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Abstract. This paper presents a decoupled two stage solution to the
multiple-instance learning (MIL) problem. With a constructed affinity
matrix to reflect the instance relations, a modified Random Walk on a
Graph process is applied to infer the positive instances in each positive
bag. This process has both a closed form solution and an efficient itera-
tive one. Combined with the Support Vector Machine (SVM) classifier,
this algorithm decouples the inferring and training stages and converts
MIL into a supervised learning problem. Compared with previous algo-
rithms on several benchmark data sets, the proposed algorithm is quite
competitive in both computational efficiency and classification accuracy.

1 Introduction

Multiple-instance learning (MIL) is a generalization of supervised learning. Un-
like supervised learning, this model assumes that instances are contained in bags
and the instance labels are hidden. The bag label is related to the hidden labels
of the instances as follows: the bag is labeled as positive if any single instance
in it is positive, otherwise it is labeled negative. Given a training set of labeled
bags, an MIL algorithm attempts to find a hypothesis that correctly explains the
labels for the bags on the training set and generalizes well to predict the labels
for unseen bags. Many real world applications can be formulated in the MIL set-
ting, e.g. drug design, protein identification, hard drive failure prediction, stock
prediction, text categorization, content-based image retrieval (CBIR) and more
recently content-based video retrieval (CBVR).

After Dietterich et. al first formulate MIL in [I], substantial research has been
carried out in this area in the last few years, e.g. [2/3[4/5/6]. They can be roughly
divided into two categories. A few algorithms operate directly on the bag level
while others try to infer the hidden instance labels and then resort to supervised
learning techniques. Intuitively, an instance is likely to be positive if it relates to
many positive bags and does not relate to any negative bags. However the strict
intersection of the positive bags may be empty when features are real valued.
Therefore, a notable concept of “Diverse Density” (DD) is defined to measure in
the feature space the co-occurrence of instances from different positive bags [2].
Unfortunately, it is computationally intensive to exhaustively search the feature
space for the point which maximizes DD [2/3] and overfitting may occur since
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no regularization term is present. Searching for multiple local maximum points
called “instance prototypes” [5] is also possible but it suffers from the same
computation problem.

The motivation of the present study is to efficiently infer the underlying pos-
itive instances for all positive bags in parallel and let a classifier with proper
regularization term do the left work. There are two advantages by doing so: 1)
computational efficiency comes from operating only on the instances instead of
searching in the whole space; 2) the two stages of inferring and training are de-
coupled and thus the training stage is open to different classification schemes.
Holding this in mind, we take a Random Walk on a Graph approach to in-
fer the underlying positive instances. Sending these inferred positive instances
and the ones in negative bags into the state-of-the-art Support Vector Machine
(SVM) classifier, we further takes advantage of the generalizing capability of
SVM. Tested on several standard benchmark data sets, this approach is quite
competitive in both computational efficiency and classification accuracy with
previous ones.

The paper is organized as follows: Section [2] briefly presents related work.
Section [l introduces the Random Walk on a Graph and adapts it to the MIL
setting. Section H] gives the implementation details and Section [l presents the
experimental results. Section [0] discusses the relation of the present study and
the most related work and Section [7] concludes this paper.

2 Related Work

2.1 Multiple Instance Learning

The MIL problem is first presented in [I], and an algorithm is also proposed with
hypothesis classes consisting of Axis Parallel Rectangles (APR). Two methods
focused on the DD concept are developed [2J3]. The former (DD algorithm) takes
a two step scaling and gradient search approach, and the latter (EMDD) treats
the hidden information of the underlying positive instances as a missing value
and uses Expectation-Maximum (EM) to estimate it. Both include computa-
tionally dense operations. A few research tries to tailor the supervised learning
algorithms for the MIL setting, such as [7I89]. Recently, an interesting compar-
ison is made between supervised and multiple instance learning methods [6].

Another line of research handles the bag directly. A kernel-based approach is
suggested which derives MI-kernels on bags from statistics of instances [10]. [4]
propose both the maximum pattern and the maximum bag margin formulation
(mi/MI-SVM) of MIL and solve the derived mixed-integer programming prob-
lem in heuristic manner due to formidable computation otherwise. DD-SVM is
developed to search for multiple local maximum points and define similar bag
kernels in an SVM framework [5]. Approximate Box Counting (ABC) [I1] is pro-
posed for extended “r-of-k” MIL setting. Ensemble learning methods of Boosting
[12] and Ensemble-EMDD [I3] are also explored.
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2.2 Random Walk on a Graph

Random Walk on a Graph has been initially proposed to compute the absolute
relevance of pages (vertices) in a hyperlinked environment, like the web, in the
form of the PageRank algorithm [T4]. A slightly different algorithm is developed
for manifold learning [15]. This manifold learning approach has attracted more
research attention in the learning community recently. For example, sparsely or
densely connected graphs are built to deal with semi-supervised learning prob-
lems [T6IT7TRITIR0] and to cluster data [21122]. However, though connected by
propagating the labels on manifold data structure, MIL is different from semi-
supervised learning in that the latter deals with both labeled and unlabeled data
while the former concerns itself with the hierarchical label ambiguity and tries
to identify the underlying positive instances in positive bags.

3 Random Walk on a Graph for MIL

In this section, after introducing some assumptions and notations, we first adapt
the Random Walk on a Graph algorithm to infer the underlying positive in-
stances, then combine an SVM classifier to solve the converted supervised learn-
ing problem. We also show that the adapted Random Walk on a Graph algorithm
is somewhat similar in spirit to the original DD concept.

3.1 Assumptions and Notations

We make two assumptions here. The first one is that the positive instances form
certain clusters in the feature space and the negative ones are distributed in the
remaining space. The second one is that the bags and the instances are drawn
independently from the actual data. These are two general assumptions which
are usually satisfied in real world scenarios.

Let B; denote the i*" bag, BiJr a positive bag and B; a negative one. Let
B = {B;}, Bt = {B]"} and B~ = {B; }. Let J denote the set of all instances
and n = |J|. An instance I;,j € J is denoted I;r when it is positive and is
denoted I; when negative. I; can also be denoted as B;; to emphasis that
I; € B; and as B?J'- if it is positive. Note that j is a global index for instances
and does not relate to specific bag index. Let NN; denote the set of k nearest
neighbor (k-NN) instances from other bags for each instance I;. Denote by p(I ;r )
the probability of I; being positive and p(I;) similarly.

Each instance I is represented by a d-dimensional feature vector. Let A, xn
be the affinity matrix defined for the instances. Normalize A by S = D7 'A,
where D is the diagonal matrix with D;; = >";_; Ask.

3.2 Random Walk on a Graph

A Random Walk on a given graph G = {V, E}, where V is the vertex set of
size n and E the edge set, describes how a random walker jumps among ver-
tices following the edges with certain probabilities. This can be characterized
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by a discrete time markov chain which allows us to compute the probability
xp of being located in each vertex p at time ¢. Suppose that the transition
probability matrix is P and the probability distribution over all the vertices is
x(t) = [21(t),...,2,(t)]T, a unique stationary distribution z* is readily derived
since P is a stochastic matrix having its maximum eigenvalue equal to one and
this guarantees the convergence (see e.g. [23], chapter 4).

Initialize £(0) = r at ¢ = 0 so that r is a probabilistic distribution for the
random walker to start with. A restart coefficient « is introduced to indicate the
probability ar that the walker stops following edges and restarts from the vertices
again. Suppose that a random walker starts at vertex u, it follows the arc (u,v) to
vertex v with probability (1 — &)py., where p,, = P(v,u) is the transition proba-
bility from vertex u to v, or restarts from v with probability ar,. The probability
x, (t) are updated at each time step by the following equation

zo(t+1) = (1—a) Y puzult) + ary. (1)
ueV

The compact matrix form is that
z(t+1) = (1 —a)Px(t) + ar. (2)

Inserting y =  — a(I — (1 — a)P)~'r into (@), we have that y(t + 1) =
(1 — a)Py(t). The convergence to the stationary distribution z* comes directly
since y* = 0. We can easily show that

¥ =a(l - (1—-a)P) tr. (3)

This completes the closed form solution.

Although z* can be expressed in a closed form, the iterative solution provides
a more efficient algorithm for large scale problems. It just uses (2)) to iterative
update = until convergence arrived. The exponential convergence of x* is easily
derived from the Dobrushin convergence theorem (see also [23]).

3.3 Adapting Random Walk to the MIL Setting

The original DD concept does capture the nature of the MIL problem. It tries
to find the point ¢ arg max. p(B|c) = p(BT|c)p(B~|c). Assuming both bag and
instance independence and under a noisy-or model[2], it turns out to be p(B|c) =
T (1 = IT,(0 = plel BT, TTe (1 — p(elBy,)) which measures how different
positive bags have instances near ¢ and how far negative instances are from c
[2]. One well placed negative instance will bring DD to near zero since DD is very
sensitive to instances in negative bags. However, the computation of searching
the whole feature space for ¢ is formidable.

Adopting an additive model instead of the noisy-or model, we attempt to
estimate a likelihood ratio (LR) of p(B*|c)/p(B~|c) instead of the likelihood for
each instance in parallel, and treat the inferred instances in a supervised learning
framework. This additive model assumes that each instance casts its probabilistic
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vote to every instance independently and each instance receives votes additively.
So it is more robust to instances in negative bags than the noisy-or model due
to its additive nature. We substitute ¢ with I; so that p(B*|c) = p(B+|I;r) and
p(B~|c) = p(B~|1;) since we are only interested in the instances, not the whole
feature space. To be specific, we model that

p(BT|I}) o< p(I}|BY) = Zpl+\B+ ZZPWB (B B),  (4)

where p(B;;|B;") is the local probability for Ij, being positive given its bag label
as positive. The interpretation of () is that the collective instance votes for
instance I; sum up to the probability of I; being positive given B*. We model
that

p(B™|I;) o p(I;|B7) §:p1'U3 =3 U} IBR)p(BRIB ), (5)
l k

similarly. This results in our LR measure of p(B*|I;") /p(B~|I;") since p(B*|I}")
and p(B~|I;") are modeled in the same way. In contrast, the likelihood measure
is adopted since the noisy-or model treat these two parts asymmetrically.

We can grasp the solution (B]) from this probabilistic voting view. Let 8 =
1 — «, and omit the constant coefficient v in ([B]) for the time being, we have

= (1-pP)"!
=(I+pP+B%P2+ .. )r
=r+ [Pr+(BP(BPr)+.... (6)

Compare ) and (@) by plugging in r; = ﬁ(IﬂB*), xy = p(IJﬂB*) for each
instance I; and remember that B;, = I, we have that

p(I;r\Bf;g) = 6k + Bpjr + Zﬂzpjzpzk +... (7)
]

where 0;, is the indication function. p(I;r\Bjk) is the probability of commuting
from I to I; in infinite time with a damping factor § punishing long commuting
time. This choice of p(I;7|Bj}) is in accordance with our intuition that closeness
makes similar. The second assumption stated in Section [3.]] guarantees that the
closeness in the feature space is meaningful for inferring instances. Estimating
p(I,, |B~) follows an identical procedure with similar input 7 as p(B,|B; ).
The LR calculation is thus completed within the Random Walk framework.
However, two issues of how to construct P and choose r remain to be solved.
Firstly in the graph construction, the normalized affinity matrix S = D~1'A4 is
taken as the transition probability matrix P. The affinity matrix A can typically
be defined by a Gaussian weighted k-NN distances in (). The intra-bag k-NN
relations are intentionally exclude by only allowing k-NN from other bags in A.
So the random walker is forced to move among different bags in every step to



478 D. Wang, J. Li, and B. Zhang

avoid self-reinforcement. Otherwise two nearby negative instances in the same
positive bag will vote heavily on each other and cause false high scores in x*.
Secondly, the input vector r* for estimating p(I J+ |BT) is set so that r; = 1 if
I; € Bf and r; = 0 otherwise. This means that p(B;;|B;") = 1 if I € B; and
p(B|Bi") = 0if I € B; . So according to (@), the instances in negative bags
will not contribute to p(I ;‘ [BT). Similarly, the input vector r~ for estimating
p(I; |B7) is set so that r; = 1if I; € B, and r; = 0 otherwise. However,
noticing that P1 = 1, where 1 = [1,...,1]7 and r* + r~ = 1, it follows that

p(IjﬂB‘*) +p(I;|B7) = 1. So the LR for I; is further simplified to 12* and
J

instances in each positive bag can be ranked as being positive according to this
LR measure.

After adapting the Random Walk on a Graph process to the MIL setting, a
further instance selection and classifier training stage is added. SVM is chosen
for its generalization ability. We omit an introduction to SVM and refer the
readers to [24]. However the Random Walk, by itself, is neutral to the choice of
classifiers.

4 Algorithm Description and Details

The completed running algorithm, Random Walk with SVM (RW-SVM) is shown
in Figure [l The algorithm implementation and parameter settings are given as
follows.

4.1 Implementation Details

Given the bags and the instance features, the first step to construct the affinity
matrix A is to calculate the k nearest neighbors (k-NN) from other bags for each
instance and set the edge with the distance defined in (). There are several other
methods to generate A. For example, A can be dense if all inter-bag distances are
incorporated. However the computational cost will increase dramatically. Another

Algorithm: Random Walk with SVM

Input: n instances with the corresponding feature vectors, bag indexes and bag labels.
Output: SVM classifier C.

1. Construct affinity matrix A by setting a;x = ar; = d(j, k), where k € NN;, k-NN
from other bags for I;, and d(j, k) is the distance function in (&) or ([@).

2. Normalize A so that S = D™ ' A in which D is diagonal with d;; = 22:1 ik -

3. Set input vector r as r; = 1 if I; € B} and r; = 0 otherwise.

4. Let P =S, z(0) = r, and iteratively compute x(t) with (2) until it converges to z*.

5. Select I; for each B that arg max; 120* ,I; € B} and select all instances I; € B; .
J

6. Train the SVM classifier C' using the selected instances.

Fig. 1. Algorithm description of Random Walk with SVM
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possibility is that the relative importance of each feature dimension may be differ-
ent regarding the distance calculation. However, the scaling parameter o; for every
feature dimension [, which is iteratively optimized in [23], is set to a constant o
across feature dimensions in (8] since the equal importance of feature dimensions
works well in [4].

Notice that in this way, the constructed graph is not necessarily connected and
may consist of several separate clusters. Some instances will still have zero scores
after the iteration process. However, those are of course negative ones since they
are not connected with the instances in positive bags.

In step 2, S can also be symmetrically normalized as S = D=2AD™ 2 at the
cost of losing the probabilistic interpretation for the Random Walk process. So
the current form is preserved.

After S and r are set, they are used to compute the stationary distribution x*
until convergence. Then the instance [; that maximizes z7,I; € Bj is chosen as
the positive instance for each B;"; all instances are chosen as negative instances for
each B; . This is a conservative scheme for choosing positive instances since each
positive bag contains at least one positive instance. More complicated schemes for
choosing the positive instances are also possible, e.g. set a threshold for positive
instances across positive bags, or use mi/MI-SVM like iterative scheme.

These selected instances are fed into the SVM classifier. LIBSVM [24] is used
as our SVM implementation.

During test phase, the instances are classified by C and the bag is decided to
be positive when any of the instances in it is classified as positive.

4.2 Parameter Settings

There are three parameters for graph construction, namely, the distance function,
o and k. The Ly distance with Gaussian kernel is chosen for defining edge weight
in affinity matrix A as follows:

_ g~ )
apg = da(p,q) = 7 Hexp ( o2 ), (8)
=1

where p, g are two instances in the feature space and Z the normalization constant.
Note that o; = o for all dimensions. For some features depending on the data set
(see Bl for details), the cosine distance with Laplace kernel is adopted as follows:

1 exp (—(1 — cos<p, q>)>. )

Apqg = dC(p7 q) = A o

There is one parameter for the iteration process, the restart probability «e. These
four parameters are so-called hyper-parameters. There are also different parame-
ters for different kinds of SVMs on each data set.

Generally speaking, it is difficult to tune the hyper-parameters. Due to the lim-
ited data available and the need of fair comparison with previous approaches, the
parameter tuning method adopted here is somewhat complicated. The final clas-
sification results are obtained by 10-fold cross-validation runs on each data set.
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Inside each cross-validated run, a nested 3-fold cross-validation is carried out to
determine these parameters. The hyper-parameters are chosen with fixed SVM
parameters and each hyper-parameter is determined independently with other
hyper-parameters fixed. After these three parameters are set, the SVM parame-
ters are further determined on the same 3-fold cross validation data by a 5 x 5
grid search procedure. The distance function are chosen according to the data set
used. The SVM kernel type are chosen as the same with the previous approaches
for fairness.

5 Experiments

5.1 Experimental Setup

Following [4], we perform experiments on the same data setd] to evaluate the
proposed algorithm and compare it with other methods. The data sets are from
a variety of application domains, including the most frequently used MUSK; a
small portion of Corel and TRECY. Bag classification accuracy is taken as the
performance measure for comparison. The results are averaged over 10-fold cross-
validation runs. This random cross-validation is again repeated 10 times to get the
significance of the results at p > 0.95. However we do not have the corresponding
confidence interval for the comparative methods on these data sets since this kind
of measurement is not provided in previous studies.

The testing data are excluded from the Random Walk process in each fold. The
performances of previous methods are adopted from [4] unless otherwise stated.
The actual running time are also reported on the MUSK data set to show the
effectiveness and efficiency of the proposed approach. However for the Corel and
TREC9 data sets, comparison are made only among EMDD, mi/MI-SVM and
RW-SVM due to the lack of performance data of other approaches mentioned.

To simplify the parameter tuning process, we choose the default value of the
numerical hyper-parameters as ¢ = 10 for (§), k = 15 and a = 0.1. These values
are those frequently chosen by the inner 3-fold cross-validation processes on the
MUSK data set. These default parameters works pretty well for the data sets and
are used unless otherwise stated.

5.2 Drug Design

The MUSK data sets, which are used for drug design, are the benchmark used in
virtually all previous approaches. Both data sets, MUSK1 and MUSK2, consist
of descriptions of molecules (bags) using multiple low-energy conformations (in-
stances). Each conformation is represented by a 166-dimensional feature vector
derived from surface properties. The Lo distance function in (8)) is used for con-
structing A. The RBF kernel K (z;y) = exp(—x||z—y||?) is adopted for both data
sets and feature vectors are normalized in a per-dimension min-max style [24] for

! For detailed data set descriptions , see [4]. The data sets are available from |http://
www.cs.brown.edu/people/stu/mil/datasets.html
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Table 1. Classification accuracy of different methods on the Musk data sets

Data set APR DD EMDD MI-NN mi-SVM MI-SVM DD-SVM ABC Boosting RW-SVM
Muskl 92.4 88.0 84.8 88.9 87.4 7.9 85.8 91.2 92.0 87.6%1.1
Musk2 89.2 84.0 849 825 83.6 84.3 91.3 903 87.1 87.1£0.9

Table 2. Classification accuracy of different methods on the Corel image data sets

Data set EMDD mi-SVM MI-SVM RW-SVM
Category linear poly rbf linear poly rbf linear poly rbf
Elephant 78.3 82.2 78.1 80.0 81.4 79.0 73.1 82.1+0.8 83.7+1.1 83.3£1.7
Fox 56.1 58.2 55.2 57.9 57.8 59.4 58.8 57.0+1.8 58.5+2.0 60.0+2.0

Tiger 72.0 784 78.178.9 84.0 81.6 66.6 78.1+1.0 78.7+1.0 79.5+0.7

SVM input. As summarized in Table [I] with the confidence interval, RW-SVM
achieves fairly good performance on both MUSK1 and MUSKH# among all these
algorithms (See Section 2] for proper abbreviations for the algorithms). We try to
add more instances as positive by introducing a global threshold of th = maxz7
for all instances in negative bags. All instances in positive bags with 7 > th are
taken as positive ones. However, no significantly better result is produced.

5.3 Automatic Image Annotation

For the image annotation task from the Corel data, the original color images (bags)
have been segmented to regions (instances), each characterized by color, texture
and shape descriptors of total 230 dimensions. Three different categories (“ele-
phant”, “fox”, “tiger”) are used. In each case, the data set has 100 positive and
100 negative example images. The latter have been randomly drawn from a pool
of photos of other animals. The Lo distance in (§]) is chosen for constructing A.
The feature vectors are normalized in a per-dimension min-max style [24] for the
three kinds of kernels used. As shown in Table 2, RW-SVM outperforms EMDD
by a few percent, and performs comparably with mi/MI-SVM.

5.4 Text Categorization

We also test our algorithm on data sets from text categorization. These data sets
are extremely sparse and high-dimensional, which makes them more challenging.
In short, the data set which comes from TRECY is randomly subsampled and split
into subsets. Each subset contains a few thousands paragraphs (instances) and at
lease 100 documents (bags). The Ly normalized cosine distance in (@) is chosen
for constructing A and o, = 0.5 for (@) and k = 40 are set for these data sets.
The two parameters are again chosen as the values which are frequently selected

2 The performances of DD-SVM, ABC and Boosting are adopted from [BJTTIT2] respec-
tively.
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Table 3. Classification accuracy of different methods on the TREC9 document catego-
rization sets

Data set EMDD mi-SVM MI-SVM RW-SVM
Category linear poly rbf linear poly rbf linear poly rbf
TST1 85.8 93.6 92.5 90.4 93.9 93.8 93.7 96.1+£0.3 95.3+0.4 96.04+0.3
TST2 84.0 782 759 74.3 84.5 84.4 76.4 81.44+0.6 78.84+1.8 82.3+0.8
TST3 69.0 87.0 83.3 69.0 82.2 85.1 77.4 88.9+0.4 71.7£2.6 83.9+0.4
TST4 80.5 82.8 80.0 69.6 82.4 82.9 77.3 84.7+0.5 74.24+3.5 84.9+0.6
TST7 75.4 81.3 78.7 81.3 78.0 78.7 64.5 79.1£0.8 77.9£2.1 79.94+0.9
TST9 65.5 67.5 65.6 55.2 60.2 63.7 57.0 70.9+0.5 62.1£0.9 71.4+1.1
TST10 785 79.6 78.3 52.6 79.5 81.0 69.1 83.6+£0.5 73.4+2.1 83.7+0.5

by the inner 3-fold cross-validation processes for hyper-parameters on TS1 data
set. The feature vectors are normalized to unit length with L, norm for the three
kinds of kernels. As shown in TableB, RW-SVM shows improved performance over
mi/MI-SVM (and EM-DD subsequently) in five out of seven subsets.

5.5 Running Time

As shown in Table[] the total time spent by our algorithm was 56.5s (2 hours) for
Musk 1 (Musk 2) on a P4-3.0 GHz PC. This time includes graph construction and
5x 5 grid search of 3 fold cross validation for SVM parameters which is carried out
in each of the 10 runs. The Random Walk process itself typically requires less than
a few tens of iterations which equal to 0.1 second for several thousand instances.
Although the time is not directly comparable across algorithmﬂ, it does give us
some hint of the order of the algorithms’ computational complexity.

Table 4. Running time of several algorithms on the MUSK data sets. Note that it only
provides some hint of the order of computational complexity of each algorithm.

Data set RW-SVM ABC EMDD
MUSK1 56.5 seconds 2 hours 135 hours
MUSK2 2 hours 40 hours 485 hours

6 Discussion

Our algorithm extends the DD concept in the following aspects: the iterative two
stage operations are separated and simplified as two cascade stages of inferring and
training; the influence of not-so-near instances is accumulated with discounting
factor §; the additive probabilistic model, which is more preferable in some cases

3 The running time for ABC and EMDD are adopted from [I1] on a 750 MHz Sun
Blade.
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as discussed in [5], replaces the noisy-or model; a regularization term is added in
both the Random Walk [25] and the SVM classification process afterwards.

Both [4] and [5] consider SVMs for MIL. The main difference between [4] and
our algorithm is that their formulation still results in two interleaved stages of
inferring and classifying while ours decouples the two stages. In the presentation of
[5], multiple local maximum points for DD are searched in the whole feature space.
In the current study, the inferred underlying positive instances instead of the local
maximum points are sent to SVM for classification and a dramatic speedup is thus
produced.

7 Conclusion and Further Work

In this paper, a decoupled two stage solution is presented for the multiple-instance
learning (MIL) problem. With an affinity matrix to reflect the data manifold, a
modified Random Walk on a Graph process tries to infer the positive instances.
This algorithm has both a guaranteed convergence and a fast iterative implemen-
tation. It is also open to different classification schemes. Comparative experiments
on some benchmark data sets have shown that this algorithm is quite competitive
with previous algorithms in both accuracy and speed when combined with SVMs.

Further work includes designing different schemes to choose the positive and
negative instances for classifier training, comparing more thoroughly with other
supervised and MI learning methods, applying advanced manifold learning algo-
rithms, fusing different kinds of features and classifiers in this framework and ap-
plying this algorithm to large scale real-world tasks which are not handled before
due to computational limits, such as the large scale CBVR data set of TRECVID
2006.
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