learning point
of view, this is something that is suitable. Note also that, if f̄ cv

K has a low risk,
then situations (1) and (3) would be more likely to occur. This is the central
idea that underlies our proposed ranking active learning algorithm2.

2 As in [7], we choose to base our approach on the generally accepted assumption that
CV methods give good results.
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4 Experiments

We compared the proposed selective sampling scheme (denoted by divergence-
based in the following) with the random sampling and the extended margin
heuristic of [2] adapted to partial orderings. The reference supervised learning
algorithm we used to train the randomized ranking functions is the same as
in [1]. For a ranking function f̄ , we used the cRloss risk function to learn a
linear combination of weights for its associated scoring function f . We employed
the divergence measure dcRloss

introduced in proposition 6 to activate queries
from XU and conducted experiments on the Information Retrieval tasks of text-
summarization (TS) and question/answering (QA). Performances for TS and
QA are resectively averaged over 10 and 25 random splits3 of training/unlabeled
pool/test sets. For the text summarization, the queries we aim to activate are
documents for which the list of sentences appearing in its summary is demanded.
For QA, queries are questions and for each activated question we ask for passages
containing its answer.

4.1 Real Life Applications

Automatic Text Summarization. Automatic Text Summarization (ATS) sys-
tems are mostly designed to help users to quickly find a needed information.
Most studies consider the task of text summarization as the extraction of text
spans (typically sentences) from the original document. Extractive approaches
transform the problem of abstracting a text into a simpler problem of ranking
sentences according to their relevance of being part of the document summary.
These approaches have proven to be effective in producing summaries. To rank
text spans from a document, most previous studies combine statistical or lin-
guistic features characterizing each sentence in a text. A combination of these
features is finally used to order the spans. In this work we considered 4 statisti-
cal features borrowed from [1]. For ATS, we compared performance on the WIPO
collection4 used in [1]. In our experiments, we have chosen 1000 documents at
random from this corpus and removed documents having less than 2 words in
their title, and those composed of 1 sentence arguing that a sentence is not suf-
ficient to summarize a scientific document. In total we gathered 854 documents
and their associated summaries and Train/Unlabeled/Test splits are respectively
60/394/400 and 30/394/400 in each experiment. For the evaluation we followed
the state-of-the-art by comparing the extract of the system for each document
in the test collection with the desired summary obtained from its abstract by an
alignment technique [10]. We used the average precision measure by fixing a 10%
compression ratio, that is for each document in the collection, we computed the
average number of sentences appearing in its summary in a high ranked sentence
list of a length equal to 10% of the document’s size.

3 We conducted the Wilcoxon rank sum tests to decide of the significance of results
for Q/A and thus ran more experiments in this case.

4 http://www.wipo.int/ibis/datasets/index.html
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Fig. 1. Average Precision at 10% compression ratio versus the number of activated
queries for random, extended margin and divergence-based strategies. Results are av-
eraged over 10 randomly splits of training /unlabeled pool/test sets. For the same
number of documents in the unlabeled pool (394) and test set (400), performance are
plotted for 30 (left) and 60 (right) documents in the training set.

Passages retrieval for Question/Answering. QA systems address the problem of
finding exact answers to natural language (NL) questions. In order to reduce the
amount of information, QA systems apply successively two different modules. A
document retrieval module first identifies spans (documents or paragraphs) that
are likely to contain an answer to the asked question. Then an answer extraction
module extracts the desired answer by performing a deeper NL analysis of the
retrieved spans. Here we consider the document retrieval module of a QA system.
For Q/A, we compared performance on the TREC-11 question/answering track
and the Aquaint collection5 by evaluating the a@n measure which is the pro-
portion of questions in the test set, for which the answer is contained in the first
n retrieved passages. Among the 500 questions in the collection, we discarded
193 having no answer in the top 100 passages retrieved by the search engine. For
each question, we followed the methodology developed in [12] to convert the re-
trieved passages into 117 dimensional score features by applying a conventional
search engine which assigns a series of scores to each paragraph in the collection.
In this setting, Train/Unlabeled/Test splits are 30/121/156.

4.2 Empirical Results

Figure 1, plots the performance of the divergence-based, extended margin and
random strategies for the ATS task for different numbers of randomized ranking
functions and for different splits of the training set (training sets of size 30
documents in figure 1. left and 60 documents in figure 1. right - the size of
unlabeled data and test sets are kept fixed). We see in both cases that divergence-
based strategy has a real advantage over random sampling and the extended
margin heuristic. The low performance of the extended margin can be explained
by the fact that an accurate scoring function should be able to rank relevant

5 http://trec.nist.gov/data/qa/t2002 qadata.html
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Table 1. a@n in % for the divergence-based, random and the extended margin strate-
gies. Results are averaged over 25 randomly splits of training/unlabeled/test sets.

n Strategy
# of activated queries (K = 5)

0 4 8 24 60 121
a@n

5
Divergence-based

35.2
39.7 41.6 44.8 45.5

46.1Extended Margin 38.6⇀ 40.1� 41.7� 44.2⇀

Random 38.0� 39.6� 41.3� 43.8�

10
Divergence-based

46.1
51.2 52.5 56.4 57.6

57.7Extended Margin 49.9⇀ 51.7⇀ 54.2� 56.9⇀

Random 49.5⇀ 51.2� 53.7� 56.2�

20
Divergence-based

53.8
57.7 62.8 67.3 68.6

69.2Extended Margin 56.8⇀ 60.1� 64.9� 67.3�

Random 56.2� 59.5� 64.4� 66.9�

sentences above irrelevant ones, but we should not expect this scoring function to
be confident about the relative ranks of two relevant (or two irrelevant) sentences.

In the case where the randomized ranking functions (RRF) have sufficiently
been trained (figure 1. right) we note that after querying of about 50 instances
with 5 or 10 RRF, the final ranking function has approximately the same level
of performance as when the ranking function is learnt on all the labeled data,
together with all the unlabeled data and their corresponding labels.

The convergence rate of the performance of deterministic ranking functions is
however lower with a smaller number of RRF. This might be due to the fact that
the split of the training set on different cross-validation sets (on which each RRF
is trained) is larger with a higher number of RRF. Thus the divergence-based
strategy appears to be most effective if there is a reasonable training size for
learning and not a too small number of RRFs.

Table 2, shows our second investigation for the Q/A task. We notice the same
effect of the divergence-based strategy compared to random sampling and ex-
tended margin heuristic than for ATS. Indeed, with only 30 questions in the
training set, the divergence-based strategy outperforms the random and ex-
tended margin strategies for different values of n. We conducted Wilcoxon rank
sum tests with a p-value threshold of 0.05 to decide if the results in Table 2 are
significant. The symbols ⇀ and � indicate the cases where Extended-Margin
and Random strategies are significantly worse than the Divergence-based strat-
egy respectively as a one and two-tailed tests.

5 Conclusion

We proposed an active learning strategy for learning ranking functions. The
theoretical analysis and the definition of the notion of disagreement between
two ranking functions lead to a novel active learning strategy that shows good
empirical performance on real world applications. To the best of our knowledge,
this strategy is the first one that can be applied to general cases of ranking.
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Moreover, experimental results show that, in practice, the derived active learning
strategy is highly effective.

The major theoretical weakness of our work is that we consider the random-
ized ranking function built with CV sets as the reference, while it is certainly
not a perfect ranker. Indeed, the generalization error bound can never be better
than the generalization error on the CV-ranker. On the other hand, our analysis
comes with several advantages: (1) we actually tend to minimize a generaliza-
tion error bound, which is a challenging issue in label ranking. (2) The bound
remains valid during the active learning process. (3) Our proposed sample com-
pression approach gives a general framework on which one can base other ranking
active learning algorithms. Finally, it appears empirically that the divergence-
based strategy suggested by the bound significantly reduces the required number
of labeled examples. Therefore, while the proposed strategy is, indeed, mainly
heuristic, it needed the bound for both the definition of the notion of disagree-
ment, and for the idea of using another ranking function as reference. Possible
improvements of our theory include the study of how the ranking function used
as reference could evolve as we query for more labels, which would enable the
generalization error bound of the learned function become better than the initial
error of the randomized ranking function obtained with CV-sets.

References

1. M. Amini, N. Usunier, and P. Gallinari. Automatic text summarization based on
word clusters and ranking algorithms. In Proc. of the 27th ECIR, 2005.

2. Klaus Brinker. Active learning of label ranking functions. In Proc. of 21st Inter-
national Conference on Machine learning, 2004.

3. Klaus Brinker, Johannes Fürnkranz, and Eyke Hüllermeier. Label ranking by
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