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Abstract. An accurate ranking of instances based on their class proba-
bilities, which is measured by AUC (area under the Receiver Operating
Characteristics curve), is desired in many applications. In a traditional
decision tree, two obstacles prevent it from yielding accurate rankings:
one is that the sample size on a leaf is small, and the other is that the
instances falling into the same leaf are assigned to the same class prob-
ability. In this paper, we propose two techniques to address these two
issues. First, we use the statistical technique shrinkage which estimates
the class probability of a test instance by using a linear interpolation
of the local class probabilities on each node along the path from leaf to
root. An efficient algorithm is also brought forward to learn the inter-
polating weights. Second, we introduce an instance-based method, the
weighted probability estimation (WPE ), to generate distinct local prob-
ability estimates for the test instances falling into the same leaf. The key
idea is to assign different weights to training instances based on their
similarities to the test instance in probability estimation. Furthermore,
we combine shrinkage and WPE together to compensate for the defects
of each. Our experiments show that both shrinkage and WPE improve
the ranking performance of decision trees, and that their combination
works even better. The experiments also indicate that various decision
tree algorithms with the combination of shrinkage and WPE signifi-
cantly outperform the original ones and other state-of-the-art techniques
proposed to enhance the ranking performance of decision trees.

Keywords: Decision Tree, Class Probability, Ranking, AUC, Shrinkage,
WPE

1 Introduction

Decision trees have been regarded as one of the most popular models in the
fields of machine learning and data mining. Traditionally, accuracy is often used
to evaluate the classification performance of decision trees. However, it is not
sufficient to merely classify an instance into the most possible class in many
applications. A ranking of instances based on the class probability P (c|e), the
probability of an instance e in the class c, is more desirable. For example, a
credit card company can consider the top X% in a ranking of applicants, who
are most likely to belong to the profitable class. In this paper, we use AUC (Area
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Under the Receiver Operating Characteristics Curve) to evaluate the ranking
performance of decision trees, which has received considerable attention as a
measure of ranking [14,8,6].

Accurate probability estimation certainly leads to accurate ranking which
is based on the class probabilities. Unfortunately, decision trees, such as C4.5
[15], have been observed to produce poor probability estimates which result in
the poor ranking performance [11,3,13]. In a decision tree, the class probability
P (c|e) is estimated by the fraction of instances of class c on the leaf which e
falls into. It causes two problems [17]. One is the high bias: decision tree growing
methods try to make leaves pure, so the probability estimates on leaves are
shifted towards zero or one; the other is the high variance: the training instances
on a leaf are often not enough to provide reliable probability estimates. Besides,
decision tree algorithms often assign the same class probability to the instances
falling into the same leaf. The ranks of the instances with equal probability are
generated randomly, and thus the AUC score tends to decrease.

In this paper, we introduce shrinkage and the weighted probability estimation
(WPE ) to solve the above problems. The probability estimate with shrinkage
for a test instance is decided by the linear interpolation of the local probability
estimates on each node along the path from leaf to root, instead of merely being
decided by the leaf. An efficient algorithm is proposed to determine the inter-
polating weights. WPE is an instance-based method, which assigns the distinct
class probabilities to the instances falling into the same node, and thus leads to
better ranking performance. However, there are still some flaws in shrinkage and
WPE. We combine these two techniques together to compensate for the defects
of each. Shrinkage, WPE and their combination are applicable to any decision
tree algorithms without changing the tree-building process and tree structure.
We design empirical experiments to verify that both shrinkage and WPE can
improve the ranking performance of traditional decision tree algorithms, such as
C4.5 [15] and C4.4 [12], in terms of AUC. We also show that the combination
of these two techniques is even stronger than either single one, and according to
AUC outperforms other techniques such as m-Branch [5], bagging [12] and Ling’s
algorithm [9], which aim to improve the probability-based ranking in decision
trees.

The rest of the paper is organized as follows. In Section 2, we discuss the
related work on improving the probability-based ranking performance of decision
trees. In Section 3, we describe shrinkage and the algorithm for training the
interpolating weights. In Section 4, we illuminate the process of WPE. In Section
5, we show how to combine shrinkage and WPE together. In Section 6, the
experiments and results are presented and analyzed. Finally, we summarize our
work and bring forward the future research in Section 7.

2 Related Work

As the foregoing analysis has shown, the ranking performance of C4.5 is poor
(i.e., low AUC score). Provost and Domingos [12] utilize two techniques to



Improving the Ranking Performance of Decision Trees 463

improve the AUC of C4.5. The first is to turn off pruning and the second is to use
Laplace correction. They call the resulting algorithm C4.4. However, turning off
pruning results in a large tree so that the number of training instances on each
leaf tends to be small. Then the corresponding probability estimation could be
unreliable even when using Laplace correction. Moreover, the same probability
estimate is assigned on the same leaf in C4.4. Bagging is also used to improve
the AUC of decision trees [2,13], but the results produced by bagging are not
comprehensible.

Some researchers have noticed that the information used for estimating the
probability of an instance should not be limited to the leaf which the instance
falls into. Ling and Yan [9] present an algorithm to average probability estimates
from all leaves, instead of a single leaf. The contribution of each leaf is determined
by the deviation in attribute values from root to leaf. But the deviation they
described has only been reflected by a “confusion factor” which can be regarded
as the probability of errors that alters the attribute values. Although it produces
distinct probability estimates for the instances on the same leaf, setting up good
“confusion factors” could still be an issue. Moreover, the algorithm should go
through the whole tree to calculate the contribution of each leaf. Consequently,
the complexity of this algorithm tends to be fairly high.

Ferri et al. [5] introduce the m-Branch method to smooth the probability
estimates on leaves with the history information along the paths. M -Branch
is a recursive process in which the probability estimate on the parent node
is put into the probability estimate on the child node. The parameters of m-
Branch are adjusted by the height of a node and the cardinality (the number
of instances associated with a node). Although they notice that the information
from other nodes should be utilized, they still assign the same class probability
to the instances on the same leaf.

Zadrozny and Elkan [17] suggest a method called curtailment, to improve the
probability estimation of decision trees. In curtailment, if a leaf contains few
training instances and can not induce reliable probability estimates, probability
estimation can be raised to an ancestor node of this leaf, in which there are
enough training instances. Curtailment blurs the distinction between internal
nodes and leaves, because a node may serve as an internal node which owns
child nodes, or serve as a leaf which assigns the same probability estimate to
instances. Curtailment is reminiscent of the methods proposed by Bahl et al.
[1] and Buntine [4] that calculate a weighted average of training frequencies at
nodes along the path from root to leaf. However, they do not propose an effective
algorithm to learn the weights. Hastie and Pregibon [7] provide a shrinking
process called recursive shrinking to smooth the pruning in decision trees. The
shrinking process is parameterized by a scalar θ which must be specified based
on the data.

Shrinkage has been brought into text classification [10], in which the word
probability estimates are improved by shrinkage in a hierarchical structure. In
this method, the final class probabilities are estimated by naive Bayes. Besides,
the weights of shrinkage are determined by an EM algorithm. The EM algorithm
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needs an iterative procedure that converges usually after many iterations. Thus,
it is quite time-consuming.

3 Shrinkage

Figure 1 shows a sample decision tree, which has five internal nodes N1,. . . ,N5
and six leaves N6,. . . ,N11, associated with the subsets of training instances D1,
. . ., D11.
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Fig. 1. A sample of decision tree

Assume that the test instance et falls into leaf N6 passing internal nodes
N1, N2 and N4. In the traditional decision tree algorithm, the class probability
P (cj |et) is estimated by the fraction of training instances in class cj on leaf N6.
The shrinkage estimate of P (cj |et) is a linear combination of the local class
probability estimates on the nodes N1, N2, N4 and N6. Given class cj , the local
class probability of et on the ith node is estimated as follows.

P i(cj |et) =
nj + 1/|C|
|Di| + 1

, (1)

where nj is the number of training instances belonging to class cj , |C| is the
number of classes, and |Di| is the number of training instances on the ith node.
In Equation 1, Laplace correction is used to smooth the probability estimate
towards the uniform distribution of class labels.

Although the root N1 contains all the training instances, it probably has few
instances whose class labels are rare, which may result in unreliable probability
estimation. Therefore, we extend the tree by adding a uniform node N0 beyond
the root [10], on which the uniform distribution of instances is adopted. In order
to keep the consistency of expression, we define the class probability of et given
class cj on the uniform node N0 as P 0(cj |et) = 1

|D1| , where |D1| is the number
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of training instance on root N1. The shrinkage estimate of P (cj |et) is shown as
follows.

P (cj |et) = w0
j P 0(cj |et)+w1

j P 1(cj |et)+w2
j P 2(cj |et)+w3

jP
3(cj |et)+w4

jP
4(cj |et),

(2)
where P 1(cj |et), P 2(cj |et), P 3(cj |et), P 4(cj |et) are the local probability esti-
mates on N1, N2, N4, N6 respectively, w0

j , w1
j , w2

j , w3
j , w4

j are the interpolating
weights for class cj assigned to the corresponding nodes, in which

∑4
m=0 wm

j = 1.
Figure 2 shows the path, probabilities and related weights. Equation 2 can be
extended to deal with the general case which has k nodes on the path.

1N

2N

4N

6N

te

0N)|(0 tj ecP

)|(1 tj ecP

)|(2 tj ecP

)|(3 tj ecP

)|(4 tj ecP

0
jw

1
jw

2
jw

3
jw

4
jw

Fig. 2. The path of et in the decision tree. Uniform node is added above N1. The local
probabilities are estimated on each node, and the interpolating weights are assigned to
each node.

Shrinkage represents a tradeoff between the specificity and generality. At a
leaf, since the probability estimates are yielded based on the training instances
that come through a series of partitions on the internal nodes, they are more
specific but less general than the ones on the ancestors of the leaf. At the root,
the estimates are more general because all the training instances are included,
but they are less specific than the estimates on the descendants of the root.

A key problem to apply shrinkage is to determine the interpolating weights
effectively and efficiently. Assume that N0, N1, . . ., Nk is a path, where N0 is
the uniform node, N1 is the root, and Nk is the leaf. Given class label cj , let β0

j ,
β1

j , . . ., βk
j be the influence degree of node Ni to class cj , and w0

j , w1
j , . . ., wk

j

be the interpolating weights. We use the following algorithm to determine the
interpolating weights.

Algorithm DIW (path, D, cj)
Input: path is a sequence of nodes N0, N1, . . ., Nk, D is the training set, and

cj is a class label.
Ouput: A set of interpolating weights for cj for all nodes N0, N1, . . ., Nk.
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Step 1: Initialize each weight wi
j as 1

k+1 so that
∑

wi
j = 1, and initialize each

degree βi
j to zero. Set each training instance on leaf unmarked.

Step 2: Choose an unmarked training instance x on leaf Nk, remove x from
all the training subsets D1, . . ., Dk on each node along the path.

Step 3: Set P 0(cj |x) = 1/|D1|, where |D1| is the number of training instances
on root N1. From N1 to Nk, estimate the local class probabilities P i(cj |x)(i =
1, . . . , k) using Equation 1.

Step 4: For each node, update its degree as follows:

βi
j = βi

j +
wi

jP
i(cj |x)

∑k
m=0 wm

j Pm(cj |x)
, i = 0, . . . , k. (3)

Step 5: Mark instance x and put x back to each training subset. If there is an
un-marked training instance on Nk, go back to Step 2.

Step 6: Compute wi
j by normalizing the set of degrees {β0

j , β1
j , . . . , βk

j } as
follows:

wi
j =

βi
j

∑k
m=0 βm

j

, i = 0, . . . , k. (4)

Return: {w0
j , w

1
j , . . . , wk

j }.

Note that on a node Ni, the local class probabilities P i(cj |x)(x ∈ Dk) have
the same estimate in Step 3, since the fraction of training instance in class
cj on Ni is used in Equation 1. Because of this, Algorithm DIW is not able
to be adapted to a multiple-iteration algorithm. The interpolating weights are
returned only after one iteration (go through each instance on the leaf once).

When we apply shrinkage to a decision tree algorithm, a decision tree is built
by that algorithm first. Then the Algorithm DIW is applied to each path to
set up the interpolating weights for each node and each class label. Given a test
instance et, it is sorted down to a leaf, and then its class probability P (cj |et) is
computed using Equation 2.

4 Weighted Probability Estimation

As mentioned before, a major issue for decision trees is that all the instances
falling into the same leaf will have the same probability estimate, which is an
obstacle to yielding accurate ranking. We notice that the instance-based method
can generate the distinct and local estimates.

We introduce WPE, an instance-based method, to estimate the class proba-
bilities on the leaves. Given a test instance et which consists of a set of attribute
values and a class label, et falls into a leaf L. We define the similarity between
et and a training instance er on L as follows.

sim(et, er) =
n∑

i=1

equ(Ai(et), Ai(er)), (5)
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where n is the number of attributes, equ(a, b) is a boolean function whose value
is either 1 (a = b) or 0 (a �= b), and Ai(e) is the ith attribute value of e. In
WPE, we calculate sim(et, er) for each training instance er on L as the weight
of er and estimate P (cj |et) as follows.

P (cj |et) =

∑
er∈DL,C(er)=cj

(sim(et, er) + 1) + 1/|C|
∑

er∈DL
(sim(et, er) + 1) + 1

, (6)

where DL is the training instance subset on L, C(er) is the class label of er. At the
numerator of Equation 6, the total weights of the instances which belong to class
cj in DL is computed, and the denominator is roughly the total weights of all the
instances in DL. Equation 6 uses the same Laplace correction as Equation 1.

Without changing the process of building a decision tree, we return the class
probabilities from the leaves, which are estimated by WPE. Note that, for differ-
ent test instances et1 and et2 falling into the same leaf, P (cj |et1) and P (cj |et2)
could be different based on Equation 6. This means that we could make distinct
probability estimates for the instances on the same node, which is the key to
obtaining accurate ranking of instances.

5 Combination of Shrinkage and Weighted Probability
Estimation

Both shrinkage and WPE are able to make up for the deficiencies of decision
tree algorithms. Shrinkage breaks the restriction that the probabilities only can
be estimated on the leaves, and WPE solves the problem that the different test
instances falling into the same leaf are assigned to the same class probability
estimate. However, they still suffer from some problems. In Algorithm DIW,
the same probability estimate is assigned to different instances on the same
node in Step 3. The generated interpolating weights for shrinkage are not
effective enough. Moreover, when the sizes of training subsets on leaves are small,
WPE could not generate reliable class probability estimates without the support
of other nodes on the paths. The combination of shrinkage and WPE could
compensate for the weakness of each. We illuminate the whole process of decision
tree algorithm with the combination as follows.

Training:
First, a decision tree is built by a traditional decision tree algorithm. Then,
Algorithm DIW is carried out to train the interpolating weights for shrinkage.
We use WPE to estimate the class probabilities P i(cj |x) for a training instance
x on the leaf in Step 3 of Algorithm DIW. Here x is treated as a test instance,
and P i(cj |x) is estimated by Equation 6 (instead of Equation 1). When the
similarity is calculated using Equation 5, we compare all of the attribute values
and the class labels, since the class label is known for x.

Testing:
Given a test instance et, it is sorted along a path from the root to a leaf. The local
class probabilities P i(cj |et) are estimated by WPE (Equation 6). We do not use
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the class label to calculate the similarity in Equation 5, since the class label is
unknown for et. Finally, the returned class probability P (cj |et) is estimated by
shrinkage (Equation 2) with the interpolating weights determined by Algorithm
DIW and the local probabilities estimated by WPE.

Using WPE in Step 3 of Algorithm DIW, the distinct probability estimates
are assigned to the instances on the same node so that the returned interpolating
weights are more effective. This also makes it possible that Algorithm DIW
can be adapted to a multiple-iteration algorithm, which terminates when the
interpolating weights are converged. The multiple-iteration algorithm appears
like an EM algorithm. However, a typical EM algorithm takes thousands of
iterations to converge, which is fairly time-consuming. In the experiments, we
still use the single-iteration Algorithm DIW. The experimental results show that
the outcome of weights after many iterations is not significantly better than the
one from just one iteration.

6 Experiments and Results

Our experiments are conducted on 35 data sets from Weka [16], which come from
the UCI repository. We download these data sets in the format of arff from the
website of Weka. There are some preprocessing stages adopted on each data set.
First, we use the filter ReplaceMissingV alues in Weka to replace the missing
values of attributes in each data set. Second, we use the filter Discretize, the
unsupervised ten-bin discretization in Weka, to discretize numeric attributes.
Thus, all the attributes are treated as nominal. Third, we notice that, if the
number of values of an attribute is almost equal to the number of instances in
a data set, this attribute does not contribute any information to the purpose of
prediction. So we use the filter Remove in Weka to delete this type of attribute.

In the first experiment, we compare the algorithms, such as C4.5 with combi-
nation of shrinkage and WPE (C45-C), C4.5 with shrinkage (C45-S), C4.5 with
WPE (C45-W), C4.5 (C45), C4.5 with m-Branch (C45-M), C4.5 with LingYan’s
algorithm (C45-L), C4.5 with bagging (C45-B). In the second experiment, we
compare the algorithms, such as C4.4 with the combination of shrinkage and
WPE (C44-C), C4.4 with shrinkage (C44-S), C4.4 with WPE (C44-W), C4.4
(C44), C4.4 with m-Branch (C44-M), C4.4 with LingYan’s algorithm (C44-L),
C4.4 with bagging (C44-B). We implement shrinkage, WPE, the combination1,
C4.4, m-Branch, LingYan’s algorithm and AUC evaluation within the Weka
framework, and use the implementation of C4.5 and bagging in Weka. In all
experiments, the AUC score of an algorithm on a data set is obtained via 5 runs
of ten-fold cross validation. Runs with the various algorithms are carried out on
the same training data sets and evaluated on the same test data sets. Finally,
we conduct two-tailed t-test with a 95% confidence level to compare each pair
of algorithms.

1 Codes for shrinkag, WPE and their combination are available at http://www.cs.
unb.ca/∼hzhang/ShrinkageCode.rar

http://www.cs.unb.ca/$sim $hzhang/ShrinkageCode.rar
http://www.cs.unb.ca/$sim $hzhang/ShrinkageCode.rar
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Table 3 and Table 4 show the AUC scores of the algorithms on each data
set. The two-tailed t-test results are shown in Table 1 and Table 2. Each entry
of Table 1 and Table 2 has the format of w/t/l. It means that compared with
the algorithm in the corresponding column, the algorithm in the corresponding
row wins in w data sets, ties in t data sets and loses in l data sets. From our
experiments, we have the following observations:

– C45-S and C44-S outperform C45 and C44 respectively. C45-W and C44-W
outperform C45 and C44 respectively.

– Either shrinkage or WPE is not perfect compared to some techniques. C45-
S is worse than C4.5 with other techniques. C44-S is not as good as C44-M
and C44-B. C44-W is worse than C4.4 with other techniques.

– C45-C outperforms C45 and C4.5 with any other techniques. C44-C outper-
forms C44 and C4.4 with any other techniques.
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Fig. 3. The AUC scores corresponding to the different numbers of iterations

The experimental results are not surprising. Due to assigning the same local
probability estimates on each node, Algorithm DIW could not return more
effective interpolating weights, so shrinkage is worse than other techniques.
Although WPE is able to estimate the probability distinctly, it suffers from
the case when the sizes of training subsets on leaves are small, and that’s why
C44-W is worse than C4.4 with other techniques. The combination of shrinkage
and WPE solves the above problems: First, applying WPE in Algorithm DIW

Table 1. Summary of comparisons for the algorithms related with C4.5

C45-C C45-S C45-W C45 C45-M C45-L
C45-S 0/5/30
C45-W 3/18/14 19/16/0
C45 0/5/30 3/18/14 0/4/31
C45-M 2/9/24 8/27/0 1/17/17 16/19/0
C45-L 0/10/25 14/15/6 2/17/16 19/13/3 10/18/7
C45-B 2/7/26 14/18/3 4/17/14 24/11/0 10/22/3 7/20/8
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Table 2. Summary of comparisons for the algorithms related with C4.4

C44-C C44-S C44-W C44 C44-M C44-L
C44-S 2/14/19
C44-W 0/12/23 3/24/8
C44 1/11/23 0/11/24 4/20/11
C44-M 2/14/19 7/24/4 7/27/1 16/19/0
C44-L 0/14/21 4/24/7 10/16/9 14/16/5 7/20/8
C44-B 2/17/16 9/24/2 7/27/1 19/16/0 6/29/0 9/25/1

Table 3. Experimental results on AUC for the algorithms related with C4.5

Data set C45-C C45-S C45-W C45 C45-M C45-L C45-B
anneal 95.91 90.45 95.24 83.45 89.73 93.70 86.49
anneal.ORIG 95.61 91.42 94.18 86.00 90.04 91.33 86.53
audiology 70.66 62.81 70.08 61.54 62.68 69.98 64.86
autos 95.07 93.11 95.22 73.84 93.95 89.93 77.91
balance-scale 88.00 56.01 63.34 52.72 54.94 67.76 59.20
breast-cancer 92.28 62.89 92.21 60.86 62.73 67.54 64.97
breast-w 99.45 94.62 98.64 96.43 97.36 98.24 98.12
colic 95.01 85.42 91.35 81.17 85.41 85.63 85.32
colic.ORIG 92.42 84.50 90.25 83.56 85.38 80.96 87.68
credit-a 96.46 89.71 94.54 88.17 89.82 91.26 91.31
credit-g 82.49 72.90 75.35 68.48 72.32 75.08 74.16
diabetes 93.68 77.69 85.47 76.26 78.05 79.33 79.74
glass 89.61 81.93 84.60 77.11 79.88 82.46 81.26
heart-c 84.25 83.27 83.89 83.16 83.31 83.85 83.75
heart-h 84.58 81.01 84.40 80.91 81.02 83.76 83.77
heart-statlog 92.98 84.65 88.01 81.65 85.48 88.17 86.39
hepatitis 91.42 70.61 90.78 70.43 70.50 72.90 81.54
hypothyroid 95.12 66.50 98.33 68.56 68.74 82.05 83.31
ionosphere 96.32 84.29 94.25 88.98 90.57 88.32 94.72
iris 99.68 99.12 99.41 98.99 98.67 98.12 99.00
kr-vs-kp 99.73 99.56 99.93 99.81 99.88 98.90 99.91
labor 97.50 82.75 93.50 78.25 82.75 85.42 84.46
lymph 88.70 86.47 85.90 71.16 86.29 87.33 83.02
mushroom 100.00 100.00 100.00 100.00 100.00 99.46 100.00
primary-tumor 75.93 69.73 72.67 63.98 70.67 74.29 69.01
segment 98.60 97.81 99.24 98.47 98.97 96.19 99.33
sick 99.12 93.69 96.67 93.42 94.48 94.90 94.01
sonar 86.84 75.05 76.26 69.49 74.14 75.33 81.92
soybean 99.73 98.95 99.15 98.12 98.96 99.50 98.99
splice 98.70 97.88 98.12 96.84 98.21 98.90 98.52
vehicle 88.74 84.59 86.66 83.13 87.57 81.49 89.03
vote 98.69 96.20 98.60 96.57 97.53 98.23 97.64
vowel 97.20 94.65 95.32 92.83 95.61 92.96 96.40
waveform-5000 91.71 85.79 87.06 84.63 88.54 90.92 91.03
zoo 88.48 80.38 88.00 79.57 80.29 85.76 80.62

can generate the different probability estimates on each node for each training
instances on the leaf; Second, shrinkage balances the probability estimation
towards the nodes with large training subsets; Third, the class probability for a
test instance is estimated by the local probabilities from WPE and shrinkage
weights from Algorithm DIW.

In another interesting experiment, we adapt Algorithm DIW in C45-C to a
multiple-iteration algorithm. For data set “Vehicle”, the AUC scores from the dif-
ferent numbers of iterations are plotted in Figure 3. We observe that the AUC
score is not changed at 88.96% after 3500 iterations. Compared with the AUC
score 88.74% from a single iteration, we can see that the result after many itera-
tions is not significantly better than the one from a single iteration.
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Table 4. Experimental results on AUC for the algorithms related with C4.4

Data set C44-C C44-S C44-W C44 C44-M C44-L C44-B
anneal 96.02 94.71 94.77 93.95 94.13 93.67 94.83
anneal.ORIG 95.61 93.54 93.43 92.11 93.56 92.25 93.25
audiology 70.28 67.42 70.08 65.91 67.00 70.45 69.69
autos 95.12 93.68 94.92 91.28 94.31 90.43 94.91
balance-scale 79.50 57.76 66.79 59.42 57.90 66.45 65.15
breast-cancer 76.51 61.01 62.60 59.44 62.43 67.78 64.09
breast-w 99.30 96.58 98.59 98.08 98.18 98.27 98.79
colic 90.90 87.15 85.29 84.13 87.22 85.69 88.06
colic.ORIG 89.36 83.80 83.45 82.43 83.60 80.66 86.00
credit-a 94.40 90.99 89.43 88.30 91.31 91.26 90.42
credit-g 79.21 73.06 69.67 68.06 72.70 75.04 73.44
diabetes 89.04 78.91 77.74 74.66 78.65 79.98 78.78
glass 88.77 83.11 80.29 80.57 81.23 82.06 79.52
heart-c 84.03 83.29 83.35 83.19 83.47 83.84 83.65
heart-h 84.13 83.52 83.45 83.21 83.67 83.82 83.65
heart-statlog 90.14 85.24 84.33 82.82 85.59 88.66 86.73
hepatitis 86.62 81.29 81.62 78.64 80.76 77.92 83.03
hypothyroid 85.60 86.31 83.13 82.23 83.74 81.40 82.28
ionosphere 94.28 88.86 93.18 92.17 92.46 91.28 95.17
iris 99.65 98.00 98.93 98.52 98.85 97.33 98.68
kr-vs-kp 99.74 99.65 99.96 99.95 99.91 98.75 99.97
labor 95.42 82.96 86.58 84.63 86.29 84.04 89.42
lymph 88.78 88.12 87.04 86.44 87.22 87.61 88.08
mushroom 100.00 100.00 100.00 100.00 100.00 99.46 100.00
primary-tumor 76.05 72.48 72.10 69.23 72.96 74.44 73.07
segment 99.09 98.79 99.35 99.20 99.29 95.88 99.53
sick 98.92 97.87 99.20 99.11 99.19 94.41 99.24
sonar 83.30 78.44 79.32 77.35 78.65 75.57 82.58
soybean 99.76 99.08 98.93 98.12 99.01 99.54 98.90
splice 98.74 98.10 98.19 97.90 98.50 98.93 98.70
vehicle 88.56 85.32 86.76 86.19 87.84 82.06 88.91
vote 98.72 96.53 98.50 97.62 97.90 98.83 98.45
vowel 97.43 95.48 94.81 91.37 96.14 93.03 96.33
waveform-5000 90.55 87.46 83.50 80.85 86.98 90.77 89.87
zoo 88.48 81.00 88.00 80.57 80.81 87.05 81.19

7 Conclusions and Future Work

In this paper, we present a statistical technique, shrinkage, and an instance-
based method, WPE, to improve the ranking performance of decision trees, which
is measured by AUC. The class probability estimate with shrinkage is a linear
interpolation for the local probability estimates on each node along the path
from leaf to root. Algorithm DIW is proposed to determine the interpolating
weights used in shrinkage. WPE produces the distinct probability estimates for
the instances on the same node. In order to compensate for the deficiencies of
shrinkage and WPE, we combine them together. In this process, we use WPE
to generate distinct probability estimates on each node in training and testing
processes, and also use shrinkage to return the final class probability estimate.
The experiments show that decision tree algorithms with shrinkage and WPE
outperform the original ones, and that the decision tree algorithms with this
combination significantly outperform the original ones and other state-of-the-
art techniques proposed to enhance the ranking performance of decision trees.

In our future research, we will study other local probability estimation meth-
ods in decision trees. We notice that naive Bayes model also generates dis-
tinct probability estimates for different instances falling into the same node.
In shrinkage, deploying naive Bayes model along a path to estimate class prob-
abilities may produce good ranking performance.
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