
Patching Approximate Solutions in
Reinforcement Learning

Min Sub Kim1 and William Uther2

1 ARC Centre of Excellence for Autonomous Systems, School of Computer Science
and Engineering, University of New South Wales, Sydney NSW 2052, Australia

2 National ICT Australia, Sydney NSW 2052, Australia
msk@cse.unsw.edu.au, william.uther@nicta.com.au

Abstract. This paper introduces an approach to improving an approx-
imate solution in reinforcement learning by augmenting it with a small
overriding patch. Many approximate solutions are smaller and easier to
produce than a flat solution, but the best solution within the constraints
of the approximation may fall well short of global optimality. We present
a technique for efficiently learning a small patch to reduce this gap. Em-
pirical evaluation demonstrates the effectiveness of patching, producing
combined solutions that are much closer to global optimality.

1 Introduction

Approximations are widely used in reinforcement learning to cope with large
state spaces. The potential advantages offered by approximations include re-
duced storage requirements and faster learning than a flat solution. The main
drawback is that it may be impossible to represent the globally optimal solu-
tion, and the best solution within the constraints of the approximation may be
arbitrarily worse than global optimality.

In this paper we discuss a technique for learning a small patch, which, when
combined with an approximate solution to a reinforcement learning problem,
produces performance much closer to the global optimal. This is motivated by
the observation that the sub-optimality of many approximate solutions may
be attributed to sub-optimal behaviour in small but important regions of the
state space. Augmenting the approximate solution with an overriding patch can
overcome the sub-optimality in these regions while retaining the benefits of ap-
proximation elsewhere.

2 Background

We adopt the usual reinforcement learning setting of finite Markov Decision
Problems with discrete time steps [1], with the following notation. A Markov
Decision Problem M is a 5-tuple < S, A, P, R, S0 > where S is a finite set of
states, A is a finite set of actions, P (s, a, s′) is the probability of reaching state
s′ after executing action a in state s, R(s, a) is the immediate reward received

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 258–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Patching Approximate Solutions in Reinforcement Learning 259

for executing action a in state s, and S0(s) is the probability that M starts in
state s.

The objective is to learn a policy π : S → A that optimises some measure
of future reward. In this paper, we will use expected undiscounted reward: the
expected sum of reward from following the policy until reaching a terminal state.
However, the methods discussed are also applicable with discounting.

We use the action-value or Q function [2] to represent the expected value of a
policy. Specifically, for state-action (s, a) and policy π, Qπ(s, a) is defined using
the Bellman equation:

Qπ(s, a) = R(s, a) +
∑

s′∈S

P (s, a, s′)Qπ(s′, π(s′)) (1)

For learning the patch, we adapt prioritised sweeping [3], a model-based re-
inforcement learning algorithm that efficiently orders backups using a priority
queue. At each step, the most recent state-action is promoted to the top of the
backup queue. Then, before the next action is taken, a certain number of state-
actions are removed from the top of the queue and processed one at a time.
Processing a state-action consists of updating its Q value, and adding its pre-
decessors to the backup queue, with priority equal to the expected change in Q
value. This has the effect of concentrating computation where the Q function is
changing most rapidly.

3 Related Work

Patching starts with an approximate solution and incrementally learns over it, an
approach shared by many other methods. One of the earliest on-line algorithms
to use this approach was Learning real-time A* [4], a real-time search algorithm.
A heuristic cost function serves as the initial approximation, and as the agent
searches the problem, it is incrementally overridden by a revised cost function.
Real-time dynamic programming [5] generalises Learning real-time A* to Markov
Decision Problems. However, both algorithms assume that storage is allocated
for all states visited in practice, which becomes intractable over time for large
problems.

An alternative approach is to initialise the solution with the approximation
and then learn over it directly, instead of incrementally building a partial over-
ride. Naively seeding the value function in this manner may cause learning to
be slower than starting from scratch [6]. However, careful application has been
shown to be capable of accelerating learning [7].

A related method from multi-agent learning is Sparse cooperative Q-learning
[8]. In this approach, the value function is approximated by agent-wise decom-
position for some states, but depends on the entire joint state for others. This
kind of partially abstract, partially flat value function is similar to that pro-
duced by patching, although patching is not limited to this particular type
of decomposition. Coordination dependencies are specified by the user in this

260 M.S. Kim and W. Uther

algorithm; Utile coordination [9] is an extension of Sparse cooperative Q-learning
that detects coordination dependencies automatically.

4 Patching in Reinforcement Learning

4.1 A Small Example

To illustrate the basic concepts and motivation for patching, consider the prob-
lem shown in Fig. 1. Two actors, A and B, are initially placed randomly on two
separate paths with the goal of reaching Home.

Home

0 1 2 3 4

A

B

Fig. 1. A small coordination problem.

At each time step, each actor may either Move one cell to the right if it is
not at Home, or Wait in its current position. These actions are deterministic.
Each actor contributes a reward of 10 if it Moves to Home on that time step, or
0 if it is already at Home, or -1 otherwise. The total reward at each time step
is the sum of the individual actor rewards, except if both actors Move to Home
simultaneously, in which case the reward is 100. The task is undiscounted and
terminates when both actors have reached Home.

An intuitive approximation for this problem is to assume that the actors are
entirely independent. This divides the problem into two separate and identical
sub-problems of one actor reaching Home individually. This type of decomposi-
tion is referred to as a parallel decomposition [10], because the problem is divided
into sub-problems that “run in parallel”. These sub-problems are much smaller
and easier to solve separately than the whole problem. In this example, the op-
timal policy for one actor (defined over its individual state-action space only) is
to Move on each step to reach Home and quickly as possible. Therefore, by com-
bining the sub-problem solutions, the approximate solution suggests that both
actors Move at every step until reaching Home.

The price paid for the reduction in solution complexity is that the solution is
not optimal: the approximation is unable to represent that it is more profitable
for the actors to cooperate on the last step before Home to collect the large com-
bined reward. In terms of the policy value, it is easy to see that the approximate
policy may have arbitrarily worse expected reward than optimal, depending on
the value of the combined reward for reaching Home together. However, from the
perspective of the policy, the approximate solution only requires modification at
that last step. Ideally, we would like to bridge the gap to optimality, but without
reverting to a flat Q table over the entire problem. This is exactly the aim of
patching.

Patching Approximate Solutions in Reinforcement Learning 261

4.2 Specifying the Approximate Solution

We assume that the approximate solution is specified by:

– an approximate Q function, Q̂;
– an approximate model of the transitions, P̂ , and rewards R̂.

There are no strict requirements on the underlying representation of these func-
tions, but in practice, it is expected that they will be compactly represented,
e.g. Q̂ may be a hierarchically decomposed Q function. We assume that these
functions are pre-computed and fixed throughout patch learning.

For our example problem, Q̂ is the sum of the corresponding single actor
Q values: the expected reward for both actors reaching Home is estimated as
the expected reward for the two actors reaching Home separately. This can be
calculated on demand by looking up the corresponding entries in the single actor
Q table. P̂ and R̂ are calculated similarly using their single actor counterparts.

4.3 Patching the Q Function

Patching aims to improve on the policy defined by Q̂ by overriding some values
in Q̂. This override combines with Q̂ to form the Q function representation used
by patching.

Definition 1. The Q function patch, Qpatch : S × A → � is a partial function
that overrides some values of Q̂. Then, for any state-action pair (s, a):

Q(s, a) =

{
Qpatch(s, a) if Qpatch(s, a) defined
Q̂(s, a) otherwise

(2)

The “default” choice of representation for Qpatch is a dynamically sized hashtable
over flat state-action pairs, holding only as many entries as are added to it.
Qpatch may also employ abstractions, but this requires careful design: it needs
to have sufficient representational power to cover sub-optimalities caused by
approximations used in Q̂, but over-generalising may make the solution worse.
In this representation, updates to the Q function are made by adding or updating
entries in Qpatch, overriding the value in Q̂.

Patches to cover inaccuracies in P̂ and R̂ are defined analogously, and have
similar conventions for partial override of P̂ and R̂. We omit details due to lack
of space; full details are presented in an accompanying technical report [11].

4.4 Seeding the Patch

Having decided how the patch is represented, the next problem is to decide which
action values should be added to the patch.

Definition 2. The patch seed predicate, defined over state-actions, indicates
the starting points for Qpatch, from which it will grow.

262 M.S. Kim and W. Uther

We require the user to supply the patch seed predicate. A reasonable strategy
for seeding the patch is to focus on the parts of the problem where Q̂ may lack
sufficient representational power, or where structural assumptions and abstrac-
tions used in Q̂ may over-generalise. In general, patch seeding is not intended
to be an exact listing of sub-optimalities in the approximation, but allows the
user to suggest regions of the problem that deserve attention, instead of growing
the patch blindly over the entire state-action space. An automatic method for
seeding the patch that we use in our experiments is to detect inaccuracies in the
model, discussed in Sect. 5.4. This is appropriate when Q̂, P̂ , and R̂ all depend
on the same structural assumptions for approximation.

For our example, the assumption made when constructing the approximation
was that the actors are entirely independent. However, when both actors Move
to Home simultaneously, they will receive a combined reward of 100 instead of
the sum of individual rewards predicted by R̂ (+10 for each actor, for a total
of 20). Therefore, this state-action is a patch seed, indicating that Q̂ may be
inaccurate around this state-action, and therefore the policy may be improved
by patching around this state-action.

5 Learning the Patch

5.1 Unbounded Patching

With the initial approximation and patch seed predicate set, we now need an
algorithm to learn Qpatch. Intuitively, we want to improve the policy defined
by Q̂ by adding override values to Qpatch, starting from the areas of interest
suggested by the seed predicate.

Unbounded patching directly adapts prioritised sweeping for this purpose as
follows. We follow the policy according to the current Q values as per usual.
Then, if the most recent state-action is a patch seed according to the seed predi-
cate, it is added to the backup queue. It then proceeds as per prioritised sweeping,
by processing entries from the backup queue and making model-based Q func-
tion updates, with the difference that updates are made by adding or updating
values in Qpatch. This has the effect of quickly growing Qpatch from the patch
seeds through predecessors, adjusting the policy as it proceeds.

Eventually, unbounded patching will add all ancestors of all patch seeds to
Qpatch, effectively reverting to prioritised sweeping over the flat problem. This
is not unexpected, since unbounded patching is just prioritised sweeping with
the first entries to the backup queue determined by patch seeds, combined with
partial override by Qpatch. We need heuristics to bound patch growth while still
repairing the policy where required.

5.2 Policy Bounding

Unbounded patching propagates changes in value from the seed points through
predecessors. In our example problem, a lot of these changes in value do not af-
fect the policy. An example is both actors Waiting in their current position: this

Patching Approximate Solutions in Reinforcement Learning 263

is equivalent to a null action and is not optimal in any state, but nevertheless,
unbounded patching will patch it as long as it is a patch seed ancestor. Con-
sequently, values are added to Qpatch without actually improving the resulting
behaviour.

Policy bounding adds the restriction that patch values are added only when
they immediately affect the current greedy policy (including the current set of
Qpatch values). This can be seen as using immediate change in the policy as
a heuristic to decide whether growing the patch is still effective. Under policy
bounding, a proposed update for state-action (s, a) that is not currently in Qpatch
is accepted if either the greedy action at s would change, or if a is the greedy
action at s and has a non-zero probability of self-transition1. This condition is
checked both when entries are added to and removed from the backup queue.

Policy bounding tends to constrain patching to only local adjustments around
patch seeds. This usually keeps patch sizes smaller, but also limits patching to
local policy repair only. In general, if the approximate solution requires correction
on a more global scale, then policy bounding will either ignore some corrections
or be ineffective in reducing Qpatch growth.

5.3 Utility Bounding

If there are hard limits on storage, policy bounding alone may not be sufficient.
In this case, we would like to obtain the greatest improvement possible from
the limited storage. One way to do this is to rank entries in Qpatch according to
some measure of usefulness, so that the least useful values can be discarded if
necessary.

Utility bounding implements Qpatch as a priority queue with fixed capacity
specified by the user. Entries are prioritised by the absolute difference between
the patched value and the corresponding value in Q̂, i.e., priority will be highest
where Q̂ is least accurate. This can be seen as using estimated Q function error as
a heuristic measure of usefulness of entries in Qpatch. If Qpatch exceeds capacity,
the state-action with lowest priority is dropped, reverting the Q function to Q̂
for that state-action.

5.4 Patching the Model

Patching relies on the model to calculate the adjusted values for Qpatch. As with
patching for the Q function, we augment the provided estimates P̂ and R̂ with
partial patches, and avoid building the entire flat model by patching only the
inaccuracies in the estimates. We omit details due to lack of space, but sketch
the procedures briefly. Full details are presented in an accompanying technical
report [11].

Inaccuracies in the approximate transition and reward models are detected
with the χ2 and Kolmogorov-Smirnov statistical tests. Transition and reward
1 This is required because greedy actions re-use their own value to calculate their

updated value.

264 M.S. Kim and W. Uther

samples are collected during learning, and compared to P̂ or R̂ once enough
samples have been observed. If the test shows a significant difference between
the distributions, then that state-action is patched with the observed samples,
and future references to that state-action refer to the patched distribution rather
than P̂ or R̂. Storage for sampling is kept limited by selective sampling, directing
storage to those transitions experienced most frequently in practice.

6 Experiments

We evaluate patching on two domains, to examine the effectiveness of patching in
bridging the gap to global optimality. We compare patching against two instances
of prioritised sweeping:

– Prioritised sweeping from scratch: All Q values are initialised to 0, and the
agent’s estimates of P and R are built from scratch. This provides a lower
baseline to determine whether the initial approximate solution is helpful.

– Initialised prioritised sweeping: All Q values are initialised to Q̂’s values, and
the approximate model is provided and updated by patching, as discussed in
Sect. 5.4. The only differences between this algorithm and patching that af-
fect the policy are patch seeding and the bounding heuristics, thus providing
a measure of effectiveness of those aspects.

For all experiments, we use ε-greedy exploration, with ε = 0.1. A maximum
of 2 state-actions were processed from the backup queue per step. All plots
in this section show the average and standard deviation over 10 runs for each
experiment.

6.1 Modified Taxi

The first set of experiments uses a modified version of Dietterich’s taxi problem
[12]. In this problem, a taxi agent in a 5-by-5 grid world (shown in Fig. 2) has
the objective of delivering a passenger from a specially marked taxi stand to a
destination taxi stand.

R G

Y B

T

Fig. 2. The taxi problem. R, G, B, Y indicate the taxi stands, T indicates the taxi.

States are described by three variables: the taxi location, the passenger loca-
tion, and the passenger destination. The taxi has stochastic navigation actions in
the four compass point directions that move one cell in the intended direction with
probability 0.8 and to the left or right of the intended direction with probability 0.1

Patching Approximate Solutions in Reinforcement Learning 265

each, subject to barriers that block movement (marked by thicker lines in Fig. 2).
Two special actions are also available for picking up and putting down the passen-
ger, effective only when the taxi is at the correct stand. The reward is -10 for failed
pick-up or put-down actions, +19 on successful delivery, or -1 otherwise. The task
is undiscounted and terminates on successful delivery of the passenger.

For the original taxi problem, MAXQ can be used to efficiently learn a com-
pact hierarchical solution. Importantly, the task hierarchy includes navigation
sub-tasks for each taxi stand. These sub-tasks are context independent with re-
spect to the passenger location and destination – the optimal policy to navigate
to a particular stand is the same regardless of the passenger.

We use the MAXQ solution as the initial approximation on a modified version
of the taxi problem, and patch over it to handle the modifications. In the modified
problem, 40 navigation state-actions in the middle row of the grid that are
optimal in the original problem are modified. These modified actions have an
irregular outcome in either P or R, such that the navigation sub-tasks are now
not entirely context independent with respect to the passenger. Modified state-
actions in P move in the intended direction with probability 0.1 and to the left or
right of the intended direction with probability 0.45 each. Modified state-actions
in R incur an unexpectedly costly reward of -6 with probability 0.8, and the
usual -1 otherwise. These changes are deliberately conceived to be costly – an
optimal policy for the original problem falls well short of global optimality when
directly applied to the modified problem.

We apply patching in this domain as follows. Q̂(s, a) is calculated on demand
from the MAXQ value function by finding the highest value path in the task
hierarchy from the root node to the leaf node for a 2. Q̂ requires 632 values. P̂
and R̂ are initialised to the transition and reward models of the original taxi
domain. Since Q̂, P̂ , and R̂ are all based on the original domain, it is reasonable
to seed the patch at the transitions where P̂ and R̂ are found to be inconsistent
with the modified domain. These inconsistencies in the model are detected using
the procedures discussed in Sect. 5.4.

Figure 3(a) compares the expected reward for policy bounded patching and
the two instances of prioritised sweeping. The solutions using the initial approx-
imation have a clear head-start on prioritised sweeping from scratch, but the
difference is reduced fairly quickly, and all algorithms reach policies of similar
quality. In terms of storage, policy bounded patching settles with Qpatch cov-
erage of approximately one third of the state-action space, requiring less total
storage than the other algorithms.

If capacity for Qpatch is undersized, we can expect that the policy will conse-
quently be worse. Figure 3(b) shows the expected reward for patching with policy
and utility bounding, with Qpatch capacities of 800, 900, and 1,000 (26.7%, 30%,
and 33.3% of the state-action space). As Qpatch capacity is reduced, the policy
deteriorates, both in terms of expected reward and consistency.

Table 1 summarises the results for this domain.

2 Subject to the termination predicates in the hierarchy – each sub-task in the path
must be valid at s.

266 M.S. Kim and W. Uther

-12

-10

-8

-6

-4

-2

 0

 2

 0 10000 20000 30000 40000 50000

E
xp

ec
te

d
re

w
ar

d

Steps

Policy bounded patching
Initialised prioritised sweeping

Prioritised sweeping from scratch
Approximate policy

Optimal policy
-12

-10

-8

-6

-4

-2

 0

 2

 0 10000 20000 30000 40000 50000

E
xp

ec
te

d
re

w
ar

d

Steps

Q Patch capacity 800
Q Patch capacity 900

Q Patch capacity 1000
Approximate policy

Optimal policy

(a) (b)

Fig. 3. Results for the modified taxi domain. Expected reward was determined by
calculating the policy value, and averaging over the initial state distribution.

Table 1. Summary of results for the modified taxi domain. Statistics were taken at
the end of 50,000 steps for all algorithms. For patched solutions, the total size is listed
as the size of Q̂ plus the size of Qpatch.

Solution Expected reward # Q values

Initial approximation (Q̂) -6.38 ± 1.09 632
Optimal flat 1.02 3000
Initialised prioritised sweeping 0.78 ± 0.07 3000
Prioritised sweeping from scratch 0.58 ± 0.19 3000
Policy bounded patching 0.58 ± 0.32 632 + 1035.60 ± 54.62
Policy and utility bounded patching
– with Qpatch capacity 800 -1.21 ± 1.90 632 + 800
– with Qpatch capacity 900 -0.01 ± 0.91 632 + 900
– with Qpatch capacity 1000 0.56 ± 0.31 632 + 989.70 ± 16.64

6.2 Multi-taxi

The second set of experiments will examine patching on the multi-taxi problem:
the grid remains the same as in the original taxi problem, but there are now two
taxis and two passengers.

The multi-taxi problem is approximately equal to two instances of the original
taxi problem running in parallel, but with some differences. Most importantly,
the taxis are subject to collisions with each other, in which case neither taxi
location is changed. A taxi may pick-up either passenger, but only one at a
time. The reward is decomposed by passengers: at each time step, a reward of
-1 is received for each undelivered passenger, plus -10 for each failed pick-up or
put-down action. In addition to the action set from the original taxi problem,
each taxi also has a null action for staying in place. The task is undiscounted
and terminates when both passengers have been successfully delivered.

We apply patching in this domain as follows. Q̂ is calculated by using a solu-
tion for the task of delivering one passenger with one taxi, requiring 4,200 values.

Patching Approximate Solutions in Reinforcement Learning 267

-160

-140

-120

-100

-80

-60

-40

-20

 0 80000 160000 240000 320000 400000

A
ve

ra
ge

 r
ew

ar
d

pe
r

tr
ia

l o
ve

r
tr

ia
l s

et

Steps

Policy bounded patching
Initialised prioritised sweeping

Approximate policy
Optimal policy

-160

-140

-120

-100

-80

-60

-40

-20

 0 80000 160000 240000 320000 400000

A
ve

ra
ge

 r
ew

ar
d

pe
r

tr
ia

l o
ve

r
tr

ia
l s

et

Steps

Q Patch capacity 100000
Q Patch capacity 200000

Approximate policy
Optimal policy

(a) (b)

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 80000 160000 240000 320000 400000

A
ve

ra
ge

 r
ew

ar
d

pe
r

tr
ia

l o
ve

r
tr

ia
l s

et

Steps

Prioritised sweeping from scratch
Approximate policy

Optimal policy

(c)

Fig. 4. Results for the multi-taxi domain. Average reward per trial was determined
by evaluating the policy on a random test set of 1,000 initial states, fixed for each
experiment run but different for separate runs. A maximum trial length of 1,000 steps
was imposed for evaluation.

A hand-crafted allocation function determines allocation of taxis to passengers.
Given an allocation, the expected reward for the two deliveries is estimated as
the sum of the expected reward for the individual deliveries, i.e. assuming that
the two taxis are entirely independent. P̂ and R̂ calculated similarly under the
same assumption. Patch seeds are found by detecting inaccuracies in P̂ , which
occur when the taxis collide. Both patching and prioritised sweeping make use
of symmetry between the taxis to accelerate learning.

Figure 4(a) compares policy bounded patching and initialised prioritised sweep-
ing. In this domain, patch seeding and bounding results in a noticeable difference
in early performance – policy bounded patching reduces the gap to global optimal-
ity much faster than initialised prioritised sweeping by focusing updates to where
the policy immediately requires correction.

In terms of storage, policy bounding alone does not appear sufficient in this
domain to limit Qpatch growth. One reason for this is that most of the sub-
optimality in Q̂ can be resolved by handling collisions, but further small improve-
ments to the policy are possible, e.g. cooperative strategies that make positive
use of collisions. Figure 4(b) plots the expected reward with both policy bound-
ing and utility bounding, for Qpatch capacities of 100,000 and 200,000 (0.6%

268 M.S. Kim and W. Uther

and 1.1% of the state-action space). Combining both bounding heuristics makes
efficient use of the limited storage, with little loss in policy value compared to
patching without utility bounding.

Lastly, Fig. 4(c) shows the expected reward for prioritised sweeping from
scratch. While all algorithms initialised with Q̂ had learning curves between Q̂
and the optimal solution, prioritised sweeping from scratch starts far below Q̂,
and proceeds to blindly explore the problem. Clearly, while the initial approxi-
mation is not perfect, it is a much more preferable starting point to nothing.

Table 2 summarises the results for this domain.

Table 2. Summary of results for the multi-taxi domain. Statistics were taken at the
end of 400,000 steps for all algorithms. For patched solutions, the total size is listed as
the size of Q̂ plus the size of Qpatch.

Solution Reward per trial # Q values

Initial approximation (Q̂) -120.37 ± 17.12 4200
Optimal flat -28.29 ± 0.28 17434200
Initialised prioritised sweeping -29.26 ± 0.32 17434200
Prioritised sweeping from scratch -3184.23 ± 107.44 17434200
Policy bounded patching -29.10 ± 0.33 4200 + 379263.10 ± 3444.89
Policy and utility bounded patching
– with Qpatch capacity 100000 -34.75 ± 3.21 4200 + 100000
– with Qpatch capacity 200000 -29.26 ± 0.37 4200 + 200000

7 Conclusions and Future Work

In this paper, we introduced an approach to reinforcement learning in which an
approximate solution is taken as the starting point, and patched to improve per-
formance beyond the constraints imposed by the approximation. We started with
unbounded patching as a direct adaptation of prioritised sweeping to patching,
and proposed policy bounding and utility bounding as two heuristics for bound-
ing patch growth. Empirical results demonstrated the effectiveness of patching,
producing near optimal solutions with limited storage, using two different types
of underlying Q function approximations.

Future work will aim to apply patching to larger problems, with more sophis-
ticated approximations and patch functions. We used patching in the scope of
entire tasks, but it may be possible to apply patching in separate components
of a decomposed solution, such as at various levels of a task hierarchy.

Acknowledgements

We thank Claude Sammut, Bernhard Hengst, Robert Fitch, and Malcolm Ryan
for helpful feedback that assisted in developing the ideas in this paper. We also
thank the anonymous reviewers for their helpful comments.

Patching Approximate Solutions in Reinforcement Learning 269

This research is supported by the Australian Research Council Centre of Ex-
cellence for Autonomous Systems. National ICT Australia is funded through the
Australian Government’s Backing Australia’s Ability initiative, in part through
the Australian Research Council.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press
(1998)

2. Watkins, C.J.C.H.: Learning from delayed rewards. PhD thesis, King’s College,
Oxford (1989)

3. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning 13 (1993) 103–130

4. Korf, R.E.: Real-time heuristic search. Artificial Intelligence 42 (1990) 189–211
5. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic

programming. Artificial Intelligence 72 (1995) 81–138
6. Bowling, M., Veloso, M.: Reusing learned policies between similar problems. In:

Proceedings of the AI*IA-98 Workshop on New Trends in Robotics, Padua, Italy
(1998)

7. Taylor, M.E., Stone, P.: Behavior transfer for value-function-based reinforcement
learning. In: The 4th International Joint Conference on Autonomous Agents and
Multiagent Systems, ACM Press (2005) 53–59

8. Kok, J.R., Vlassis, N.: Sparse cooperative Q-learning. In: Proceedings of the 21st
International Conference on Machine Learning, ACM (2004) 481–488

9. Kok, J.R., Hoen, P.J., Bakker, B., Vlassis, N.: Utile coordination: Learning inter-
dependencies among cooperative agents. In: IEEE Symposium on Computational
Intelligence and Games. (2005)

10. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research 11
(1999) 1–94

11. Kim, M.S., Uther, W.: Patching approximate solutions in reinforcement learning.
Technical Report 0610, School of Computer Science and Engineering, University
of New South Wales (2006)

12. Dietterich, T.: Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research 13 (2000) 227–303

	Introduction
	Background
	Related Work
	Patching in Reinforcement Learning
	A Small Example
	Specifying the Approximate Solution
	Patching the Q Function
	Seeding the Patch

	Learning the Patch
	Unbounded Patching
	Policy Bounding
	Utility Bounding
	Patching the Model

	Experiments
	Modified Taxi
	Multi-taxi

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

